Fluorous Hydrosilylation

  • Monica Carreira
  • Maria Contel
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 308)


Graphical Abstract

In this review, we describe the papers and patents dealing with the fluorous biphasic system (FBS) hydrosilylation reactions reported to date. Despite the limited number of reports, the FBS hydrosilylation reaction has been extremely successful. In all cases fluorous monophosphines (either alkylic or perfluoroalkylsilyl-substituted derivatives of triphenylphosphine) have been employed as ligands to synthesize and inmobilize the metal catalysts (either rhodium(I) or gold(I) derivatives) in the fluorous solvent (including a fluorous ionic liquid). The hydrosilylation of alkenes, ketones and enones with fluorous rhodium analogs to the Wilkinson’s catalyst [RhCl(PPh3)3], have afforded high TON/TOF and a very efficient separation and recycling of the fluorous catalyst. Modification of the fluorous content and position of the fluorous tails in the aryl groups of the phosphines have allowed for further optimization of the process and a better recovery of the catalyst with minimal leaching of rhodium and fluorous ligand to the organic phase. Moreover, the use of the so-called second generation methods which eliminate the need of fluorous solvents by exploiting the temperature-dependent solubilities of fluorous catalysts in common organic solvents (thermomorphic properties) have permitted the use and separation of fluorous alkyl-phosphine rhodium catalysts in hydrosilylation reactions in conventional organic solvents. The addition of an insoluble fluorous support such as Teflon tape allowed for an exceptionally easy and efficient recovery of fluorous rhodium catalysts (“catalyst-on-a-tape”) in the hydrosilylation of ketones. In the case of the FBS gold-catalyzed hydrosilylation of aldehydes, new fluorous gold catalysts with alkylic phosphines have led to an efficient separation and recycling of the gold catalysts although the TON/TOF are lower than in the rhodium-catalyzed hydrosilylation of alkenes and ketones. A detailed study of the non-fluorous gold-catalyzed version has helped to explain how this catalytic system could be improved.

Open image in new window


Fluorous phosphines Gold Hydrosilylation Recycling Rhodium 



Fluorous biphasic catalysis


Fluorous biphasic system




Mixture of perfluorohexanes


Gas chromatography


Infra red


MALDI: Matrix-assisted laser desorption/ionization; TOF: time-of-flight mass spectrometer


Nuclear magnetic resonance




Room temperature


Transmission electron microscopy






Turnover frequency; turnover number per unit time


Turnover number; number of moles of substrate that a mole of catalyst can convert before becoming inactivated




Total reflection X-ray fluorescence




  1. 1.
    Marciniec B (1992) Comprehensive handbook on hydrosilylation. Pergamon, Oxford, UKGoogle Scholar
  2. 2.
    Marciniec B (2009) Hydrosilylation: a comprehensive review on recent advances. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Roy AK (2008) A review of recent progress in catalyzed homogeneous hydrosilation (hydrosilylation). Adv Organomet Chem 55:1–54CrossRefGoogle Scholar
  4. 4.
    Brook MA (2000) Silicon in organic, organometallic and polymer chemistry. Wiley, New YorkGoogle Scholar
  5. 5.
    Lewis LN (2000) From sand to silicones: an overview of the chemistry of silicones. In: Clarkson SJ, Fitgerald JJ, Owen MJ, Smith SD (eds) Silicones and silicone-modified materials. Oxford University Press and the American Chemical Society, Washington, DC, pp 11–19CrossRefGoogle Scholar
  6. 6.
    Arena CG (2009) Recent progress in the asymmetric hydrosilylation of ketones and imines. Mini-Rev Org Chem 6:159–167CrossRefGoogle Scholar
  7. 7.
    Morris RH (2009) Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem Soc Rev 38:2282–2291CrossRefGoogle Scholar
  8. 8.
    Bao F, Kanno KI, Takahashi T (2008) Early transition metal catalyzed hydrosilylation reaction. Trends Org Chem 12:1–17Google Scholar
  9. 9.
    Munslow IJ (2008) Alkyne reductions. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 363–385CrossRefGoogle Scholar
  10. 10.
    Riant O (2008) Hydrosilylation of imines. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 321–337CrossRefGoogle Scholar
  11. 11.
    Rendler S, Oestreich M (2008) Diverse modes of silane activation for the hydrosilylation of carbonyl compounds. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 183–207CrossRefGoogle Scholar
  12. 12.
    Mayes PA, Perlmutter P (2008) Alkyne reduction: hydrosilylation. In: Anderson PG, Munslow IJ (eds) Modern reduction methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 87–105CrossRefGoogle Scholar
  13. 13.
    Marciniec B (2002) Catalysis of hydrosilylation of carbon-carbon multiple bonds: recent progress. Silicon Chem 1:155–175CrossRefGoogle Scholar
  14. 14.
    Malacea R, Poli R, Manoury E (2010) Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes. Coord Chem Rev 254:729–752CrossRefGoogle Scholar
  15. 15.
    Speier JL, Hook DE (1958) Organosilicon compounds. US Patent 2,823,218Google Scholar
  16. 16.
    Iovel IG, Goldberg YSh, Shymanska MV, Lukevikc E (1987) Quaternary onium hexachloroplatinates: novel hydrosilylation catalysts. Organometallics 6:1410–1413CrossRefGoogle Scholar
  17. 17.
    Karstedt BD (1973) Platinum-siloxane complexes as hydrosilylation catalysts. US Patent 3,775,452Google Scholar
  18. 18.
    Chalk AJ, Harrod JF (1965) Homogeneous catalysis II. The mechanism of the hydrosilylation of olefins catalyzed by group VIII metals. J Am Chem Soc 87:16–21CrossRefGoogle Scholar
  19. 19.
    Glasser PB, Tilley TD (2003) Catalytic hydrosilylation of alkenes by a ruthenium silylene complex. Evidence for a new hydrosilylation mechanism. J Am Chem Soc 125:13640–13641CrossRefGoogle Scholar
  20. 20.
    Normand AT, Cavell KJ (2008) Donor-functionalised N-heterocyclic carbene complexes of group 9 and 10 metals in catalysis: trends and directions. Eur J Inorg Chem 2781–2800Google Scholar
  21. 21.
    Diez-Gonzalez S, Nolan SP (2008) Copper, silver and gold complexes in hydrosilylation reactions. Acc Chem Res 41:349–358CrossRefGoogle Scholar
  22. 22.
    Du G, Abu-Omar MM (2008) Oxo and imido complexes of rhenium and molybdenum in catalytic reductions. Curr Org Chem 12:1185–1198CrossRefGoogle Scholar
  23. 23.
    Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (2006) Introduction. In: Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–23Google Scholar
  24. 24.
    Maciejewski H, Szubert K, Marciniec B, Pernak J (2009) Hydrosilylation of functionalised olefins catalysed by rhodium siloxide complexes in ionic liquids. Green Chem 11:1045–1051CrossRefGoogle Scholar
  25. 25.
    Maciejewski H, Wawrzynczak A, Dutkiewicz M, Fiedorow R (2006) Silicon waxes-synthesis via hydrosilylation in homo- and heterogeneous systems. J Mol Catal A Chem 257:141–148CrossRefGoogle Scholar
  26. 26.
    Hofmann N, Bauer A, Frey T, Auer M, Stanjek V, Schulz PS, Taccardi N, Wasserscheid P (2008) Liquid-liquid biphasic, platinum-catalyzed hydrosilylation of allyl chloride with trichlorosilane using ionic liquid catalyst phase in a continuous loop reactor. Adv Synth Catal 350:2599–2609CrossRefGoogle Scholar
  27. 27.
    Geldbach TJ, Zhao D, Castillo NC, Laurenczy G, Weyershausen B, Dyson PJ (2006) Biphasic hydrosilylation in ionic liquids: a process set for industrial implementation. J Am Chem Soc 128:9773–9780CrossRefGoogle Scholar
  28. 28.
    Behr A, Naendrup F, Obst D (2002) Platinum-catalyzed hydrosilylation of unsaturated fatty acids. Adv Synth Catal 344:1142–1145CrossRefGoogle Scholar
  29. 29.
    Horváth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75CrossRefGoogle Scholar
  30. 30.
    Clayton JW Jr (1967) Fluorocarbon toxicity and biological action. Chem Rev 1:197–252Google Scholar
  31. 31.
    Gladysz JA, Curran DP, Horváth IT (2004) Handbook of fluorous chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  32. 32.
    Horváth IT (2006) Fluorous catalysis. In: Cornils B, Herrmann WA, Horváth IT, Leitner W, Mecking S, Olivier-Bourbigou H, Vogt D (eds) Multiphase homogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 339–403Google Scholar
  33. 33.
    Lantos D, Contel M, Larrea A, Szabo D, Horváth IT (2006) Fluorous-phosphine assisted recycling of gold catalysts for hydrosilylation of aldehydes. QSAR Comb Sci 25:719–722CrossRefGoogle Scholar
  34. 34.
    de Wolf E, Speets EA, Deelman BJ, van Koten G (2001) Recycling of rhodium-based hydrosilylation catalysts; a fluorous approach. Organometallics 20:3686–3690CrossRefGoogle Scholar
  35. 35.
    de Wolf E, Riccomagno E, de Pater JJM, Deelman BJ, van Koten G (2004) Parallel synthesis and study of fluorous biphasic partition coefficients of 1H,1H,2H,2H-perfluoroalkylsilyl derivatives of triphenylphosphine: a statistical approach. J Comb Chem 6:363–374CrossRefGoogle Scholar
  36. 36.
    Richter B, de Wolf ACA, Van Koten G, Deelman BJ (2000) Fluorous phosphines and process for their preparation. WO 0018774 and US 6458978Google Scholar
  37. 37.
    Dinh LV, Gladysz JA (1999) Transition metal catalysis in fluorous media: extension of a new inmobilization principle to biphasic and monophasic rhodium-catalyzed hydrosilylations of ketones and enones. Tetrahedron Lett 40:8995–8998CrossRefGoogle Scholar
  38. 38.
    Dinh LV, Gladysz JA (2005) Monophasic and biphasic hydrosilylations of enones and ketones using a fluorous rhodium catalyst that is easily recycled under fluorous-organic liquid-liquid biphasic conditions. New J Chem 29:173–181CrossRefGoogle Scholar
  39. 39.
    Gladysz JA, Wende M, Rocaboy C (2003) Composition used for hydroformylation, hydroboration, oxidation, hydrogenation, hydrosilylation or phosphine-catalyzed organic reaction contains highly fluorinated catalyst or reagent with temperature-dependent solubility in solvent used. DE 10212424Google Scholar
  40. 40.
    van der Broeke J, Winter F, Deelman BJ, van Koten G (2002) A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use in catalyst recycling. Org Lett 4:3851–3854CrossRefGoogle Scholar
  41. 41.
    Dinh LV, Gladysz JA (2005) “Catalyst-on-a-tape”-Teflon: a new delivery and recovery method for homogeneous fluorous catalysts. Angew Chem Int Ed 44:4095–4097CrossRefGoogle Scholar
  42. 42.
    Gladysz JA, Dinh LV, Curran DP (2006) Methods, processes and materials for dispensing and recovering supported fluorous reaction components. US 20060094866 and US 2008281086Google Scholar
  43. 43.
    Gladysz JA, Tesevic V (2008) Temperature-controlled catalyst recycling: new protocols based upon temperature-dependent solubilities of fluorous compounds and solid/liquid phase separation. Top Organomet Chem 23:67–89, and refs thereinCrossRefGoogle Scholar
  44. 44.
    Jardine FH (1981) Chlorotris(triphenylphosphine rhodium(I). Its chemical and catalytic reactions. In: Lippard SJ (ed) Progress in inorganic chemistry, vol 28. Wiley, New York, pp 117–183CrossRefGoogle Scholar
  45. 45.
    Richter B, de Wolf E, van Koten G, Deelman BJ (2000) Synthesis and properties of a novel family of fluorous triphenylphosphine derivatives. J Org Chem 65:3885–3893CrossRefGoogle Scholar
  46. 46.
    Richter B, van Koten G, Deelman BJ (1999) Fluorous biphasic hydrogenation of 1-alkenes using novel fluorous derivatives of Wilkinson’s catalyst. J Mol Catal A 145:317–321CrossRefGoogle Scholar
  47. 47.
    Richter B, Spek AL, van Koten G, Deelman BJ (2000) Fluorous versions of Wilkinson’s catalysts. Activity in fluorous hydrogenation of 1-alkenes and recycling by fluorous biphasic separation. J Am Chem Soc 122:3945–3951CrossRefGoogle Scholar
  48. 48.
    Ameduri B, Boutevin B, Nouiri M, Talbi M (1995) Synthesis and properties of fluorosilicon-containing polybutadienes by hydrosilylation of fluorinated hydrogenosilanes. Part 1. Preparation of the silylation agents. J Fluorine Chem 74:191–197, and refs thereinCrossRefGoogle Scholar
  49. 49.
    Van den Broeke J, Lutz M, Kooijman H, Spek AL, Deelman BJ, van Koten G (2001) Increasing the lipophilic character of tetraphenylborate anions through silyl substituents. Organometallics 20:2114–2117CrossRefGoogle Scholar
  50. 50.
    Juliette JJJ, Horváth IT, Gladysz JA (1997) Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroboration. Angew Chem Int Ed 36:1610–1612CrossRefGoogle Scholar
  51. 51.
    Juliette JJJ, Rutherford D, Horváth IT, Gladysz JA (1999) Transition metal catalysis in fluorous media: practical application of a new immobilization principle to rhodium-catalyzed hydroborations of alkenes and alkynes. J Am Chem Soc 121:2696–2704CrossRefGoogle Scholar
  52. 52.
    Rutherford D, Juliette JJJ, Rocaboy C, Horváth IT, Gladysz JA (1998) Transition metal catalysis in fluorous media: application of a new immobilization principle to rhodium-catalyzed hydrogenation of alkenes. Catal Today 42:381–388CrossRefGoogle Scholar
  53. 53.
    Wende M, Meier R, Gladysz JA (2001) Fluorous catalysis without fluorous solvent: a friendlier catalyst recovery/recycling protocol based upon thermomorphic properties and liquid/solid phase separation. J Am Chem Soc 123:11490–11491CrossRefGoogle Scholar
  54. 54.
    Wende M, Gladysz JA (2003) Fluorous catalysis under homogeneous conditions without fluorous solvents: a “greener” catalyst recycling protocol based upon temperature-dependent solubilities and liquid/solid phase separation. J Am Chem Soc 125:5861–5872CrossRefGoogle Scholar
  55. 55.
    Ishihara K, Kondo S, Yamamoto H (2011) 3,5-Bis(perfluorodecyl)phenylboronic acid as an easily recyclable direct amide condensation catalyst. Synlett 1371–1374Google Scholar
  56. 56.
    Ishihara K, Hasegawa A, Yamamoto Y (2002) A fluorous super Bronsted acid catalyst: application to fluorous catalysis without fluorous solvents. Synlett 1299–1301Google Scholar
  57. 57.
    Mikami K, Mikami Y, Matsuzawa Y, Matsumoto Y, Nishidiko J, Yamamoto F, Nakajima H (2002) Lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide ponytails: recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron 58:4015–4021CrossRefGoogle Scholar
  58. 58.
    Otera J (2004) Toward ideal (trans)esterification by use of fluorous distannoxane catalysts. Acc Chem Res 37:288–296, and refs thereinCrossRefGoogle Scholar
  59. 59.
    Maayan G, Fish R, Neumann R (2003) Polyfluorinated quaternary ammonium salts of polyoxometalate anions: fluorous biphasic oxidation catalysis with and without fluorous solvents. Org Lett 41:3547–3550CrossRefGoogle Scholar
  60. 60.
    Gladysz JA (2009) Catalysis involving fluorous phases: fundamentals and directions for greener methodologies. In: Anastas PT, Crabtree RH (eds) Handbook of green chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 17–38Google Scholar
  61. 61.
    Gladysz JA (2008) Thermomorphic cyclopalladated compounds. In: Dupont J, Pfeffer M (eds) Palladacycles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 341–360CrossRefGoogle Scholar
  62. 62.
    Bergbreiter DE (2009) Thermomorphic catalysts. In: Benaglia M (ed) Recoverable and recyclable catalysts. Wiley, Chichester, UK, pp 117–154CrossRefGoogle Scholar
  63. 63.
    Zhang W (2009) Green chemistry aspects of fluorous techniques – opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920CrossRefGoogle Scholar
  64. 64.
    Candeias NR, Branco LC, Gois PMP, Alfonso CAM (2009) More sustainable approaches for the synthesis of N-based heterocycles. Chem Rev 109:2703–2802CrossRefGoogle Scholar
  65. 65.
    Contel M, Villuendas PR, Fernandez-Gallardo J, Alonso PJ, Vincent JM, Fish RH (2005) Fluorocarbon soluble copper(II) carboxylate complexes with nonfluoroponytailed nitrogen ligands as precatalysys for the oxidation of alkenols and alcohols under fluorous biphasic or thermomorphic modes: structural and mechanistic aspects. Inorg Chem 44:9771–9778CrossRefGoogle Scholar
  66. 66.
    Audic N, Dyer PW, Hope EG, Stuart AM, Suhard S (2010) Insoluble perfluoroalkylated polymers: new solid supports for supported fluorous phase catalysis. Adv Synth Catal 352:2241–2250CrossRefGoogle Scholar
  67. 67.
    Ablan CD, Hallet JP, West KN, Jones RS, Eckert CA, Liotta CA, Jessop PG (2003) Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switch. Chem Commun 2972–2973Google Scholar
  68. 68.
    Eckert CA, Jessop PG, Liotta CL (2002) Methods for solubilizing and recovering fluorinated compounds. WO 02096550Google Scholar
  69. 69.
    King AG (2006) Research advances: caught on tape: catalyst recovery; secondary structure switch; DNA-based chiral catalysts. J Chem Ed 83:10–14CrossRefGoogle Scholar
  70. 70.
    Hashmi ASK (2010) Homogeneous gold catalysis beyond assumptions and proposals: characterized intermediates. Angew Chem Int Ed 49:5232–5241CrossRefGoogle Scholar
  71. 71.
    Ito H, Yajima T, Tateiwa J, Hosomi A (2000) First gold complex-catalyzed selective hydrosilylation of organic compounds. Chem Commun 981–982Google Scholar
  72. 72.
    Vlád G, Richter FU, Horváth IT (2004) Modular synthesis of fluorous trialkylphosphines. Org Lett 6:4559–4561CrossRefGoogle Scholar
  73. 73.
    Laguna A (1999) Gold compounds of phosphorus and the heavy group V elements. In: Schmidbaur H (ed) Gold, progress in chemistry, biochemistry and technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 348–428Google Scholar
  74. 74.
    Canales F, Gimeno MC, Laguna A, Villacampa MD (1996) Aurophilicity at sulfur centers. Synthesis of the polyaurated species [S(AuPR3)n](n-2)+ (n = 2–6). Inorg Chim Acta 244:95–103CrossRefGoogle Scholar
  75. 75.
    Crooks M, Zhao M, Sun L, Chenik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190, and refs thereinCrossRefGoogle Scholar
  76. 76.
    Moreno-Mañas M, Pleixat R, Villaroya S (2002) Palladium nanoparticles stabilized by polyfluorinated chains. Chem Commun 60–61Google Scholar
  77. 77.
    Moreno-Mañas M, Pleixat R, Villaroya S (2001) Fluorous phase soluble palladium nanoparticles as recoverable catalysts for Suzuki cross-coupling and Heck reactions. Organometallics 20:4524–4528CrossRefGoogle Scholar
  78. 78.
    Lantos D, Contel M, Sanz S, Bodor A, Horváth IT (2007) Homogeneous gold-catalyzed hydrosilylation of aldehydes. J Organomet Chem 692:1799–1805CrossRefGoogle Scholar
  79. 79.
    Ito H, Takagi K, Miyahara T, Sawamura M (2005) Gold(I)-phosphine catalyst for the highly chemoselective dehydrogenative silylation of alcohols. Org Lett 7:3001–3004CrossRefGoogle Scholar
  80. 80.
    Ito H, Saito T, Miyahara T, Zhong C, Sawamura M (2009) Gold(I) hydride intermediate in catalysis: dehydrogenative alcohol silylation catalyzed by gold(I) complex. Organometallics 28:4829–4840CrossRefGoogle Scholar
  81. 81.
    Gimeno MC, Laguna A (1997) Three- and four-coordinate gold(I) complexes. Chem Rev 97:511–522CrossRefGoogle Scholar
  82. 82.
    Fackler JP Jr, van Zyl WE, Prihoda BA (1999) Gold chalcogen chemistry. In: Schmidbaur H (ed) Gold, progress in chemistry, biochemistry and technology. Wiley, Chichester, pp 795–840Google Scholar
  83. 83.
    Wile BM, McDonald R, Ferguson MJ, Stradiotto M (2007) Au(I) complexes supported by donor-functionalized indene ligands: synthesis, characterization, and catalytic behavior in aldehyde hydrosilylation. Organometallics 26:1069–1076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Brooklyn College and The Graduate CenterThe City University of New YorkBrooklynUSA

Personalised recommendations