Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 313)


Charge transport characteristics in metal–metal nanocontacts and single molecular junctions were studied at electrified solid–liquid interfaces employing a scanning tunneling microscope-based break junction technique, in combination with macroscopic electrochemical methods, in non-conducting solvents and in an electrochemical environment. We aim to demonstrate recent attempts in developing fundamental relationships between molecular structure, charge transport characteristics, and nanoscale electrochemical concepts. After an introduction and brief description of the experimental methodology, a case study on the electrical and mechanical properties of gold atomic contacts in aqueous electrolytes is presented. In experiments with alkanedithiol and ?,?-biphenyldithiol molecular junctions the role of sulfur–gold couplings and molecular conformation, such as gauche defects in alkyl chains and the torsion angle between two phenyl rings, are addressed. The combination with quantum chemistry calculations enabled a detailed molecular-level understanding of the electronic structure and transport characteristics of both systems. Employing the concept of “electrolyte gating” to 4,4?-bipyridine and redox-active molecules, such as perylene bisimide derivatives, the construction of “active” symmetric and asymmetric molecular junctions with transistor- and diode-like behavior upon polarization in an electrochemical environment will be demonstrated. The latter experimental data could be represented quantitatively by the Kutznetsov/Ulstrup model, assuming a two-step electron transfer with partial vibration relaxation. Finally, we show that (individual) surface-immobilized gold clusters within the quantum-confined size range exhibit features of locally addressable multistate electronic switching upon electrolyte gating, which appears to be reminiscent of a sequential charging through several redox states. The examples addressed here demonstrate the uniqueness and capabilities of an electrochemical approach for the fundamental understanding and for potential applications in nano- and molecular electronics.


Break junction Charge transport Electrolyte gate Metal nanocluster Molecular junction Scanning tunneling microscopy Scanning tunneling spectroscopy 



This work was supported by the Swiss National Science Foundation, the Volkswagen Foundation, FUNMOLS, and the DFG priority program 1243. The authors would particularly like to acknowledge the fruitful discussions with M. Mayor, S. F. L. Mertens, F. Würthner, and the theory groups of F. Evers, F. Pauly, C. Cuevas, and C. Lambert.


  1. 1.
    Aviram A, Ratner MA (1974) Chem Phys Lett 29:277Google Scholar
  2. 2.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Tour JM (2003) Molecular electronics: commercial insights, chemistry, architecture and programming. World Scientific, SingaporeGoogle Scholar
  4. 4.
    Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541Google Scholar
  5. 5.
    Nitzan A, Ratner MA (2003) Science 300:1384Google Scholar
  6. 6.
    Heath JR, Ratner MA (2003) Phys Today 56:43Google Scholar
  7. 7.
    Joachim C, Ratner MA (2005) Proc Natl Acad Sci USA 102:8801Google Scholar
  8. 8.
    Carroll RL, Gorman CB (2002) Angew Chem Int Ed 41:4379Google Scholar
  9. 9.
    Lindsay SM, Ratner MA (2007) Adv Mater 19:23Google Scholar
  10. 10.
    Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (2003) Adv Mater 15:1881Google Scholar
  11. 11.
    Tao NJ (2006) Nat Nanotechnol 1:173Google Scholar
  12. 12.
    Ulgut B, Abruna HD (2008) Chem Rev 108:2721Google Scholar
  13. 13.
    Metzger RM (2008) J Mater Chem 18:4364Google Scholar
  14. 14.
    Selzer Y, Allara DL (2006) Annu Rev Phys Chem 57:593Google Scholar
  15. 15.
    Heath JR (2009) Annu Rev Mater Res 39:1Google Scholar
  16. 16.
    van der Molen SJ, Liljeroth P (2010) J Phys Condens Matter 22:133001Google Scholar
  17. 17.
    James DK, Tour JM (2004) Chem Mater 16:4423Google Scholar
  18. 18.
    McCreery RL (2004) Chem Mater 16:4477Google Scholar
  19. 19.
    Chen F, Hihath J, Huang ZF, Li XL, Tao NJ (2007) Annu Rev Phys Chem 58:535Google Scholar
  20. 20.
    Akkerman HB, de Boer B (2008) J Phys Condens Matter 20:013001Google Scholar
  21. 21.
    Kroger J, Neel N, Limot L (2008) J Phys Condens Matter 20:22301Google Scholar
  22. 22.
    Haick H, Cahen D (2008) Prog Surf Sci 83:217Google Scholar
  23. 23.
    Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D (2010) Phys Chem Chem Phys 12:2801Google Scholar
  24. 24.
    Andres RP, Bein T, Dorogi M, Feng S, Henderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenberger R (1996) Science 272:1323Google Scholar
  25. 25.
    Gimzewski JK, Joachim C (1999) Science 283:1683Google Scholar
  26. 26.
    Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Science 292:2303Google Scholar
  27. 27.
    Repp A, Meyer G, Paavilainen S, Olsson FE, Persson M (2006) Science 312:1196Google Scholar
  28. 28.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Science 294:571Google Scholar
  29. 29.
    Wold DJ, Haag R, Rampi MA, Frisbie CD (2002) J Phys Chem B 106:2813Google Scholar
  30. 30.
    Fan FRF, Yang JP, Cai LT, Price DW, Dirk SM, Kosynkin DV, Yao YX, Rawlett AM, Tour JM, Bard AJ (2002) J Am Chem Soc 124:5550Google Scholar
  31. 31.
    Tao NJ (1996) Phys Rev Lett 76:4066Google Scholar
  32. 32.
    Xu BQ, Tao NJJ (2003) Science 301:1221Google Scholar
  33. 33.
    Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ (2003) J Am Chem Soc 125:15294Google Scholar
  34. 34.
    Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T, Blaszczyk A, Mayor M (2006) Faraday Discuss 131:121Google Scholar
  35. 35.
    Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I (2005) Nature 436:677Google Scholar
  36. 36.
    Liao JH, Bernard L, Langer M, Schonenberger C, Calame M (2006) Adv Mater 18:2803Google Scholar
  37. 37.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252Google Scholar
  38. 38.
    Kergueris C, Bourgoin JP, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C (1999) Phys Rev B 59:12505Google Scholar
  39. 39.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Lohneysen HV (2002) Phys Rev Lett 88:176804Google Scholar
  40. 40.
    Gonzalez MT, Wu SM, Huber R, van der Molen SJ, Schonenberger C, Calame M (2006) Nano Lett 6:2238Google Scholar
  41. 41.
    Lortscher E, Ciszek JW, Tour J, Riel H (2006) Small 2:973Google Scholar
  42. 42.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Nature 417:722Google Scholar
  43. 43.
    Osorio EA, Bjornholm T, Lehn JM, Ruben M, van der Zant HSJ (2008) J Phys Condens Matter 20:374121Google Scholar
  44. 44.
    Seferos DS, Trammell SA, Bazan GC, Kushmerick JG (2005) Proc Natl Acad Sci USA 102:8821Google Scholar
  45. 45.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550Google Scholar
  46. 46.
    Tran E, Duati M, Whitesides GM, Rampi MA (2006) Faraday Discuss 131:197Google Scholar
  47. 47.
    Seminario JM, Zacarias AG, Tour JM (1999) J Am Chem Soc 121:411Google Scholar
  48. 48.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904Google Scholar
  49. 49.
    Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nano Lett 6:458Google Scholar
  50. 50.
    Wang CS, Batsanov AS, Bryce MR, Martin S, Nichols RJ, Higgins SJ, Garcia-Suarez VM, Lambert CJ (2009) J Am Chem Soc 131:15647Google Scholar
  51. 51.
    Kamenetska M, Quek SY, Whalley AC, Steigerwald ML, Choi HJ, Louie SG, Nuckolls C, Hybertsen MS, Neaton JB, Venkataraman L (2010) J Am Chem Soc 132:6817Google Scholar
  52. 52.
    Kim B, Beebe JM, Jun Y, Zhu XY, Frisbie CD (2006) J Am Chem Soc 128:4970Google Scholar
  53. 53.
    Kiguchi M, Miura S, Hara K, Sawamura M, Murakoshi K (2006) Appl Phys Lett:89Google Scholar
  54. 54.
    Mishchenko A, Zotti L, Vonlathen D, Bürkle M, Pauly F, Cuevas JC, Mayor M, Wandlowski Th (2010) J Am Chem Soc 133:184Google Scholar
  55. 55.
    Ko CH, Huang MJ, Fu MD, Chen CH (2010) J Am Chem Soc 132:756Google Scholar
  56. 56.
    Park YS, Widawsky JR, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2009) J Am Chem Soc 131:10820Google Scholar
  57. 57.
    Taniguchi M, Tsutsui M, Shoji K, Fujiwara H, Kawai T (2009) J Am Chem Soc 131:14146Google Scholar
  58. 58.
    Yasuda S, Yoshida S, Sasaki J, Okutsu Y, Nakamura T, Taninaka A, Takeuchi O, Shigekawa H (2006) J Am Chem Soc 128:7746Google Scholar
  59. 59.
    Chen F, Li XL, Hihath J, Huang ZF, Tao NJ (2006) J Am Chem Soc 128:15874Google Scholar
  60. 60.
    Martin S, Haiss W, Higgins S, Cea P, Lopez MC, Nichols RJ (2008) J Phys Chem C 112:3941Google Scholar
  61. 61.
    Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS, Nuckolls C, Venkataraman L (2007) J Am Chem Soc 129:15768Google Scholar
  62. 62.
    Xing YJ, Park TH, Venkatramani R, Keinan S, Beratan DN, Therien MJ, Borguet E (2010) J Am Chem Soc 132:7946Google Scholar
  63. 63.
    Martin CA, Ding D, Sorensen JK, Bjornholm T, van Ruitenbeek JM, van der Zant HSJ (2008) J Am Chem Soc 130:13198Google Scholar
  64. 64.
    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:318Google Scholar
  65. 65.
    Haiss W, Wang CS, Grace I, Batsanov AS, Schiffrin DJ, Higgins SJ, Bryce MR, Lambert CJ, Nichols RJ (2006) Nat Mater 5:995Google Scholar
  66. 66.
    Kamenetska M, Koentopp M, Whalley AC, Park YS, Steigerwald ML, Nuckolls C, Hybertsen MS, Venkataraman L (2009) Phys Rev Lett 102:126803Google Scholar
  67. 67.
    Wu SM, Gonzalez MT, Huber R, Grunder S, Mayor M, Schonenberger C, Calame M (2008) Nat Nanotechnol 3:569Google Scholar
  68. 68.
    Chang S, He J, Kibel A, Lee M, Sankey O, Zhang P, Lindsay S (2009) Nat Nanotechnol 4:297Google Scholar
  69. 69.
    Huber R, Gonzalez MT, Wu S, Langer M, Grunder S, Horhoiu V, Mayor M, Bryce MR, Wang CS, Jitchati R, Schonenberger C, Calame M (2008) J Am Chem Soc 130:1080Google Scholar
  70. 70.
    Choi SH, Kim B, Frisbie CD (2008) Science 320:1482Google Scholar
  71. 71.
    Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ (2007) Chem Commun 38:3939Google Scholar
  72. 72.
    Venkataraman L, Park YS, Whalley AC, Nuckolls C, Hybertsen MS, Steigerwald ML (2007) Nano Lett 7:502Google Scholar
  73. 73.
    Hybertsen MS, Venkataraman L, Klare JE, Whalley CA, Steigerwald ML, Nuckolls C (2008) J Phys Condens Matter 20:374115Google Scholar
  74. 74.
    Haiss W, Wang CS, Jitchati R, Grace I, Martin S, Batsanov AS, Higgins SJ, Bryce MR, Lambert CJ, Jensen PS, Nichols RJ (2008) J Phys Condens Matter 20:374119Google Scholar
  75. 75.
    Vonlanthen D, Mishchenko A, Elbing M, Neuburger M, Wandlowski T, Mayor M (2009) Angew Chem Int Ed 48:8886Google Scholar
  76. 76.
    Mishchenko A, Vonlanthen D, Meded V, Burkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers F, Mayor M, Wandlowski T (2010) Nano Lett 10:156Google Scholar
  77. 77.
    Diez-Perez I, Hihath J, Lee Y, Yu LP, Adamska L, Kozhushner MA, Oleynik II, Tao NJ (2009) Nat Chem 1:635Google Scholar
  78. 78.
    Ashwell GJ, Sujka M, Green A (2006) Faraday Discuss 131:23Google Scholar
  79. 79.
    Elbing M, Ochs R, Koentopp M, Fischer M, von Hanisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) Proc Natl Acad Sci USA 102:8815Google Scholar
  80. 80.
    Salomon A, Arad-Yellin R, Shanzer A, Karton A, Cahen D (2004) J Am Chem Soc 126:11648Google Scholar
  81. 81.
    Guisinger NP, Greene ME, Basu R, Baluch AS, Hersam MC (2004) Nano Lett 4:55Google Scholar
  82. 82.
    Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Science 285:391Google Scholar
  83. 83.
    Luo Y, Collier CP, Jeppesen JO, Nielsen KA, DeIonno E, Ho G, Perkins J, Tseng HR, Yamamoto T, Stoddart JF, Heath JR (2002) ChemPhysChem 3:519Google Scholar
  84. 84.
    Duan XF, Huang Y, Lieber CM (2002) Nano Lett 2:487Google Scholar
  85. 85.
    Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao YX, Tour JM, Shashidhar R, Ratna BR (2005) Nat Mater 4:167Google Scholar
  86. 86.
    Liao JH, Agustsson JS, Wu SM, Schonenberger C, Calame M, Leroux Y, Mayor M, Jeannin O, Ran YF, Liu SX, Decurtins S (2010) Nano Lett 10:759Google Scholar
  87. 87.
    Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Nature 462:1039Google Scholar
  88. 88.
    Reddy P, Jang SY, Segalman RA, Majumdar A (2007) Science 315:1568Google Scholar
  89. 89.
    Kubatkin S, Danilov A, Hjort M, Cornil J, Bredas JL, Stuhr-Hansen N, Hedegard P, Bjornholm T (2003) Nature 425:698Google Scholar
  90. 90.
    White HS, Kittlesen GP, Wrighton MS (1984) J Am Chem Soc 106:5375Google Scholar
  91. 91.
    Meulenkamp EA (1999) J Phys Chem B 103:7831Google Scholar
  92. 92.
    Kruger M, Buitelaar MR, Nussbaumer T, Schonenberger C, Forro L (2001) Appl Phys Lett 78:1291Google Scholar
  93. 93.
    Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) Nano Lett 2:869Google Scholar
  94. 94.
    Repp J, Meyer G, Stojkovic SM, Gourdon A, Joachim C (2005) Phys Rev Lett 94:026803Google Scholar
  95. 95.
    Stipe BC, Rezaei MA, Ho W (1998) Science 280:1732Google Scholar
  96. 96.
    Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Science 298:1381Google Scholar
  97. 97.
    Liljeroth P, Repp J, Meyer G (2007) Science 317:1203Google Scholar
  98. 98.
    Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705Google Scholar
  99. 99.
    Mantooth BA, Weiss PS (2003) Proc IEEE 91:1785Google Scholar
  100. 100.
    Weiss PS (2008) Acc Chem Res 41:1772Google Scholar
  101. 101.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103Google Scholar
  102. 102.
    Jackel F, Watson MD, Mullen K, Rabe JP (2004) Phys Rev Lett 92:188303Google Scholar
  103. 103.
    Puigmarti-Luis J, Minoia A, Uji-i H, Rovira C, Cornil J, De Feyter S, Lazzaroni R, Amabilino DB (2006) J Am Chem Soc 128:12602Google Scholar
  104. 104.
    Stabel A, Herwig P, Mullen K, Rabe JP (1995) Angew Chem Int Ed 34:1609Google Scholar
  105. 105.
    Gesquiere A, De Feyter S, De Schryver FC, Schoonbeek F, van Esch J, Kellogg RM, Feringa BL (2001) Nano Lett 1:20Google Scholar
  106. 106.
    Poirier GE (1997) Chem Rev 97:1117Google Scholar
  107. 107.
    Fabre B (2010) Acc Chem Res 43:1509Google Scholar
  108. 108.
    Della Pia A, Chi Q, Jones DD, Macdonald JE, Ulstrup J, Eliott M (2010) Nano Lett. doi: 10.1021/nl10333aqGoogle Scholar
  109. 109.
    Chi QJ, Farver O, Ulstrup J (2005) Proc Natl Acad Sci USA 102:16203Google Scholar
  110. 110.
    Pobelov IV, Li ZH, Wandlowski T (2008) J Am Chem Soc 130:16045Google Scholar
  111. 111.
    Ye T, Kumar AS, Saha S, Takami T, Huang TJ, Stoddart JF, Weiss PS (2010) ACS Nano 4:3697Google Scholar
  112. 112.
    Moore AM, Dameron AA, Mantooth BA, Smith RK, Fuchs DJ, Ciszek JW, Maya F, Yao YX, Tour JM, Weiss PS (2006) J Am Chem Soc 128:1959Google Scholar
  113. 113.
    Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S (2005) Nano Lett 5:503Google Scholar
  114. 114.
    Li ZH, Pobelov I, Han B, Wandlowski T, Blaszczyk A, Mayor M (2007) Nanotechnology 18:044018Google Scholar
  115. 115.
    Fujihira M, Suzuki M, Fujii S, Nishikawa A (2006) Phys Chem Chem Phys 8:3876Google Scholar
  116. 116.
    Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer LH (2006) J Phys Chem B 110:2462Google Scholar
  117. 117.
    Jang SY, Reddy P, Majumdar A, Segalman RA (2006) Nano Lett 6:2362Google Scholar
  118. 118.
    Wierzbinski E, Slowinski K (2006) Langmuir 22:5205Google Scholar
  119. 119.
    Sek S, Misicka A, Swiatek K, Maicka E (2006) J Phys Chem B 110:19671Google Scholar
  120. 120.
    Wold DJ, Frisbie CD (2001) J Am Chem Soc 123:5549Google Scholar
  121. 121.
    Morita T, Lindsay S (2007) J Am Chem Soc 129:7262Google Scholar
  122. 122.
    Cervera J, Mafe S (2010) ChemPhysChem 11:1654Google Scholar
  123. 123.
    Albrecht T, Mertens SFL, Ulstrup J (2007) J Am Chem Soc 129:9162Google Scholar
  124. 124.
    Meszaros G, Kronholz S, Karthauser S, Mayer D, Wandlowski T (2007) Appl Phys A 87:569Google Scholar
  125. 125.
    Li CZ, Bogozi A, Huang W, Tao NJ (1999) Nanotechnology 10:221Google Scholar
  126. 126.
    Holliday BJ, Mirkin CA (2001) Angew Chem Int Ed 40:2022Google Scholar
  127. 127.
    Park SJ, Taton TA, Mirkin CA (2002) Science 295:1503Google Scholar
  128. 128.
    Yi ZW, Trellenkamp S, Offenhausser A, Mayer D (2010) Chem Commun 46:8014Google Scholar
  129. 129.
    Guo XF, Small JP, Klare JE, Wang YL, Purewal MS, Tam IW, Hong BH, Caldwell R, Huang LM, O'Brien S, Yan JM, Breslow R, Wind SJ, Hone J, Kim P, Nuckolls C (2006) Science 311:356Google Scholar
  130. 130.
    Feldman AK, Steigerwald ML, Guo XF, Nuckolls C (2008) Acc Chem Res 41:1731Google Scholar
  131. 131.
    Amlani I, Rawlett AM, Nagahara LA, Tsui RK (2002) Appl Phys Lett 80:2761Google Scholar
  132. 132.
    van der Molen SJ, Liao JH, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schonenberger C (2009) Nano Lett 9:76Google Scholar
  133. 133.
    He J, Forzani ES, Nagahara LA, Tao NJ, Lindsay S (2008) J Phys Condens Matter 20:374120Google Scholar
  134. 134.
    Agrait N, Yeyati AL, van Ruitenbeek JM (2003) Phys Rep 377:81Google Scholar
  135. 135.
    van Ruitenbeek JM, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C (1996) Rev Sci Instrum 67:108Google Scholar
  136. 136.
    Moreland J, Ekin JW (1985) J Appl Phys 58:3888Google Scholar
  137. 137.
    Muller CJ, Vanruitenbeek JM, Dejongh LJ (1992) Phys Rev Lett 69:140Google Scholar
  138. 138.
    Gruter L, Gonzalez MT, Huber R, Calame M, Schonenberger C (2005) Small 1:1067Google Scholar
  139. 139.
    Grunder S, Huber R, Wu SM, Schonenberger C, Calame M, Mayor M (2010) Chimia 64:140Google Scholar
  140. 140.
    Gimzewski JK, Moller R (1987) Phys Rev B 36:1284Google Scholar
  141. 141.
    Xu BQ, Xiao XY, Yang XM, Zang L, Tao NJ (2005) J Am Chem Soc 127:2386Google Scholar
  142. 142.
    Mishchenko A, Li C, Hong W (2011) Small (in preparation)Google Scholar
  143. 143.
    Halbritter A, Makk P, Mackowiak S, Csonka S, Wawrzynizk M, Martinek J (2010) arXiv/1006.1811:1Google Scholar
  144. 144.
    Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) J Phys Chem B 106:1131Google Scholar
  145. 145.
    Zhang JD, Kuznetsov AM, Medvedev IG, Chi QJ, Albrecht T, Jensen PS, Ulstrup J (2008) Chem Rev 108:2737Google Scholar
  146. 146.
    He HX, Zhu JS, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) J Am Chem Soc 123:7730Google Scholar
  147. 147.
    Kuznetsov AM, Medvedev IG, Ulstrup J (2007) J Chem Phys 127:104708Google Scholar
  148. 148.
    Hulea IN, Brom HB, Houtepen AJ, Vanmaekelbergh D, Kelly JJ, Meulenkamp EA (2004) Phys Rev Lett 93:166601Google Scholar
  149. 149.
    Tian JH, Yang Y, Zhou XS, Schollhorn B, Maisonhaute E, Chen ZB, Yang FZ, Chen Y, Amatore C, Mao BW, Tian ZQ (2010) ChemPhysChem 11:2745Google Scholar
  150. 150.
    Li ZH, Liu YQ, Mertens SFL, Pobelov IV, Wandlowski T (2010) J Am Chem Soc 132:8187Google Scholar
  151. 151.
    Di Ventra M, Pantelides ST, Lang ND (2000) Appl Phys Lett 76:3448Google Scholar
  152. 152.
    Di Ventra A, Lang ND, Pantelides ST (2002) Chem Phys 281:189Google Scholar
  153. 153.
    Han WH, Durantini EN, Moore TA, Moore AL, Gust D, Rez P, Leatherman G, Seely GR, Tao NJ, Lindsay SM (1997) J Phys Chem B 101:10719Google Scholar
  154. 154.
    Haiss W, Albrecht T, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H, Schiffrin DJ, Nichols RJ, Kuznetsov AM, Zhang J, Chi Q, Ulstrup J (2007) J Phys Chem B 111:6703Google Scholar
  155. 155.
    Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ, Nygaard S, Jeppesen JO, Ulstrup J (2008) J Am Chem Soc 130:12204Google Scholar
  156. 156.
    He J, Chen F, Lindsay S, Nuckolls C (2007) Appl Phys Lett 90:072112Google Scholar
  157. 157.
    Xu BQQ, Li XLL, Xiao XYY, Sakaguchi H, Tao NJJ (2005) Nano Lett 5:1491Google Scholar
  158. 158.
    Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Nano Lett 5:1451Google Scholar
  159. 159.
    Albrecht T, Moth-Poulsen K, Christensen JB, Guckian A, Bjornholm T, Vos JG, Ulstrup J (2005) Faraday Discuss:265Google Scholar
  160. 160.
    Albrecht T, Moth-Poulsen K, Christensen JB, Hjelm J, Bjornholm T, Ulstrup J (2006) J Am Chem Soc 128:6574Google Scholar
  161. 161.
    Albrecht T, Guckian A, Kuznetsov AM, Vos JG, Ulstrup J (2006) J Am Chem Soc 128:17132Google Scholar
  162. 162.
    Seo K, Konchenko AV, Lee J, Bang GS, Lee H (2008) J Am Chem Soc 130:2553Google Scholar
  163. 163.
    Ricci AM, Calvo EJ, Martin S, Nichols RJ (2010) J Am Chem Soc 132:2494Google Scholar
  164. 164.
    Visoly-Fisher I, Daie K, Terazono Y, Herrero C, Fungo F, Otero L, Durantini E, Silber JJ, Sereno L, Gust D, Moore TA, Moore AL, Lindsay SM (2006) Proc Natl Acad Sci USA 103:8686Google Scholar
  165. 165.
    Xiao XY, Nagahara LA, Rawlett AM, Tao NJ (2005) J Am Chem Soc 127:9235Google Scholar
  166. 166.
    He J, Fu Q, Lindsay S, Ciszek JW, Tour JM (2006) J Am Chem Soc 128:14828Google Scholar
  167. 167.
    Wassel RA, Credo GM, Fuierer RR, Feldheim DL, Gorman CB (2004) J Am Chem Soc 126:295Google Scholar
  168. 168.
    Xiao XY, Brune D, He J, Lindsay S, Gorman CB, Tao NJ (2006) Chem Phys 326:138Google Scholar
  169. 169.
    Li XL, Hihath J, Chen F, Masuda T, Zang L, Tao NJ (2007) J Am Chem Soc 129:11535Google Scholar
  170. 170.
    Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T, Li XQ, Wurthner F, Bagrets A, Evers F (2008) J Phys Condens Matter 20:374122Google Scholar
  171. 171.
    Morita T, Lindsay S (2008) J Phys Chem B 112:10563Google Scholar
  172. 172.
    Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Appl Phys Lett 86:133902Google Scholar
  173. 173.
    Alessandrini A, Corni S, Facci P (2006) Phys Chem Chem Phys 8:4383Google Scholar
  174. 174.
    Chi QJ, Zhang JD, Jensen PS, Christensen HEM, Ulstrup J (2006) Faraday Discuss 131:181Google Scholar
  175. 175.
    Petrangolini P, Alessandrini A, Berti L, Facci P (2010) J Am Chem Soc 132:7445Google Scholar
  176. 176.
    Landauer R (1957) IBM J Res Dev 1:223Google Scholar
  177. 177.
    Imry Y (1986) Physics of mesoscopic systems. In: Grinstein G, Mazenko G (ed) Directions in condensed matter physics. World Scientific, SingaporeGoogle Scholar
  178. 178.
    Scheer E, Joyez P, Esteve D, Urbina C, Devoret MH (1997) Phys Rev Lett 78:3535Google Scholar
  179. 179.
    Cuevas JC, Yeyati AL, Martin-Rodero A (1998) Phys Rev Lett 80:1066Google Scholar
  180. 180.
    Scheer E, Agrait N, Cuevas JC, Yeyati AL, Ludoph B, Martin-Rodero A, Bollinger GR, van Ruitenbeek JM, Urbina C (1998) Nature 394:154Google Scholar
  181. 181.
    Krans JM, Muller CJ, Yanson IK, Govaert TCM, Hesper R, Vanruitenbeek JM (1993) Phys Rev B 48:14721Google Scholar
  182. 182.
    Li CZ, Tao NJ (1998) Appl Phys Lett 72:894Google Scholar
  183. 183.
    Krans JM, Vanruitenbeek JM, Fisun VV, Yanson IK, Dejongh LJ (1995) Nature 375:767Google Scholar
  184. 184.
    Yanson AI, vanRuitenbeek JM (1997) Phys Rev Lett 79:2157Google Scholar
  185. 185.
    Sirvent C, Rodrigo JG, Vieira S, Jurczyszyn L, Mingo N, Flores F (1996) Phys Rev B 53:16086Google Scholar
  186. 186.
    Smit RHM, Untiedt C, Yanson AI, van Ruitenbeek JM (2001) Phys Rev Lett 87:266102Google Scholar
  187. 187.
    Calvo MR, Fernandez-Rossier J, Palacios JJ, Jacob D, Natelson D, Untiedt C (2009) Nature 458:1150Google Scholar
  188. 188.
    Rubio G, Agrait N, Vieira S (1996) Phys Rev Lett 76:2302Google Scholar
  189. 189.
    Rubio-Bollinger G, Bahn SR, Agrait N, Jacobsen KW, Vieira S (2001) Phys Rev Lett 87:026101Google Scholar
  190. 190.
    Torres JA, Saenz JJ (1996) Phys Rev Lett 77:2245Google Scholar
  191. 191.
    Sanchez-Portal D, Artacho E, Junquera J, Ordejon P, Garcia A, Soler JM (1999) Phys Rev Lett 83:3884Google Scholar
  192. 192.
    Huisman EH, Trouwborst ML, Bakker FL, de Boer B, van Wees BJ, van der Molen SJ (2008) Nano Lett 8:3381Google Scholar
  193. 193.
    Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM (2002) Nature 419:906Google Scholar
  194. 194.
    Csonka S, Halbritter A, Mihaly G (2006) Phys Rev B 73:075405Google Scholar
  195. 195.
    Csonka S, Halbritter A, Mihaly G, Shklyarevskii OI, Speller S, van Kempen H (2004) Phys Rev Lett 93:016802Google Scholar
  196. 196.
    Kiguchi M, Stadler R, Kristensen IS, Djukic D, van Ruitenbeek JM (2007) Phys Rev Lett 98:146802Google Scholar
  197. 197.
    Novaes FD, da Silva AJR, da Silva EZ, Fazzio A (2006) Phys Rev Lett 96:016104Google Scholar
  198. 198.
    Thijssen WHA, Marjenburgh D, Bremmer RH, van Ruitenbeek JM (2006) Phys Rev Lett 96:026806Google Scholar
  199. 199.
    Kiguchi M, Djukic D, van Ruitenbeek JM (2007) Nanotechnology 18:035205Google Scholar
  200. 200.
    Tal O, Krieger M, Leerink B, van Ruitenbeek JM (2008) Phys Rev Lett 100:196804Google Scholar
  201. 201.
    Li CZ, Sha H, Tao NJ (1998) Phys Rev B 58:6775Google Scholar
  202. 202.
    He HX, Tao NJ (2002) Adv Mater 14:161Google Scholar
  203. 203.
    Xu BQ, He HX, Tao NJ (2002) J Am Chem Soc 124:13568Google Scholar
  204. 204.
    Jelinek P, Perez R, Ortega J, Flores F (2006) Phys Rev Lett 96:046803Google Scholar
  205. 205.
    Shu C, Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ (2000) Phys Rev Lett 84:5196Google Scholar
  206. 206.
    Xu BQ, He HX, Boussaad S, Tao NJ (2003) Electrochim Acta 48:3085Google Scholar
  207. 207.
    Kiguchi M, Konishi T, Miura S, Murakoshi K (2007) Nanotechnology 18:424011Google Scholar
  208. 208.
    Zhou XS, Wei YM, Liu L, Chen ZB, Tang J, Mao BW (2008) J Am Chem Soc 130:13228Google Scholar
  209. 209.
    Li C, Wandlowswki Th (2011), Electrochim. Acta, in preparationGoogle Scholar
  210. 210.
    Li C, Wandlowski Th (2011) Small, in preparationGoogle Scholar
  211. 211.
    Dakkouri A, Kolb DM (1999) Reconstruction of gold surface. In: Wieckowski A (ed) Interfacial electrochemistry: theory, experiment and application. Marcel Dekker, New YorkGoogle Scholar
  212. 212.
    Kolb DM, Schneider J (1986) Electrochim Acta 31:929Google Scholar
  213. 213.
    Dretschkow T, Wandlowski T (1997) Ber Der Bunsenges Phys Chem Chem Phys 101:749Google Scholar
  214. 214.
    Wandlowski T, Ataka K, Pronkin S, Diesing D (2004) Electrochimica Acta 49:1233Google Scholar
  215. 215.
    He HX, Shu C, Li CZ, Tao NJ (2002) J Electroanal Chem 522:26Google Scholar
  216. 216.
    Abellan J, Chicon R, Arenas A (1998) Surf Sci 418:493Google Scholar
  217. 217.
    Barnett RN, Hakkinen H, Scherbakov AG, Landman U (2004) Nano Lett 4:1845Google Scholar
  218. 218.
    Okamoto M, Takayanagi K (1999) Phys Rev B 60:7808Google Scholar
  219. 219.
    De Maria L, Springborg M (2000) Chem Phys Lett 323:293Google Scholar
  220. 220.
    Hakkinen H, Barnett RN, Landman U (1999) J Phys Chem B 103:8814Google Scholar
  221. 221.
    Lang G, Heusler KE (1995) J Electroanal Chem 391:169Google Scholar
  222. 222.
    Clausen-Schaumann H, Seitz M, Krautbauer R, Gaub HE (2000) Curr Opinion Chem Bio 4:524Google Scholar
  223. 223.
    Janshoff A, Neitzert M, Oberdorfer Y, Fuchs H (2000) Angew Chem Int Ed 39:3213Google Scholar
  224. 224.
    Hugel T, Seitz M (2001) Macromol Rapid Comm 22:989Google Scholar
  225. 225.
    Rief M, Grubmuller H (2002) ChemPhysChem 3:255Google Scholar
  226. 226.
    Engel A, Gaub HE (2008) Ann Rev Biochem 77:127Google Scholar
  227. 227.
    Huang ZF, Chen F, Bennett PA, Tao NJ (2007) J Am Chem Soc 129:13225Google Scholar
  228. 228.
    Huang ZF, Xu BQ, Chen YC, Di Ventra M, Tao NJ (2006) Nano Lett 6:1240Google Scholar
  229. 229.
    Evans E (1998) Faraday Discuss 111:1Google Scholar
  230. 230.
    Evans E (2001) Annu Rev Biophys Biomol Struct 30:105Google Scholar
  231. 231.
    Tsutsui M, Shoji K, Taniguchi M, Kawai T (2008) Nano Lett 8:345Google Scholar
  232. 232.
    Velez P, Dassie SA, Leiva EPM (2008) Chem Phys Lett 460:261Google Scholar
  233. 233.
    Zhao JW, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H (2008) J Phys Chem C 112:20088Google Scholar
  234. 234.
    Lipkowski J, Shi ZC, Chen AC, Pettinger B, Bilger C (1998) Electrochim Acta 43:2875Google Scholar
  235. 235.
    Magnussen OM (2002) Chem Rev 102:679Google Scholar
  236. 236.
    Pascual JI, Mendez J, Gomezherrero J, Baro AM, Garcia N, Landman U, Luedtke WD, Bogachek EN, Cheng HP (1995) Science 267:1793Google Scholar
  237. 237.
    Untiedt C, Bollinger GR, Vieira S, Agrait N (2000) Phys Rev B 62:9962Google Scholar
  238. 238.
    Garcia-Mochales P, Serena PA, Garcia N, CostaKramer JL (1996) Phys Rev B 53:10268Google Scholar
  239. 239.
    Garcia-Mochales P, Serena PA (1997) Phys Rev Lett 79:2316Google Scholar
  240. 240.
    Cuevas JC, Yeyati AL, Martin-Rodero A, Bollinger GR, Untiedt C, Agrait N (1998) Phys Rev Lett 81:2990Google Scholar
  241. 241.
    Mann B, Kuhn H (1971) J Appl Phys 42:4398Google Scholar
  242. 242.
    Li XL, He J, Hihath J, Xu BQ, Lindsay SM, Tao NJ (2006) J Am Chem Soc 128:2135Google Scholar
  243. 243.
    Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Phys Chem Chem Phys 6:4330Google Scholar
  244. 244.
    Haiss W, van Zalinge H, Bethell D, Ulstrup J, Schiffrin DJ, Nichols RJ (2006) Faraday Discuss 131:253Google Scholar
  245. 245.
    Haiss W, Martin S, Leary E, van Zalinge H, Higgins SJ, Bouffier L, Nichols RJ (2009) J Phys Chem C 113:5823Google Scholar
  246. 246.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Nagahara LA, Lindsay SM (2002) J Phys Chem B 106:8609Google Scholar
  247. 247.
    Cui XD, Zarate X, Tomfohr J, Sankey OF, Primak A, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2002) Nanotechnology 13:5Google Scholar
  248. 248.
    Beebe JM, Engelkes VB, Miller LL, Frisbie CD (2002) J Am Chem Soc 124:11268Google Scholar
  249. 249.
    Engelkes VB, Beebe JM, Frisbie CD (2004) J Am Chem Soc 126:14287Google Scholar
  250. 250.
    Zhou JF, Chen F, Xu BQ (2009) J Am Chem Soc 131:10439Google Scholar
  251. 251.
    Scaini D, Castronovo M, Casalis L, Scoles G (2008) ACS Nano 2:507Google Scholar
  252. 252.
    Gonzalez MT, Brunner J, Huber R, Wu SM, Schonenberger C, Calame M (2008) New J Phys 10:065018Google Scholar
  253. 253.
    Martin CA, Ding D, van der Zant HSJ, van Ruitenbeek JM (2008) New J Phys 10:065008Google Scholar
  254. 254.
    York RL, Nguyen PT, Slowinski K (2003) J Am Chem Soc 125:5948Google Scholar
  255. 255.
    Weiss EA, Chiechi RC, Kaufman GK, Kriebel JK, Li ZF, Duati M, Rampi MA, Whitesides GM (2007) J Am Chem Soc 129:4336Google Scholar
  256. 256.
    Lee T, Wang WY, Klemic JF, Zhang JJ, Su J, Reed MA (2004) J Phys Chem B 108:8742Google Scholar
  257. 257.
    Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, Naciri J, Moore MH, Shashidhar R (2002) J Am Chem Soc 124:10654Google Scholar
  258. 258.
    Beebe JM, Kim B, Frisbie CD, Kushmerick JG (2008) ACS Nano 2:827Google Scholar
  259. 259.
    Huisman EH, Guedon CM, van Wees BJ, van der Molen SJ (2009) Nano Lett 9:3909Google Scholar
  260. 260.
    Xia JL, Diez-Perez I, Tao NJ (2008) Nano Lett 8:1960Google Scholar
  261. 261.
    Hihath J, Arroyo CR, Rubio-Bollinger G, Tao NJ, Agrait N (2008) Nano Lett 8:1673Google Scholar
  262. 262.
    Wang WY, Lee T, Reed MA (2003) Phys Rev B 68:035416Google Scholar
  263. 263.
    Holmlin RE, Haag R, Chabinyc ML, Ismagilov RF, Cohen AE, Terfort A, Rampi MA, Whitesides GM (2001) J Am Chem Soc 123:5075Google Scholar
  264. 264.
    Slowinski K, Chamberlain RV, Miller CJ, Majda M (1997) J Am Chem Soc 119:11910Google Scholar
  265. 265.
    Chidsey CED (1991) Science 251:919Google Scholar
  266. 266.
    Smalley JF, Feldberg SW, Chidsey CED, Linford MR, Newton MD, Liu YP (1995) J Phys Chem 99:13141Google Scholar
  267. 267.
    Arnold A, Weigend F, Evers F (2007) J Chem Phys 126:174101Google Scholar
  268. 268.
    Im HS, Bernstein ER (1988) J Chem Phys 88:7337Google Scholar
  269. 269.
    Ando S, Hironaka T, Kurosu H, Ando I (2000) Magn Reson Chem 38:241Google Scholar
  270. 270.
    Wang J, Cooper G, Tulumello D, Hitchcock AP (2005) J Phys Chem A 109:10886Google Scholar
  271. 271.
    Pauly F, Viljas JK, Cuevas JC, Schon G (2008) Phys Rev B 77:155312Google Scholar
  272. 272.
    Kondo H, Nara J, Kino H, Ohno T (2008) J Chem Phys 128:064701Google Scholar
  273. 273.
    Benniston AC, Harriman A, Li P, Patel PV, Sams CA (2008) Chem Eur J 14:1710Google Scholar
  274. 274.
    Smalley JF, Sachs SB, Chidsey CED, Dudek SP, Sikes HD, Creager SE, Yu CJ, Feldberg SW, Newton MD (2004) J Am Chem Soc 126:14620Google Scholar
  275. 275.
    Lee MH, Speyer G, Sankey OF (2007) J Phys Condens Matter 19:215204Google Scholar
  276. 276.
    Tomfohr J, Sankey OF (2004) J Chem Phys 120:1542Google Scholar
  277. 277.
    Finch CM, Sirichantaropass S, Bailey SW, Grace IM, Garcia-Suarez VM, Lambert CJ (2008) J Phys Condens Matter 20:022203Google Scholar
  278. 278.
    Zotti LA, Kirchner T, Cuevas JC, Pauly F, Huhn T, Scheer E, Erbe A (2010) Small 6:1529Google Scholar
  279. 279.
    Vonlanthen D, Rotzler J, Neuburger M, Mayor M (2010) Eur J Org Chem 1:120Google Scholar
  280. 280.
    Rotzler J, Vonlanthen D, Barsella A, Boeglin A, Fort A, Mayor M (2010) Eur J Org Chem 6:1096Google Scholar
  281. 281.
    Pauly F, Viljas JK, Cuevas JC (2008) Phys Rev B 78:035315Google Scholar
  282. 282.
    Perdew JP (1986) Phys Rev B 33:8822Google Scholar
  283. 283.
    Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165Google Scholar
  284. 284.
    Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem Phys Lett 242:652Google Scholar
  285. 285.
    Pauly F, Viljas JK, Huniar U, Hafner M, Wohlthat S, Burkle M, Cuevas JC, Schon G (2008) New J Phys 10:125019Google Scholar
  286. 286.
    Schmitteckert P, Evers F (2008) Phys Rev Lett 100:086401Google Scholar
  287. 287.
    Vonlathen D, Rudnev A, Mishchenko A, Käslin A, Rotzler J, Neuburger M, Wandlowski Th, Mayor M (2011) Europ J Chem. 17:7236–7250 doi: 10.1002/chem.201003763
  288. 288.
    Xue YQ, Ratner MA (2004) Phys Rev B 69:085403Google Scholar
  289. 289.
    Baheti K, Malen JA, Doak P, Reddy P, Jang SY, Tilley TD, Majumdar A, Segalman RA (2008) Nano Lett 8:715Google Scholar
  290. 290.
    Li C, Manrique DZ, Lambert CJ, Wandlowski Th (2011) ACS Nano, in preparation 2011Google Scholar
  291. 291.
    Steel PJ (1990) Coordin Chem Rev 106:227Google Scholar
  292. 292.
    Stang PJ, Olenyub B (2000) In: Nalwa HS (ed) Handbook of nanostructured materials, vol 15. New York, Academic PressGoogle Scholar
  293. 293.
    Boag NM, Coward KM, Jones AC, Pemble ME, Thompson JR (1999) Acta Cryst Sec C 55:672Google Scholar
  294. 294.
    Almennigen A, Bastiansen O (1958) K Nor Vidensk Selesk Skr 4:1Google Scholar
  295. 295.
    Spotswood T, Tanzer CI (1967) Austr J Chem 20:1227Google Scholar
  296. 296.
    Manutova YS, Maltseva LS, Kamaaev FG, Leontév B, Mikhamedkhanova S, Otroshchenko OS, Sadykov AS (1973) Izv Akad Nauk SSSR Ser Khim 7:1510Google Scholar
  297. 297.
    Ould-Moussa L, Poizat O, Castella-Ventura M, Buntinx G, Kassab E (1996) J Phys Chem 100:2072Google Scholar
  298. 298.
    Bagrets A, Arnold A, Evers F (2008) J Am Chem Soc 130:9013Google Scholar
  299. 299.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Nat Nanotechnol 4:230Google Scholar
  300. 300.
    Li XL, Xu BQ, Xiao XY, Yang XM, Zang L, Tao NJ (2006) Faraday Discuss 131:111Google Scholar
  301. 301.
    Zhou XS, Chen ZB, Liu SH, Jin S, Liu L, Zhang HM, Xie ZX, Jiang YB, Mao BW (2008) J Phys Chem C 112:3935Google Scholar
  302. 302.
    Leary E, Hobenreich H, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ, Finch CM, Grace I, Lambert CJ, McGrath R, Smerdon J (2009) Phys Rev Lett 102:086801Google Scholar
  303. 303.
    Wandlowski T, Ataka K, Mayer D (2002) Langmuir 18:4331Google Scholar
  304. 304.
    Mayer D, Dretschkow T, Ataka K, Wandlowski T (2002) J Electroanal Chem 524:20Google Scholar
  305. 305.
    Wang X, Liu Z, Zhuang MD, Zhang HM, Xie ZX, Wu DY, Ren B, Tian ZQ (2007) Appl Phys Lett 91:101105Google Scholar
  306. 306.
    Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ (2009) J Raman Spectrosc 40:1400Google Scholar
  307. 307.
    Yanson AI, Bollinger GR, van den Brom HE, Agrait N, van Ruitenbeek JM (1998) Nature 395:783Google Scholar
  308. 308.
    Trouwborst ML, Huisman EH, Bakker FL, van der Molen SJ, van Wees BJ (2008) Phys Rev Lett 100:175502Google Scholar
  309. 309.
    Stadler R, Thygesen KS, Jacobsen KW (2005) Phys Rev B 72:241401Google Scholar
  310. 310.
    Futamata M (2001) J Phys Chem B 105:6933Google Scholar
  311. 311.
    Corni S (2007) IEEE Trans Nanotechnol 6:561Google Scholar
  312. 312.
    Wurthner F (2004) Chem Commun 14:1564Google Scholar
  313. 313.
    Grimsdale AC, Mullen K (2005) Angew Chem Int Ed 44:5592Google Scholar
  314. 314.
    Ranke P, Bleyl I, Simmerer J, Haarer D, Bacher A, Schmidt HW (1997) Appl Phys Lett 71:1332Google Scholar
  315. 315.
    Ego C, Marsitzky D, Becker S, Zhang JY, Grimsdale AC, Mullen K, MacKenzie JD, Silva C, Friend RH (2003) J Am Chem Soc 125:437Google Scholar
  316. 316.
    Horowitz G, Kouki F, Spearman P, Fichou D, Nogues C, Pan X, Garnier F (1996) Adv Mater 8:242Google Scholar
  317. 317.
    Briseno AL, Mannsfeld SCB, Reese C, Hancock JM, Xiong Y, Jenekhe SA, Bao Z, Xia Y (2007) Nano Lett 7:2847Google Scholar
  318. 318.
    Tamizhmani G, Dodelet JP, Cote R, Gravel D (1991) Chem Mater 3:1046Google Scholar
  319. 319.
    Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Science 293:1119Google Scholar
  320. 320.
    Goltner C, Pressner D, Mullen K, Spiess HW (1993) Angew Chem Int Ed 32:1660Google Scholar
  321. 321.
    Sauer M (2003) Angew Chem Int Ed 42:1790Google Scholar
  322. 322.
    Wilson TM, Tauber MJ, Wasielewski MR (2009) J Am Chem Soc 131:8952Google Scholar
  323. 323.
    Osswald P, Wurthner F (2007) J Am Chem Soc 129:14319Google Scholar
  324. 324.
    Salbeck J, Kunkely H, Langhals H, Saalfrank RW, Daub J (1989) Chimia 43:6Google Scholar
  325. 325.
    Su W, Jiang J, Lu W, Luo Y (2006) Nano Lett 6:2091Google Scholar
  326. 326.
    Cao H, Jiang J, Ma J, Luo Y (2008) J Am Chem Soc 130:6674Google Scholar
  327. 327.
    Wurthner F, Sautter A, Schmid D, Weber PJA (2001) Chem Eur J 7:894Google Scholar
  328. 328.
    Wurthner F, Stepanenko V, Chen ZJ, Saha-Moller CR, Kocher N, Stalke D (2004) J Org Chem 69:7933Google Scholar
  329. 329.
    Baggerman J, Jagesar DC, Vallee RAL, Hofkens J, De Schryver FC, Schelhase F, Vogtle F, Brouwer AM (2007) Chem Eur J 13:1291Google Scholar
  330. 330.
    Chen ZJ, Baumeister U, Tschierske C, Wurthner F (2007) Chem Eur J 13:450Google Scholar
  331. 331.
    Taylor J, Brandbyge M, Stokbro K (2003) Phys Rev B 68:121101Google Scholar
  332. 332.
    Mowbray DJ, Jones G, Thygesen KS (2008) J Chem Phys 128:111103Google Scholar
  333. 333.
    Palma JL, Cao C, Zhang XG, Krstic PS, Krause JL, Cheng HP (2010) J Phys Chem C 114:1655Google Scholar
  334. 334.
    Mertens SFL, Blech K, Sologubenko AS, Mayer J, Simon U, Wandlowski T (2009) Electrochim Acta 54:5006Google Scholar
  335. 335.
    Mertens SFL, Meszaros G, Wandlowski T (2010) Phys Chem Chem Phys 12:5417Google Scholar
  336. 336.
    Murray RW (2008) Chem Rev 108:2688Google Scholar
  337. 337.
    Laaksonen T, Ruiz V, Liljeroth P, Quinn BM (2008) Chem Soc Rev 37:1836Google Scholar
  338. 338.
    Grabert H, Devoret MH (1972) Single electron tunneling. Plenum, New YorkGoogle Scholar
  339. 339.
    Chen SW, Murray RW, Feldberg SW (1998) J Phys Chem B 102:9898Google Scholar
  340. 340.
    Chen SW, Murray RW (1999) J Phys Chem B 103:9996Google Scholar
  341. 341.
    Chen SW, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098Google Scholar
  342. 342.
    Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury JT, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) J Am Chem Soc 119:9279Google Scholar
  343. 343.
    Quinn BM, Liljeroth P, Ruiz V, Laaksonen T, Kontturi K (2003) J Am Chem Soc 125:6644Google Scholar
  344. 344.
    Templeton AC, Wuelfing MP, Murray RW (2000) Acc Chem Res 33:27Google Scholar
  345. 345.
    Hicks JF, Miles DT, Murray RW (2002) J Am Chem Soc 124:13322Google Scholar
  346. 346.
    Pietron JJ, Hicks JF, Murray RW (1999) J Am Chem Soc 121:5565Google Scholar
  347. 347.
    Zabet-Khosousi A, Dhirani AA (2008) Chem Rev 108:4072Google Scholar
  348. 348.
    Hicks JF, Templeton AC, Chen SW, Sheran KM, Jasti R, Murray RW, Debord J, Schaaf TG, Whetten RL (1999) Anal Chem 71:3703Google Scholar
  349. 349.
    Su B, Zhang MQ, Shao YH, Girault HH (2006) J Phys Chem B 110:21460Google Scholar
  350. 350.
    Chen SW (2000) J Phys Chem B 104:663Google Scholar
  351. 351.
    Deng FJ, Chen SW (2005) Phys Chem Chem Phys 7:3375Google Scholar
  352. 352.
    Aguila A, Murray RW (2000) Langmuir 16:5949Google Scholar
  353. 353.
    Dubois JGA, Gerritsen JW, Schmid G, van Kempen H (1996) Physica B 218:262Google Scholar
  354. 354.
    Nijhuis CA, Oncel N, Huskens J, Zandvliet HJW, Ravoo BJ, Poelsema B, Reinhoudt DN (2006) Small 2:1422Google Scholar
  355. 355.
    Homberger M, Simon U (2010) Philos Trans R Soc A 368:1405Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Chemistry and BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations