Molecular Electronic Junction Transport: Some Pathways and Some Ideas

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 313)


When a single molecule, or a collection of molecules, is placed between two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering methods for trying to determine the properties of molecules within these junctions. Finally, we discuss some device applications, some outstanding problems, and some future directions.


Conduction Electron transfer Electron transport Molecular electronics 



We are grateful to Robert Metzger for the opportunity to contribute to this volume, and to the very large number of wonderful colleagues and coworkers who contributed to our understanding in this general area, starting with Dr. Ari Aviram and extending to our current research groups. We are also grateful to the MRSEC program of the NSF for support of this research. C.H. would like to thank the Landesexzellenzinitiative Hamburg (Nanospintronics) for funding. G.C.S. acknowledges funding from The Danish Council for Independent Research/Natural Sciences.


  1. 1.
    Wasielewski MR (2006) Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J Org Chem 71(14):5051–5066Google Scholar
  2. 2.
    Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Annalen der Physik 389(20):457–484Google Scholar
  3. 3.
    Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105(12):2677–2679Google Scholar
  4. 4.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific Publishing, SingaporeGoogle Scholar
  5. 5.
    Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Ventra MD (2008) Electrical transport in nanoscale systems. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Lindsay SM, Ratner MA (2007) Molecular transport junctions: clearing mists. Adv Mater 19(1):23–31Google Scholar
  8. 8.
    Jaklevic RC, Lambe J (1966) Molecular vibration spectra by electron tunneling. Phys Rev Lett 17(22):1139Google Scholar
  9. 9.
    Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735Google Scholar
  10. 10.
    Landauer R (1957) IBM J Res Dev 1:223Google Scholar
  11. 11.
    Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207Google Scholar
  12. 12.
    Grabert H, Devoret MH (eds) (1992) Single charge tunneling. Coulomb blockade phenomena in nanostructures. Plenum, New YorkGoogle Scholar
  13. 13.
    Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32:37Google Scholar
  14. 14.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417(6890):722–725Google Scholar
  15. 15.
    Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Kondo resonance in a single-molecule transistor. Nature 417(6890):725–729Google Scholar
  16. 16.
    Reinerth WA, Jones L II, Burgin TP, Zhou C-w, Muller CJ, Deshpande MR, Reed MA, Tour JM (1998) Molecular scale electronics: syntheses and testing. Nanotechnology 9(3):246Google Scholar
  17. 17.
    Wold DJ, Frisbie CD (2000) Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J Am Chem Soc 122(12):2970–2971Google Scholar
  18. 18.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294(5542):571–574Google Scholar
  19. 19.
    Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu YZ, Lindsay SM (1998) Carotene as a molecular wire: conducting atomic force microscopy. J Phys Chem B 103(20):4006–4010Google Scholar
  20. 20.
    Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 47(1):142–144Google Scholar
  21. 21.
    Haag R, Rampi MA, Holmlin RE, Whitesides GM (1999) Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J Am Chem Soc 121(34):7895–7906Google Scholar
  22. 22.
    Wang W, Lee T, Reed MA (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys Rev B 68(3):035416Google Scholar
  23. 23.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278(5336):252–254Google Scholar
  24. 24.
    Lörtscher E, Weber HB, Riel H (2007) Statistical approach to investigating transport through single molecules. Phys Rev Lett 98(17):176807Google Scholar
  25. 25.
    Lörtscher E, Riel H (2010) Molecular electronics resonant transport through single molecules. CHIMIA Int J Chem 64:376–382Google Scholar
  26. 26.
    Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Reversible and controllable switching of a single-molecule junction. Small 2(8–9):973–977Google Scholar
  27. 27.
    Ballmann S, Hieringer W, Secker D, Zheng Q, Gladysz JA, Görling A, Weber HB (2010) Molecular wires in single-molecule junctions: charge transport and vibrational excitations. ChemPhysChem 11(10):2256–2260Google Scholar
  28. 28.
    Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223Google Scholar
  29. 29.
    Xu X, Yang X, Zang L, Tao N (2005) Large gate modulation in the current of a room temperature single molecule transistor. J Am Chem Soc 127(8):2386–2387Google Scholar
  30. 30.
    Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Transistor-like behavior of transition metal complexes. Nano Lett 5(7):1451–1455Google Scholar
  31. 31.
    Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single molecule conductivity using the spontaneous formation of molecular wires. PCCP 6(17):4330–4337Google Scholar
  32. 32.
    Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett 8(3):919–924Google Scholar
  33. 33.
    Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nano 4(4):230–234Google Scholar
  34. 34.
    Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479):606–608Google Scholar
  35. 35.
    Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) Amine-linked single-molecule circuits: systematic trends across molecular families. J Phys Condens Matter 20(37):374115Google Scholar
  36. 36.
    Chen IWP, Fu M-D, Tseng W-H, Chen C-h, Chou C-M, Luh T-Y (2007) The effect of molecular conformation on single molecule conductance: measurements of ?-conjugated oligoaryls by STM break junction. Chem Commun 29:3074–3076Google Scholar
  37. 37.
    Wang K, Rangel NL, Kundu S, Sotelo JC, Tovar RM, Seminario JM, Liang H (2009) Switchable molecular conductivity. J Am Chem Soc 131(30):10447–10451Google Scholar
  38. 38.
    Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133(7):2242–2249Google Scholar
  39. 39.
    Itoh T, McCreery RL (2002) In situ Raman spectroelectrochemistry of electron transfer between glassy carbon and a chemisorbed nitroazobenzene monolayer. J Am Chem Soc 124(36):10894–10902Google Scholar
  40. 40.
    Gartsman K, Cahen D, Kadyshevitch A, Libman J, Moav T, Naaman R, Shanzer A, Umansky V, Vilan A (1998) Molecular control of a GaAs transistor. Chem Phys Lett 283(5–6):301–306Google Scholar
  41. 41.
    Vilan A, Ussyshkin R, Gartsman K, Cahen D, Naaman R, Shanzer A (1998) Real-time electronic monitoring of adsorption kinetics: evidence for two-site adsorption mechanism of dicarboxylic acids on GaAs(100). J Phys Chem B 102(18):3307–3309Google Scholar
  42. 42.
    Skourtis SS, Beratan DN, Naaman R, Nitzan A, Waldeck DH (2008) Chiral control of electron transmission through molecules. Phys Rev Lett 101(23):238103Google Scholar
  43. 43.
    Yeganeh S, Ratner MA, Medina E, Mujica V (2009) Chiral electron transport: scattering through helical potentials. J Chem Phys 131(1):014707–014709Google Scholar
  44. 44.
    Galperin M, Ratner MA, Nitzan A (2009) Raman scattering from nonequilibrium molecular conduction junctions. Nano Lett 9(2):758–762Google Scholar
  45. 45.
    Jørgensen P, Simmons J (1981) Second quantization-based methods in quantum chemistry. Academic, New YorkGoogle Scholar
  46. 46.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864Google Scholar
  47. 47.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133Google Scholar
  48. 48.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. International Series of Monographs on Chemistry, vol 16. Oxford Science, OxfordGoogle Scholar
  49. 49.
    Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2009) Electron transport through conjugated molecules: when the ? system only tells part of the story. ChemPhysChem 10(1):257–264Google Scholar
  50. 50.
    Koentopp M, Chang C, Burke K, Car R (2008) Density functional calculations of nanoscale conductance. J Phys Condens Matter 20(8):083203Google Scholar
  51. 51.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943Google Scholar
  52. 52.
    Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50(23):16861Google Scholar
  53. 53.
    Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):R5467Google Scholar
  54. 54.
    Ho Choi S, Kim B, Frisbie CD (2008) Electrical resistance of long conjugated molecular wires. Science 320(5882):1482–1486Google Scholar
  55. 55.
    Xue Y, Datta S, Ratner MA (2002) First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem Phys 281(2–3):151–170Google Scholar
  56. 56.
    Ke S-H, Baranger HU, Yang W (2004) Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys Rev B 70(8):085410Google Scholar
  57. 57.
    Cuevas JC, Heurich J, Pauly F, Wenzel W, Schon G (2003) Theoretical description of the electrical conduction in atomic and molecular junctions. Nanotechnology 14(8):R29–R38Google Scholar
  58. 58.
    Damle P, Ghosh AW, Datta S (2002) First-principles analysis of molecular conduction using quantum chemistry software. Chem Phys 281(2–3):171–187Google Scholar
  59. 59.
    Evers F, Weigend F, Koentopp M (2004) Conductance of molecular wires and transport calculations based on density-functional theory. Phys Rev B 69(23):235411Google Scholar
  60. 60.
    Stokbro K, Taylor J, Brandbyge M, Ordejon P (2003) TranSIESTA: a spice for molecular electronics. Ann NY Acad Sci 1006(Mol Electron III):212–226Google Scholar
  61. 61.
    Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejon P (2003) Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(1-1-1) surfaces via thiol and thiolate bonds. Comput Mater Sci 27(1/2):151–160Google Scholar
  62. 62.
    Palacios JJ, Perez-Jiménez AJ, Louis E, SanFabián E, Vergés JA (2002) First-principles approach to electrical transport in atomic-scale nanostructures. Phys Rev B 66(3):035322Google Scholar
  63. 63.
    Rocha AR, Garcia-Suarez VM, Bailey S, Lambert C, Ferrer J, Sanvito S (2006) Spin and molecular electronics in atomically generated orbital landscapes. Phys Rev B 73(8):085414–085422Google Scholar
  64. 64.
    Frederiksen T, Paulsson M, Brandbyge M, Jauho A-P (2007) Inelastic transport theory from first principles: methodology and application to nanoscale devices. Phys Rev B 75(20):205413–205422Google Scholar
  65. 65.
    Sheng W, Li ZY, Ning ZY, Zhang ZH, Yang ZQ, Guo H (2009) Quantum transport in alkane molecular wires: effects of binding modes and anchoring groups. J Chem Phys 131(24):244712–244719Google Scholar
  66. 66.
    Smeu M, Wolkow RA, Guo H (2009) Conduction pathway of pi-stacked ethylbenzene molecular wires on Si(100). J Am Chem Soc 131(31):11019–11026Google Scholar
  67. 67.
    Flemming I (1978) Frontier orbitals and organic chemical reactions. Wiley, ChichesterGoogle Scholar
  68. 68.
    Caroli C, Combescot R, Nozieres P, Saint-James D (1971) Direct calculation of the tunneling current. J Phys C Solid State Phys 4(8):916Google Scholar
  69. 69.
    Beenakker CWJ, van Houten H (1991) Quantum transport in semiconductor nanostructures. In: Henry E, David T (eds) Solid state physics, vol 44. Academic, San Diego, pp 1–228Google Scholar
  70. 70.
    Nitzan A, Jortner J, Wilkie J, Burin AL, Ratner MA (2000) Tunneling time for electron transfer reactions. J Phys Chem B 104(24):5661–5665Google Scholar
  71. 71.
    Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52(1):681–750Google Scholar
  72. 72.
    Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys Condens Matter 19(10):103201Google Scholar
  73. 73.
    Brandbyge M, Srensen MR, Jacobsen KW (1997) Conductance eigenchannels in nanocontacts. Phys Rev B 56(23):14956Google Scholar
  74. 74.
    Brandbyge M, Kobayashi N, Tsukada M (1999) Conduction channels at finite bias in single-atom gold contacts. Phys Rev B 60(24):17064Google Scholar
  75. 75.
    Heurich J, Cuevas JC, Wenzel W, Schon G (2002) Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels. Phys Rev Lett 88(25):256803Google Scholar
  76. 76.
    Solomon GC, Gagliardi A, Pecchia A, Frauenheim T, Di Carlo A, Reimers JR, Hush NS (2006) Molecular origins of conduction channels observed in shot-noise measurements. Nano Lett 6(11):2431–2437Google Scholar
  77. 77.
    Wang B, Zhu Y, Ren W, Wang J, Guo H (2007) Spin-dependent transport in Fe-doped carbon nanotubes. Phys Rev B 75(23):235415–235417Google Scholar
  78. 78.
    Paulsson M, Brandbyge M (2007) Transmission eigenchannels from nonequilibrium Green’s functions. Phys Rev B 76(11):115117Google Scholar
  79. 79.
    Jacob D, Palacios JJ (2006) Orbital eigenchannel analysis for ab initio quantum transport calculations. Phys Rev B 73(7):075424–075429Google Scholar
  80. 80.
    Bagrets A, Papanikolaou N, Mertig I (2007) Conduction eigenchannels of atomic-sized contacts: ab initio KKR Green’s function formalism. Phys Rev B 75(23):235448Google Scholar
  81. 81.
    Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA (2010) Exploring local currents in molecular junctions. Nat Chem 2(3):223–228Google Scholar
  82. 82.
    Todorov TN (2002) Tight-binding simulation of current-carrying nanostructures. J Phys Condens Matter 14(11):3049–3084Google Scholar
  83. 83.
    Pecchia A, Di Carlo A (2004) Atomistic theory of transport in organic and inorganic nanostructures. Rep Prog Phys 67(8):1497–1561Google Scholar
  84. 84.
    Stuchebrukhov AA (1996) Tunneling currents in electron transfer reactions in proteins. J Chem Phys 104(21):8424–8432Google Scholar
  85. 85.
    Stuchebrukhov AA (1996) Tunneling currents in electron transfer reaction in proteins. II. Calculation of electronic superexchange matrix element and tunneling currents using nonorthogonal basis sets. J Chem Phys 105(24):10819–10829Google Scholar
  86. 86.
    Stuchebrukhov AA (1997) Tunneling currents in proteins: nonorthogonal atomic basis sets and Mulliken population analysis. J Chem Phys 107(16):6495–6498Google Scholar
  87. 87.
    Sai N, Bushong N, Hatcher R, Di Ventra M (2007) Microscopic current dynamics in nanoscale junctions. Phys Rev B 75(11):115410–115418Google Scholar
  88. 88.
    Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau P (2006) Electron transmission through aromatic molecules. J Chem Theory Comput 2(5):1291–1297Google Scholar
  89. 89.
    Emberly EG, Kirczenow G (2001) Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys Rev B 64(23):235412Google Scholar
  90. 90.
    Tian J-H, Yang Y, Zhou X-S, Schöllhorn B, Maisonhaute E, Chen Z-B, Yang F-Z, Chen Y, Amatore C, Mao B-W, Tian Z-Q (2010) Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. ChemPhysChem 11(13):2745–2755Google Scholar
  91. 91.
    Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB (2007) Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett 7(11):3477–3482Google Scholar
  92. 92.
    Kiguchi M, Tal O, Wohlthat S, Pauly F, Krieger M, Djukic D, Cuevas JC, van Ruitenbeek JM (2008) Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys Rev Lett 101(4):046801Google Scholar
  93. 93.
    Yang H, Xie XS (2002) Statistical approaches for probing single-molecule dynamics photon-by-photon. Chem Phys 284(1–2):423–437Google Scholar
  94. 94.
    Gräslund A, Rigler R, Widengren J (eds) (2010) Single molecule spectroscopy in chemistry, physics and biology. Springer Series in Chemical Physics. Springer, BerlinGoogle Scholar
  95. 95.
    Wang W, Lee T, Kretzschmar I, Reed MA (2004) Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett 4(4):643–646Google Scholar
  96. 96.
    Kushmerick JG, Lazorcik J, Patterson CH, Shashidhar R, Seferos DS, Bazan GC (2004) Vibronic contributions to charge transport across molecular junctions. Nano Lett 4(4):639–642Google Scholar
  97. 97.
    Chen Y-C, Zwolak M, Di Ventra M (2005) Inelastic effects on the transport properties of alkanethiols. Nano Lett 5(4):621–624Google Scholar
  98. 98.
    Troisi A, Ratner MA (2005) Modeling the inelastic electron tunneling spectra of molecular wire junctions. Phys Rev B 72(3):033408Google Scholar
  99. 99.
    Solomon GC, Gagliardi A, Pecchia A, Frauenheim T, Di Carlo A, Reimers JR, Hush NS (2006) Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J Chem Phys 124(9):094704–094710Google Scholar
  100. 100.
    Galperin M, Ratner MA, Nitzan A (2004) Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J Chem Phys 121(23):11965–11979Google Scholar
  101. 101.
    Paulsson M, Frederiksen T, Brandbyge M (2006) Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett 6(2):258–262Google Scholar
  102. 102.
    Nakamura H, Yamashita K, Rocha AR, Sanvito S (2008) Efficient ab initio method for inelastic transport in nanoscale devices: analysis of inelastic electron tunneling spectroscopy. Phys Rev B 78(23):235418–235420Google Scholar
  103. 103.
    Troisi A, Ratner MA (2006) Molecular transport junctions: propensity rules for inelastic electron tunneling spectra. Nano Lett 6(8):1784–1788Google Scholar
  104. 104.
    Troisi A, Ratner MA (2006) Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions. J Chem Phys 125(21):214709–214711Google Scholar
  105. 105.
    Gagliardi A, Solomon GC, Pecchia A, Frauenheim T, Di Carlo A, Hush NS, Reimers JR (2007) A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. Phys Rev B 75(17):174306–174308Google Scholar
  106. 106.
    Paulsson M, Frederiksen T, Ueba H, Lorente N, Brandbyge M (2008) Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys Rev Lett 100(22):226604Google Scholar
  107. 107.
    Troisi A, Ratner MA (2007) Inelastic insights for molecular tunneling pathways: bypassing the terminal groups. PCCP 9(19):2421–2427Google Scholar
  108. 108.
    Troisi A, Beebe JM, Picraux LB, Zee RDv, Stewart DR, Ratner MA, Kushmerick JG (2007) Tracing electronic pathways in molecules by using inelastic tunneling spectroscopy. Proc Natl Acad Sci USA 104(36):14255–14259Google Scholar
  109. 109.
    Kiguchi M (2009) Electrical conductance of single C60 and benzene molecules bridging between Pt electrode. Appl Phys Lett 95(7):073301–073303Google Scholar
  110. 110.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283Google Scholar
  111. 111.
    Carter FL (1983) Molecular level fabrication techniques and molecular electronic devices. J Vac Sci Technol B 1(4):959–968Google Scholar
  112. 112.
    Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548Google Scholar
  113. 113.
    Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110(17):5687–5692Google Scholar
  114. 114.
    Jlidat N, Hliwa M, Joachim C (2008) A semi-classical XOR logic gate integrated in a single molecule. Chem Phys Lett 451(4–6):270–275Google Scholar
  115. 115.
    Renaud N, Ito M, Shangguan W, Saeys M, Hliwa M, Joachim C (2009) A NOR-AND quantum running gate molecule. Chem Phys Lett 472(1–3):74–79Google Scholar
  116. 116.
    Soe W-H, Manzano C, Renaud N, de Mendoza P, De Sarkar A, Ample F, Hliwa M, Echavarren AM, Chandrasekhar N, Joachim C (2011) Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5(2):1436–1440Google Scholar
  117. 117.
    Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119(43):10455–10466Google Scholar
  118. 118.
    Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103(9):3803–3834Google Scholar
  119. 119.
    Heeger AJ, Sariciftci NS, Namdas EB (2010) Semiconducting and metallic polymers. Oxford University Press, OxfordGoogle Scholar
  120. 120.
    Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280(5370):1741–1744Google Scholar
  121. 121.
    Facchetti A, Yoon MH, Marks TJ (2005) Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater 17(14):1705–1725Google Scholar
  122. 122.
    Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W (2002) High-mobility polymer gate dielectric pentacene thin film transistors. J Appl Phys 92(9):5259–5263Google Scholar
  123. 123.
    Vilan A, Yaffe O, Biller A, Salomon A, Kahn A, Cahen D (2010) Molecules on Si: electronics with chemistry. Adv Mater 22(2):140–159Google Scholar
  124. 124.
    Malicki M, Guan Z, Ha SD, Heimel G, Barlow S, Rumi M, Kahn A, Marder SR (2009) Preparation and characterization of 4?-donor substituted stilbene-4-thiolate monolayers and their influence on the work function of gold. Langmuir 25(14):7967–7975Google Scholar
  125. 125.
    Moore AM, Mantooth BA, Dameron AA, Donhauser ZJ, Lewis PA, Smith RK, Fuchs DJ, Weiss PS (2008) Measurements and mechanisms of single-molecule conductance switching. In: Hasegawa M, Inoue A, Kobayashi N, Sakurai T, Wille L (eds) Frontiers in materials research. Advances in Materials Research, vol 10. Springer, Berlin, pp 29–47Google Scholar
  126. 126.
    Weiss PS (2008) Functional molecules and assemblies in controlled environments: formation and measurements. Acc Chem Res 41(12):1772–1781Google Scholar
  127. 127.
    Landau A, Kronik L, Nitzan A (2008) Cooperative effects in molecular conduction. J Comput Theor Nanosci 5:535–544Google Scholar
  128. 128.
    Reuter MG, Seideman T, Ratner MA (2011) Probing the surface-to-bulk transition: a closed-form constant-scaling algorithm for computing subsurface Green functions. Phys Rev B 83(8):085412Google Scholar
  129. 129.
    Kushmerick JG, Blum AS, Long DP (2006) Metrology for molecular electronics. Anal Chim Acta 568(1–2):20–27Google Scholar
  130. 130.
    Blum AS, Kushmerick JG, Pollack SK, Yang JC, Moore M, Naciri J, Shashidhar R, Ratna BR (2004) Charge transport and scaling in molecular wires. J Phys Chem B 108(47):18124–18128Google Scholar
  131. 131.
    Selzer Y, Allara DL (2006) Single-molecule electrical junctions. Annu Rev Phys Chem 57(1):593–623Google Scholar
  132. 132.
    Selzer Y, Cai L, Cabassi MA, Yao Y, Tour JM, Mayer TS, Allara DL (2004) Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett 5(1):61–65Google Scholar
  133. 133.
    Kushmerick JG, Naciri J, Yang JC, Shashidhar R (2003) Conductance scaling of molecular wires in parallel. Nano Lett 3(7):897–900Google Scholar
  134. 134.
    Burtman V, Ndobe AS, Vardeny ZV (2005) Transport studies of isolated molecular wires in self-assembled monolayer devices. J Appl Phys 98(3):034314–034319Google Scholar
  135. 135.
    Muralidharan B, Ghosh AW, Pati SK, Datta S (2007) Theory of high bias coulomb blockade in ultrashort molecules. IEEE Trans Nanotechnol 6(5):536–544Google Scholar
  136. 136.
    Zcaronuticacute I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76(2):323Google Scholar
  137. 137.
    Seneor P, Bernand-Mantel A, Petroff F (2007) Nanospintronics: when spintronics meets single electron physics. J Phys Condens Matter 19(16):165222Google Scholar
  138. 138.
    Wolf SA, Chtchelkanova AY, Treger DM (2006) Spintronics: a retrospective and perspective. IBM J Res Dev 50(1):101–110Google Scholar
  139. 139.
    Emberly EG, Kirczenow G (2002) Molecular spintronics: spin-dependent electron transport in molecular wires. Chem Phys 281(2–3):311–324Google Scholar
  140. 140.
    Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186Google Scholar
  141. 141.
    Rocha AR, Garcia-suarez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4(4):335–339Google Scholar
  142. 142.
    Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL (2006) Reversible conductance switching of single diarylethenes on a gold surface. Adv Mater 18(11):1397–1400Google Scholar
  143. 143.
    Matsuda K, Yamaguchi H, Sakano T, Ikeda M, Tanifuji N, Irie M (2008) Conductance photoswitching of diarylethene: gold nanoparticle network induced by photochromic reaction. J Phys Chem C 112(43):17005–17010Google Scholar
  144. 144.
    Kronemeijer AJ, Akkerman HB, Kudernac T, van Wees BJ, Feringa BL, Blom PWM, de Boer B (2008) Reversible conductance switching in molecular devices. Adv Mater 20(8):1467–1473Google Scholar
  145. 145.
    van der Molen SJ, Liao J, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schönenberger C (2008) Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett 9(1):76–80Google Scholar
  146. 146.
    He J, Chen F, Liddell PA, Andréasson J, Straight SD, Gust D, Moore TA, Moore AL, Li J, Sankey OF, Lindsay SM (2005) Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16(6):695Google Scholar
  147. 147.
    Zhang C, He Y, Cheng H-P, Xue Y, Ratner MA, Zhang XG, Krstic P (2006) Current-voltage characteristics through a single light-sensitive molecule. Phys Rev B 73(12):125445Google Scholar
  148. 148.
    Kondo M, Tada T, Yoshizawa K (2005) A theoretical measurement of the quantum transport through an optical molecular switch. Chem Phys Lett 412(1–3):55–59Google Scholar
  149. 149.
    Li J, Speyer G, Sankey OF (2004) Conduction switching of photochromic molecules. Phys Rev Lett 93(24):248302Google Scholar
  150. 150.
    Zhuang M, Ernzerhof M (2005) Mechanism of a molecular electronic photoswitch. Phys Rev B 72(7):073104Google Scholar
  151. 151.
    Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL (2004) Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys Rev Lett 92(15):158301Google Scholar
  152. 152.
    Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD, Gershenson ME, Goldman AM, Inoue IH, Mannhart J, Millis AJ, Morpurgo AF, Natelson D, Triscone J-M (2006) Electrostatic modification of novel materials. Rev Mod Phys 78(4):1185Google Scholar
  153. 153.
    Reuter MG, Sukharev M, Seideman T (2008) Laser field alignment of organic molecules on semiconductor surfaces: toward ultrafast molecular switches. Phys Rev Lett 101(20):208303Google Scholar
  154. 154.
    Ray K, Ananthavel SP, Waldeck DH, Naaman R (1999) Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283(5403):814–816Google Scholar
  155. 155.
    Ray SG, Daube SS, Leitus G, Vager Z, Naaman R (2006) Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys Rev Lett 96(3):036101Google Scholar
  156. 156.
    Liu R, Ke S-H, Baranger HU, Yang W (2005) Intermolecular effect in molecular electronics. J Chem Phys 122(4):044703–044704Google Scholar
  157. 157.
    Lagerqvist J, Chen Y-C, Ventra MD (2004) Shot noise in parallel wires. Nanotechnology 15(7):S459–S464Google Scholar
  158. 158.
    Yaliraki SN, Ratner MA (1998) Molecule-interface coupling effects on electronic transport in molecular wires. J Chem Phys 109(12):5036–5043Google Scholar
  159. 159.
    Tomfohr J, Sankey OF (2004) Theoretical analysis of electron transport through organic molecules. J Chem Phys 120(3):1542–1554Google Scholar
  160. 160.
    Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59(24):16011Google Scholar
  161. 161.
    Lang ND, Avouris P (2000) Electrical conductance of parallel atomic wires. Phys Rev B 62(11):7325Google Scholar
  162. 162.
    Reuter MG, Ratner MA, Seideman T (2011) unpublishedGoogle Scholar
  163. 163.
    Solomon GC, Andrews DQ, Goldsmith RH, Hansen T, Wasielewski MR, Van Duyne RP, Ratner MA (2008) Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J Am Chem Soc 130(51):17301–17308Google Scholar
  164. 164.
    Cardamone DM, Stafford CA, Mazumdar S (2006) Controlling quantum transport through a single molecule. Nano Lett 6(11):2422–2426Google Scholar
  165. 165.
    Hettler MH, Wenzel W, Wegewijs MR, Schoeller H (2003) Current collapse in tunneling transport through benzene. Phys Rev Lett 90(7):076805Google Scholar
  166. 166.
    Ke S-H, Yang W, Baranger HU (2008) Quantum-interference-controlled molecular electronics. Nano Lett 8(10):3257–3261Google Scholar
  167. 167.
    Patoux C, Coudret C, Launay J-P, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36(22):5037–5049Google Scholar
  168. 168.
    Sautet P, Joachim C (1988) Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem Phys Lett 153(6):511–516Google Scholar
  169. 169.
    Stadler R, Ami S, Joachim C, Forshaw M (2004) Integrating logic functions inside a single molecule. Nanotechnology 15(4):S115–S121Google Scholar
  170. 170.
    Stafford CA, Cardamone DM, Mazumdar S (2007) The quantum interference effect transistor. Nanotechnology 18(42):424014Google Scholar
  171. 171.
    Yaliraki SN, Ratner MA (2002) Interplay of topology and chemical stability on the electronic transport of molecular junctions. Ann NY Acad Sci 960(Mol Electron II):153–162Google Scholar
  172. 172.
    Segal D, Nitzan A, Davis WB, Wasielewski MR, Ratner MA (2000) Electron transfer rates in bridged molecular systems 2. A steady-state analysis of coherent tunneling and thermal transitions. J Phys Chem B 104(16):3817–3829Google Scholar
  173. 173.
    Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewski MR (2004) Making a molecular wire: charge and spin transport through para-phenylene oligomers. J Am Chem Soc 126(17):5577–5584Google Scholar
  174. 174.
    Luo L, Choi SH, Frisbie CD (2010) Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem Mater 23(3):631–645Google Scholar
  175. 175.
    Fleming GR, Scholes GD, Cheng Y-C (2011), Quantum effects in biology (in press)Google Scholar
  176. 176.
    Maassen J, Zahid F, Guo H (2009) Effects of dephasing in molecular transport junctions using atomistic first principles. Phys Rev B 80(12):125423Google Scholar
  177. 177.
    Büttiker M (1988) Coherent and sequential tunneling in series barriers. IBM J Res Dev 32(1):63–75Google Scholar
  178. 178.
    Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298(5597):1381–1387Google Scholar
  179. 179.
    Lu Y, Liu M, Lent C (2007) Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J Appl Phys 102(3):034311–034317Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nano-Science Center and Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institute for Inorganic and Applied ChemistryUniversity of HamburgHamburgGermany
  3. 3.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations