Skip to main content

Molecular Electronic Junction Transport: Some Pathways and Some Ideas

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 313))

Abstract

When a single molecule, or a collection of molecules, is placed between two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering methods for trying to determine the properties of molecules within these junctions. Finally, we discuss some device applications, some outstanding problems, and some future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wasielewski MR (2006) Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis. J Org Chem 71(14):5051–5066

    CAS  Google Scholar 

  2. Born M, Oppenheimer R (1927) Zur Quantentheorie der Molekeln. Annalen der Physik 389(20):457–484

    Google Scholar 

  3. Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105(12):2677–2679

    CAS  Google Scholar 

  4. Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific Publishing, Singapore

    Google Scholar 

  5. Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge

    Google Scholar 

  6. Ventra MD (2008) Electrical transport in nanoscale systems. Cambridge University Press, Cambridge

    Google Scholar 

  7. Lindsay SM, Ratner MA (2007) Molecular transport junctions: clearing mists. Adv Mater 19(1):23–31

    CAS  Google Scholar 

  8. Jaklevic RC, Lambe J (1966) Molecular vibration spectra by electron tunneling. Phys Rev Lett 17(22):1139

    CAS  Google Scholar 

  9. Stipe BC, Rezaei MA, Ho W (1998) Single-molecule vibrational spectroscopy and microscopy. Science 280(5370):1732–1735

    CAS  Google Scholar 

  10. Landauer R (1957) IBM J Res Dev 1:223

    Google Scholar 

  11. Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207

    Google Scholar 

  12. Grabert H, Devoret MH (eds) (1992) Single charge tunneling. Coulomb blockade phenomena in nanostructures. Plenum, New York

    Google Scholar 

  13. Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32:37

    Google Scholar 

  14. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417(6890):722–725

    CAS  Google Scholar 

  15. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Kondo resonance in a single-molecule transistor. Nature 417(6890):725–729

    CAS  Google Scholar 

  16. Reinerth WA, Jones L II, Burgin TP, Zhou C-w, Muller CJ, Deshpande MR, Reed MA, Tour JM (1998) Molecular scale electronics: syntheses and testing. Nanotechnology 9(3):246

    Google Scholar 

  17. Wold DJ, Frisbie CD (2000) Formation of metal-molecule-metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J Am Chem Soc 122(12):2970–2971

    CAS  Google Scholar 

  18. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294(5542):571–574

    CAS  Google Scholar 

  19. Leatherman G, Durantini EN, Gust D, Moore TA, Moore AL, Stone S, Zhou Z, Rez P, Liu YZ, Lindsay SM (1998) Carotene as a molecular wire: conducting atomic force microscopy. J Phys Chem B 103(20):4006–4010

    Google Scholar 

  20. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium–indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed 47(1):142–144

    CAS  Google Scholar 

  21. Haag R, Rampi MA, Holmlin RE, Whitesides GM (1999) Electrical breakdown of aliphatic and aromatic self-assembled monolayers used as nanometer-thick organic dielectrics. J Am Chem Soc 121(34):7895–7906

    CAS  Google Scholar 

  22. Wang W, Lee T, Reed MA (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys Rev B 68(3):035416

    Google Scholar 

  23. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278(5336):252–254

    CAS  Google Scholar 

  24. Lörtscher E, Weber HB, Riel H (2007) Statistical approach to investigating transport through single molecules. Phys Rev Lett 98(17):176807

    Google Scholar 

  25. Lörtscher E, Riel H (2010) Molecular electronics resonant transport through single molecules. CHIMIA Int J Chem 64:376–382

    Google Scholar 

  26. Lörtscher E, Ciszek JW, Tour J, Riel H (2006) Reversible and controllable switching of a single-molecule junction. Small 2(8–9):973–977

    Google Scholar 

  27. Ballmann S, Hieringer W, Secker D, Zheng Q, Gladysz JA, Görling A, Weber HB (2010) Molecular wires in single-molecule junctions: charge transport and vibrational excitations. ChemPhysChem 11(10):2256–2260

    CAS  Google Scholar 

  28. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637):1221–1223

    CAS  Google Scholar 

  29. Xu X, Yang X, Zang L, Tao N (2005) Large gate modulation in the current of a room temperature single molecule transistor. J Am Chem Soc 127(8):2386–2387

    CAS  Google Scholar 

  30. Albrecht T, Guckian A, Ulstrup J, Vos JG (2005) Transistor-like behavior of transition metal complexes. Nano Lett 5(7):1451–1455

    CAS  Google Scholar 

  31. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single molecule conductivity using the spontaneous formation of molecular wires. PCCP 6(17):4330–4337

    CAS  Google Scholar 

  32. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett 8(3):919–924

    CAS  Google Scholar 

  33. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L (2009) Mechanically controlled binary conductance switching of a single-molecule junction. Nat Nano 4(4):230–234

    CAS  Google Scholar 

  34. Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479):606–608

    CAS  Google Scholar 

  35. Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) Amine-linked single-molecule circuits: systematic trends across molecular families. J Phys Condens Matter 20(37):374115

    Google Scholar 

  36. Chen IWP, Fu M-D, Tseng W-H, Chen C-h, Chou C-M, Luh T-Y (2007) The effect of molecular conformation on single molecule conductance: measurements of ?-conjugated oligoaryls by STM break junction. Chem Commun 29:3074–3076

    Google Scholar 

  37. Wang K, Rangel NL, Kundu S, Sotelo JC, Tovar RM, Seminario JM, Liang H (2009) Switchable molecular conductivity. J Am Chem Soc 131(30):10447–10451

    CAS  Google Scholar 

  38. Franco I, George CB, Solomon GC, Schatz GC, Ratner MA (2011) Mechanically activated molecular switch through single-molecule pulling. J Am Chem Soc 133(7):2242–2249

    CAS  Google Scholar 

  39. Itoh T, McCreery RL (2002) In situ Raman spectroelectrochemistry of electron transfer between glassy carbon and a chemisorbed nitroazobenzene monolayer. J Am Chem Soc 124(36):10894–10902

    CAS  Google Scholar 

  40. Gartsman K, Cahen D, Kadyshevitch A, Libman J, Moav T, Naaman R, Shanzer A, Umansky V, Vilan A (1998) Molecular control of a GaAs transistor. Chem Phys Lett 283(5–6):301–306

    CAS  Google Scholar 

  41. Vilan A, Ussyshkin R, Gartsman K, Cahen D, Naaman R, Shanzer A (1998) Real-time electronic monitoring of adsorption kinetics: evidence for two-site adsorption mechanism of dicarboxylic acids on GaAs(100). J Phys Chem B 102(18):3307–3309

    CAS  Google Scholar 

  42. Skourtis SS, Beratan DN, Naaman R, Nitzan A, Waldeck DH (2008) Chiral control of electron transmission through molecules. Phys Rev Lett 101(23):238103

    Google Scholar 

  43. Yeganeh S, Ratner MA, Medina E, Mujica V (2009) Chiral electron transport: scattering through helical potentials. J Chem Phys 131(1):014707–014709

    Google Scholar 

  44. Galperin M, Ratner MA, Nitzan A (2009) Raman scattering from nonequilibrium molecular conduction junctions. Nano Lett 9(2):758–762

    CAS  Google Scholar 

  45. Jørgensen P, Simmons J (1981) Second quantization-based methods in quantum chemistry. Academic, New York

    Google Scholar 

  46. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Google Scholar 

  47. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Google Scholar 

  48. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. International Series of Monographs on Chemistry, vol 16. Oxford Science, Oxford

    Google Scholar 

  49. Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2009) Electron transport through conjugated molecules: when the ? system only tells part of the story. ChemPhysChem 10(1):257–264

    CAS  Google Scholar 

  50. Koentopp M, Chang C, Burke K, Car R (2008) Density functional calculations of nanoscale conductance. J Phys Condens Matter 20(8):083203

    Google Scholar 

  51. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943

    CAS  Google Scholar 

  52. Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50(23):16861

    CAS  Google Scholar 

  53. Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys Rev B 52(8):R5467

    CAS  Google Scholar 

  54. Ho Choi S, Kim B, Frisbie CD (2008) Electrical resistance of long conjugated molecular wires. Science 320(5882):1482–1486

    Google Scholar 

  55. Xue Y, Datta S, Ratner MA (2002) First-principles based matrix Green’s function approach to molecular electronic devices: general formalism. Chem Phys 281(2–3):151–170

    CAS  Google Scholar 

  56. Ke S-H, Baranger HU, Yang W (2004) Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys Rev B 70(8):085410

    Google Scholar 

  57. Cuevas JC, Heurich J, Pauly F, Wenzel W, Schon G (2003) Theoretical description of the electrical conduction in atomic and molecular junctions. Nanotechnology 14(8):R29–R38

    CAS  Google Scholar 

  58. Damle P, Ghosh AW, Datta S (2002) First-principles analysis of molecular conduction using quantum chemistry software. Chem Phys 281(2–3):171–187

    CAS  Google Scholar 

  59. Evers F, Weigend F, Koentopp M (2004) Conductance of molecular wires and transport calculations based on density-functional theory. Phys Rev B 69(23):235411

    Google Scholar 

  60. Stokbro K, Taylor J, Brandbyge M, Ordejon P (2003) TranSIESTA: a spice for molecular electronics. Ann NY Acad Sci 1006(Mol Electron III):212–226

    Google Scholar 

  61. Stokbro K, Taylor J, Brandbyge M, Mozos JL, Ordejon P (2003) Theoretical study of the nonlinear conductance of di-thiol benzene coupled to Au(1-1-1) surfaces via thiol and thiolate bonds. Comput Mater Sci 27(1/2):151–160

    Google Scholar 

  62. Palacios JJ, Perez-Jiménez AJ, Louis E, SanFabián E, Vergés JA (2002) First-principles approach to electrical transport in atomic-scale nanostructures. Phys Rev B 66(3):035322

    Google Scholar 

  63. Rocha AR, Garcia-Suarez VM, Bailey S, Lambert C, Ferrer J, Sanvito S (2006) Spin and molecular electronics in atomically generated orbital landscapes. Phys Rev B 73(8):085414–085422

    Google Scholar 

  64. Frederiksen T, Paulsson M, Brandbyge M, Jauho A-P (2007) Inelastic transport theory from first principles: methodology and application to nanoscale devices. Phys Rev B 75(20):205413–205422

    Google Scholar 

  65. Sheng W, Li ZY, Ning ZY, Zhang ZH, Yang ZQ, Guo H (2009) Quantum transport in alkane molecular wires: effects of binding modes and anchoring groups. J Chem Phys 131(24):244712–244719

    CAS  Google Scholar 

  66. Smeu M, Wolkow RA, Guo H (2009) Conduction pathway of pi-stacked ethylbenzene molecular wires on Si(100). J Am Chem Soc 131(31):11019–11026

    CAS  Google Scholar 

  67. Flemming I (1978) Frontier orbitals and organic chemical reactions. Wiley, Chichester

    Google Scholar 

  68. Caroli C, Combescot R, Nozieres P, Saint-James D (1971) Direct calculation of the tunneling current. J Phys C Solid State Phys 4(8):916

    Google Scholar 

  69. Beenakker CWJ, van Houten H (1991) Quantum transport in semiconductor nanostructures. In: Henry E, David T (eds) Solid state physics, vol 44. Academic, San Diego, pp 1–228

    Google Scholar 

  70. Nitzan A, Jortner J, Wilkie J, Burin AL, Ratner MA (2000) Tunneling time for electron transfer reactions. J Phys Chem B 104(24):5661–5665

    CAS  Google Scholar 

  71. Nitzan A (2001) Electron transmission through molecules and molecular interfaces. Annu Rev Phys Chem 52(1):681–750

    CAS  Google Scholar 

  72. Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys Condens Matter 19(10):103201

    Google Scholar 

  73. Brandbyge M, Srensen MR, Jacobsen KW (1997) Conductance eigenchannels in nanocontacts. Phys Rev B 56(23):14956

    Google Scholar 

  74. Brandbyge M, Kobayashi N, Tsukada M (1999) Conduction channels at finite bias in single-atom gold contacts. Phys Rev B 60(24):17064

    CAS  Google Scholar 

  75. Heurich J, Cuevas JC, Wenzel W, Schon G (2002) Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels. Phys Rev Lett 88(25):256803

    Google Scholar 

  76. Solomon GC, Gagliardi A, Pecchia A, Frauenheim T, Di Carlo A, Reimers JR, Hush NS (2006) Molecular origins of conduction channels observed in shot-noise measurements. Nano Lett 6(11):2431–2437

    CAS  Google Scholar 

  77. Wang B, Zhu Y, Ren W, Wang J, Guo H (2007) Spin-dependent transport in Fe-doped carbon nanotubes. Phys Rev B 75(23):235415–235417

    Google Scholar 

  78. Paulsson M, Brandbyge M (2007) Transmission eigenchannels from nonequilibrium Green’s functions. Phys Rev B 76(11):115117

    Google Scholar 

  79. Jacob D, Palacios JJ (2006) Orbital eigenchannel analysis for ab initio quantum transport calculations. Phys Rev B 73(7):075424–075429

    Google Scholar 

  80. Bagrets A, Papanikolaou N, Mertig I (2007) Conduction eigenchannels of atomic-sized contacts: ab initio KKR Green’s function formalism. Phys Rev B 75(23):235448

    Google Scholar 

  81. Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA (2010) Exploring local currents in molecular junctions. Nat Chem 2(3):223–228

    CAS  Google Scholar 

  82. Todorov TN (2002) Tight-binding simulation of current-carrying nanostructures. J Phys Condens Matter 14(11):3049–3084

    CAS  Google Scholar 

  83. Pecchia A, Di Carlo A (2004) Atomistic theory of transport in organic and inorganic nanostructures. Rep Prog Phys 67(8):1497–1561

    CAS  Google Scholar 

  84. Stuchebrukhov AA (1996) Tunneling currents in electron transfer reactions in proteins. J Chem Phys 104(21):8424–8432

    CAS  Google Scholar 

  85. Stuchebrukhov AA (1996) Tunneling currents in electron transfer reaction in proteins. II. Calculation of electronic superexchange matrix element and tunneling currents using nonorthogonal basis sets. J Chem Phys 105(24):10819–10829

    CAS  Google Scholar 

  86. Stuchebrukhov AA (1997) Tunneling currents in proteins: nonorthogonal atomic basis sets and Mulliken population analysis. J Chem Phys 107(16):6495–6498

    CAS  Google Scholar 

  87. Sai N, Bushong N, Hatcher R, Di Ventra M (2007) Microscopic current dynamics in nanoscale junctions. Phys Rev B 75(11):115410–115418

    Google Scholar 

  88. Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau P (2006) Electron transmission through aromatic molecules. J Chem Theory Comput 2(5):1291–1297

    CAS  Google Scholar 

  89. Emberly EG, Kirczenow G (2001) Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts. Phys Rev B 64(23):235412

    Google Scholar 

  90. Tian J-H, Yang Y, Zhou X-S, Schöllhorn B, Maisonhaute E, Chen Z-B, Yang F-Z, Chen Y, Amatore C, Mao B-W, Tian Z-Q (2010) Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. ChemPhysChem 11(13):2745–2755

    CAS  Google Scholar 

  91. Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB (2007) Amine-gold linked single-molecule circuits: experiment and theory. Nano Lett 7(11):3477–3482

    CAS  Google Scholar 

  92. Kiguchi M, Tal O, Wohlthat S, Pauly F, Krieger M, Djukic D, Cuevas JC, van Ruitenbeek JM (2008) Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys Rev Lett 101(4):046801

    CAS  Google Scholar 

  93. Yang H, Xie XS (2002) Statistical approaches for probing single-molecule dynamics photon-by-photon. Chem Phys 284(1–2):423–437

    CAS  Google Scholar 

  94. Gräslund A, Rigler R, Widengren J (eds) (2010) Single molecule spectroscopy in chemistry, physics and biology. Springer Series in Chemical Physics. Springer, Berlin

    Google Scholar 

  95. Wang W, Lee T, Kretzschmar I, Reed MA (2004) Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett 4(4):643–646

    CAS  Google Scholar 

  96. Kushmerick JG, Lazorcik J, Patterson CH, Shashidhar R, Seferos DS, Bazan GC (2004) Vibronic contributions to charge transport across molecular junctions. Nano Lett 4(4):639–642

    CAS  Google Scholar 

  97. Chen Y-C, Zwolak M, Di Ventra M (2005) Inelastic effects on the transport properties of alkanethiols. Nano Lett 5(4):621–624

    CAS  Google Scholar 

  98. Troisi A, Ratner MA (2005) Modeling the inelastic electron tunneling spectra of molecular wire junctions. Phys Rev B 72(3):033408

    Google Scholar 

  99. Solomon GC, Gagliardi A, Pecchia A, Frauenheim T, Di Carlo A, Reimers JR, Hush NS (2006) Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J Chem Phys 124(9):094704–094710

    Google Scholar 

  100. Galperin M, Ratner MA, Nitzan A (2004) Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. J Chem Phys 121(23):11965–11979

    CAS  Google Scholar 

  101. Paulsson M, Frederiksen T, Brandbyge M (2006) Inelastic transport through molecules: comparing first-principles calculations to experiments. Nano Lett 6(2):258–262

    CAS  Google Scholar 

  102. Nakamura H, Yamashita K, Rocha AR, Sanvito S (2008) Efficient ab initio method for inelastic transport in nanoscale devices: analysis of inelastic electron tunneling spectroscopy. Phys Rev B 78(23):235418–235420

    Google Scholar 

  103. Troisi A, Ratner MA (2006) Molecular transport junctions: propensity rules for inelastic electron tunneling spectra. Nano Lett 6(8):1784–1788

    CAS  Google Scholar 

  104. Troisi A, Ratner MA (2006) Propensity rules for inelastic electron tunneling spectroscopy of single-molecule transport junctions. J Chem Phys 125(21):214709–214711

    Google Scholar 

  105. Gagliardi A, Solomon GC, Pecchia A, Frauenheim T, Di Carlo A, Hush NS, Reimers JR (2007) A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. Phys Rev B 75(17):174306–174308

    Google Scholar 

  106. Paulsson M, Frederiksen T, Ueba H, Lorente N, Brandbyge M (2008) Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys Rev Lett 100(22):226604

    Google Scholar 

  107. Troisi A, Ratner MA (2007) Inelastic insights for molecular tunneling pathways: bypassing the terminal groups. PCCP 9(19):2421–2427

    CAS  Google Scholar 

  108. Troisi A, Beebe JM, Picraux LB, Zee RDv, Stewart DR, Ratner MA, Kushmerick JG (2007) Tracing electronic pathways in molecules by using inelastic tunneling spectroscopy. Proc Natl Acad Sci USA 104(36):14255–14259

    CAS  Google Scholar 

  109. Kiguchi M (2009) Electrical conductance of single C60 and benzene molecules bridging between Pt electrode. Appl Phys Lett 95(7):073301–073303

    Google Scholar 

  110. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283

    CAS  Google Scholar 

  111. Carter FL (1983) Molecular level fabrication techniques and molecular electronic devices. J Vac Sci Technol B 1(4):959–968

    CAS  Google Scholar 

  112. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548

    CAS  Google Scholar 

  113. Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110(17):5687–5692

    CAS  Google Scholar 

  114. Jlidat N, Hliwa M, Joachim C (2008) A semi-classical XOR logic gate integrated in a single molecule. Chem Phys Lett 451(4–6):270–275

    CAS  Google Scholar 

  115. Renaud N, Ito M, Shangguan W, Saeys M, Hliwa M, Joachim C (2009) A NOR-AND quantum running gate molecule. Chem Phys Lett 472(1–3):74–79

    CAS  Google Scholar 

  116. Soe W-H, Manzano C, Renaud N, de Mendoza P, De Sarkar A, Ample F, Hliwa M, Echavarren AM, Chandrasekhar N, Joachim C (2011) Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5(2):1436–1440

    CAS  Google Scholar 

  117. Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119(43):10455–10466

    CAS  Google Scholar 

  118. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103(9):3803–3834

    CAS  Google Scholar 

  119. Heeger AJ, Sariciftci NS, Namdas EB (2010) Semiconducting and metallic polymers. Oxford University Press, Oxford

    Google Scholar 

  120. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280(5370):1741–1744

    CAS  Google Scholar 

  121. Facchetti A, Yoon MH, Marks TJ (2005) Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater 17(14):1705–1725

    CAS  Google Scholar 

  122. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W (2002) High-mobility polymer gate dielectric pentacene thin film transistors. J Appl Phys 92(9):5259–5263

    CAS  Google Scholar 

  123. Vilan A, Yaffe O, Biller A, Salomon A, Kahn A, Cahen D (2010) Molecules on Si: electronics with chemistry. Adv Mater 22(2):140–159

    CAS  Google Scholar 

  124. Malicki M, Guan Z, Ha SD, Heimel G, Barlow S, Rumi M, Kahn A, Marder SR (2009) Preparation and characterization of 4?-donor substituted stilbene-4-thiolate monolayers and their influence on the work function of gold. Langmuir 25(14):7967–7975

    CAS  Google Scholar 

  125. Moore AM, Mantooth BA, Dameron AA, Donhauser ZJ, Lewis PA, Smith RK, Fuchs DJ, Weiss PS (2008) Measurements and mechanisms of single-molecule conductance switching. In: Hasegawa M, Inoue A, Kobayashi N, Sakurai T, Wille L (eds) Frontiers in materials research. Advances in Materials Research, vol 10. Springer, Berlin, pp 29–47

    Google Scholar 

  126. Weiss PS (2008) Functional molecules and assemblies in controlled environments: formation and measurements. Acc Chem Res 41(12):1772–1781

    CAS  Google Scholar 

  127. Landau A, Kronik L, Nitzan A (2008) Cooperative effects in molecular conduction. J Comput Theor Nanosci 5:535–544

    CAS  Google Scholar 

  128. Reuter MG, Seideman T, Ratner MA (2011) Probing the surface-to-bulk transition: a closed-form constant-scaling algorithm for computing subsurface Green functions. Phys Rev B 83(8):085412

    Google Scholar 

  129. Kushmerick JG, Blum AS, Long DP (2006) Metrology for molecular electronics. Anal Chim Acta 568(1–2):20–27

    CAS  Google Scholar 

  130. Blum AS, Kushmerick JG, Pollack SK, Yang JC, Moore M, Naciri J, Shashidhar R, Ratna BR (2004) Charge transport and scaling in molecular wires. J Phys Chem B 108(47):18124–18128

    CAS  Google Scholar 

  131. Selzer Y, Allara DL (2006) Single-molecule electrical junctions. Annu Rev Phys Chem 57(1):593–623

    CAS  Google Scholar 

  132. Selzer Y, Cai L, Cabassi MA, Yao Y, Tour JM, Mayer TS, Allara DL (2004) Effect of local environment on molecular conduction: isolated molecule versus self-assembled monolayer. Nano Lett 5(1):61–65

    Google Scholar 

  133. Kushmerick JG, Naciri J, Yang JC, Shashidhar R (2003) Conductance scaling of molecular wires in parallel. Nano Lett 3(7):897–900

    CAS  Google Scholar 

  134. Burtman V, Ndobe AS, Vardeny ZV (2005) Transport studies of isolated molecular wires in self-assembled monolayer devices. J Appl Phys 98(3):034314–034319

    Google Scholar 

  135. Muralidharan B, Ghosh AW, Pati SK, Datta S (2007) Theory of high bias coulomb blockade in ultrashort molecules. IEEE Trans Nanotechnol 6(5):536–544

    Google Scholar 

  136. Zcaronuticacute I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76(2):323

    Google Scholar 

  137. Seneor P, Bernand-Mantel A, Petroff F (2007) Nanospintronics: when spintronics meets single electron physics. J Phys Condens Matter 19(16):165222

    Google Scholar 

  138. Wolf SA, Chtchelkanova AY, Treger DM (2006) Spintronics: a retrospective and perspective. IBM J Res Dev 50(1):101–110

    CAS  Google Scholar 

  139. Emberly EG, Kirczenow G (2002) Molecular spintronics: spin-dependent electron transport in molecular wires. Chem Phys 281(2–3):311–324

    CAS  Google Scholar 

  140. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186

    CAS  Google Scholar 

  141. Rocha AR, Garcia-suarez VM, Bailey SW, Lambert CJ, Ferrer J, Sanvito S (2005) Towards molecular spintronics. Nat Mater 4(4):335–339

    CAS  Google Scholar 

  142. Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL (2006) Reversible conductance switching of single diarylethenes on a gold surface. Adv Mater 18(11):1397–1400

    CAS  Google Scholar 

  143. Matsuda K, Yamaguchi H, Sakano T, Ikeda M, Tanifuji N, Irie M (2008) Conductance photoswitching of diarylethene: gold nanoparticle network induced by photochromic reaction. J Phys Chem C 112(43):17005–17010

    CAS  Google Scholar 

  144. Kronemeijer AJ, Akkerman HB, Kudernac T, van Wees BJ, Feringa BL, Blom PWM, de Boer B (2008) Reversible conductance switching in molecular devices. Adv Mater 20(8):1467–1473

    CAS  Google Scholar 

  145. van der Molen SJ, Liao J, Kudernac T, Agustsson JS, Bernard L, Calame M, van Wees BJ, Feringa BL, Schönenberger C (2008) Light-controlled conductance switching of ordered metal–molecule–metal devices. Nano Lett 9(1):76–80

    Google Scholar 

  146. He J, Chen F, Liddell PA, Andréasson J, Straight SD, Gust D, Moore TA, Moore AL, Li J, Sankey OF, Lindsay SM (2005) Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16(6):695

    CAS  Google Scholar 

  147. Zhang C, He Y, Cheng H-P, Xue Y, Ratner MA, Zhang XG, Krstic P (2006) Current-voltage characteristics through a single light-sensitive molecule. Phys Rev B 73(12):125445

    Google Scholar 

  148. Kondo M, Tada T, Yoshizawa K (2005) A theoretical measurement of the quantum transport through an optical molecular switch. Chem Phys Lett 412(1–3):55–59

    CAS  Google Scholar 

  149. Li J, Speyer G, Sankey OF (2004) Conduction switching of photochromic molecules. Phys Rev Lett 93(24):248302

    Google Scholar 

  150. Zhuang M, Ernzerhof M (2005) Mechanism of a molecular electronic photoswitch. Phys Rev B 72(7):073104

    Google Scholar 

  151. Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL (2004) Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys Rev Lett 92(15):158301

    CAS  Google Scholar 

  152. Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD, Gershenson ME, Goldman AM, Inoue IH, Mannhart J, Millis AJ, Morpurgo AF, Natelson D, Triscone J-M (2006) Electrostatic modification of novel materials. Rev Mod Phys 78(4):1185

    CAS  Google Scholar 

  153. Reuter MG, Sukharev M, Seideman T (2008) Laser field alignment of organic molecules on semiconductor surfaces: toward ultrafast molecular switches. Phys Rev Lett 101(20):208303

    Google Scholar 

  154. Ray K, Ananthavel SP, Waldeck DH, Naaman R (1999) Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283(5403):814–816

    CAS  Google Scholar 

  155. Ray SG, Daube SS, Leitus G, Vager Z, Naaman R (2006) Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys Rev Lett 96(3):036101

    CAS  Google Scholar 

  156. Liu R, Ke S-H, Baranger HU, Yang W (2005) Intermolecular effect in molecular electronics. J Chem Phys 122(4):044703–044704

    Google Scholar 

  157. Lagerqvist J, Chen Y-C, Ventra MD (2004) Shot noise in parallel wires. Nanotechnology 15(7):S459–S464

    Google Scholar 

  158. Yaliraki SN, Ratner MA (1998) Molecule-interface coupling effects on electronic transport in molecular wires. J Chem Phys 109(12):5036–5043

    CAS  Google Scholar 

  159. Tomfohr J, Sankey OF (2004) Theoretical analysis of electron transport through organic molecules. J Chem Phys 120(3):1542–1554

    CAS  Google Scholar 

  160. Magoga M, Joachim C (1999) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59(24):16011

    CAS  Google Scholar 

  161. Lang ND, Avouris P (2000) Electrical conductance of parallel atomic wires. Phys Rev B 62(11):7325

    CAS  Google Scholar 

  162. Reuter MG, Ratner MA, Seideman T (2011) unpublished

    Google Scholar 

  163. Solomon GC, Andrews DQ, Goldsmith RH, Hansen T, Wasielewski MR, Van Duyne RP, Ratner MA (2008) Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J Am Chem Soc 130(51):17301–17308

    CAS  Google Scholar 

  164. Cardamone DM, Stafford CA, Mazumdar S (2006) Controlling quantum transport through a single molecule. Nano Lett 6(11):2422–2426

    CAS  Google Scholar 

  165. Hettler MH, Wenzel W, Wegewijs MR, Schoeller H (2003) Current collapse in tunneling transport through benzene. Phys Rev Lett 90(7):076805

    CAS  Google Scholar 

  166. Ke S-H, Yang W, Baranger HU (2008) Quantum-interference-controlled molecular electronics. Nano Lett 8(10):3257–3261

    CAS  Google Scholar 

  167. Patoux C, Coudret C, Launay J-P, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36(22):5037–5049

    CAS  Google Scholar 

  168. Sautet P, Joachim C (1988) Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem Phys Lett 153(6):511–516

    CAS  Google Scholar 

  169. Stadler R, Ami S, Joachim C, Forshaw M (2004) Integrating logic functions inside a single molecule. Nanotechnology 15(4):S115–S121

    CAS  Google Scholar 

  170. Stafford CA, Cardamone DM, Mazumdar S (2007) The quantum interference effect transistor. Nanotechnology 18(42):424014

    Google Scholar 

  171. Yaliraki SN, Ratner MA (2002) Interplay of topology and chemical stability on the electronic transport of molecular junctions. Ann NY Acad Sci 960(Mol Electron II):153–162

    Google Scholar 

  172. Segal D, Nitzan A, Davis WB, Wasielewski MR, Ratner MA (2000) Electron transfer rates in bridged molecular systems 2. A steady-state analysis of coherent tunneling and thermal transitions. J Phys Chem B 104(16):3817–3829

    CAS  Google Scholar 

  173. Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewski MR (2004) Making a molecular wire: charge and spin transport through para-phenylene oligomers. J Am Chem Soc 126(17):5577–5584

    CAS  Google Scholar 

  174. Luo L, Choi SH, Frisbie CD (2010) Probing hopping conduction in conjugated molecular wires connected to metal electrodes. Chem Mater 23(3):631–645

    Google Scholar 

  175. Fleming GR, Scholes GD, Cheng Y-C (2011), Quantum effects in biology (in press)

    Google Scholar 

  176. Maassen J, Zahid F, Guo H (2009) Effects of dephasing in molecular transport junctions using atomistic first principles. Phys Rev B 80(12):125423

    Google Scholar 

  177. Büttiker M (1988) Coherent and sequential tunneling in series barriers. IBM J Res Dev 32(1):63–75

    Google Scholar 

  178. Heinrich AJ, Lutz CP, Gupta JA, Eigler DM (2002) Molecule cascades. Science 298(5597):1381–1387

    CAS  Google Scholar 

  179. Lu Y, Liu M, Lent C (2007) Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J Appl Phys 102(3):034311–034317

    Google Scholar 

Download references

Acknowledgments

We are grateful to Robert Metzger for the opportunity to contribute to this volume, and to the very large number of wonderful colleagues and coworkers who contributed to our understanding in this general area, starting with Dr. Ari Aviram and extending to our current research groups. We are also grateful to the MRSEC program of the NSF for support of this research. C.H. would like to thank the Landesexzellenzinitiative Hamburg (Nanospintronics) for funding. G.C.S. acknowledges funding from The Danish Council for Independent Research/Natural Sciences.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solomon, G.C., Herrmann, C., Ratner, M.A. (2011). Molecular Electronic Junction Transport: Some Pathways and Some Ideas. In: Metzger, R. (eds) Unimolecular and Supramolecular Electronics II. Topics in Current Chemistry, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_227

Download citation

Publish with us

Policies and ethics