Skip to main content

NMR with Multiple Receivers

  • Chapter
  • First Online:
Modern NMR Methodology

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 335))

Abstract

Parallel acquisition NMR spectroscopy (PANSY) is used to detect simultaneously signals from up to four nuclear species, such as H-1, H-2, C-13, N-15, F-19 and P-31. The conventional COSY, TOCSY, HSQC, HMQC and HMBC pulse sequences have been adapted for such applications. Routine availability of NMR systems that incorporate multiple receivers has led to development of new types of NMR experiments. One such scheme named PANACEA allows unambiguous structure determination of small organic molecules from a single measurement and includes an internal field/frequency correction routine. It does not require the conventional NMR lock system and can be recorded in pure liquids. Furthermore, long-range spin–spin couplings can be extracted from the PANACEA spectra and used for three-dimensional structure refinement. In bio-molecular NMR, multi-receiver NMR systems are used for simultaneous recording of H-1 and C-13 detected multi-dimensional spectra. For instance, the 2D (HA)CACO and 3D (HA)CA(CO)NNH experiments can be recorded simultaneously in proteins of moderate size (up to 30 kDa). The multi-receiver experiments can also be used in combination with the fast acquisition schemes such as Hadamard spectroscopy, computer optimized aliasing and projection-reconstruction techniques. In general, experiments that utilize multiple receivers provide significantly more information from a single NMR measurement as compared to the conventional single receiver techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COSY:

Correlation spectroscopy

FID:

Free induction decay

HETCOR:

Heteronuclear correlation

HMBC:

Heteronuclear multiple-bond correlation

HMQC:

Heteronuclear multiple-quantum correlation

HSQC:

Heteronuclear single-quantum correlation

INADEQUATE:

Incredible natural abundance double quantum transfer experiment

IPAP:

In-phase anti-phase

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

PANACEA:

Parallel acquisition NMR and all-in-one combination of experimental applications

PANSY:

Parallel acquisition NMR spectroscopy

PR:

Projection reconstruction

RF:

Radio frequency

S/N:

Signal-to-noise

TOCSY:

Total correlation spectroscopy

TROSY:

Transverse relaxation optimized spectroscopy

References

  1. Gal M, Frydman L (2010) Multidimensional NMR methods for the solution state. In: Morris GA, Emsley JW (eds) Encyclopedia of magnetic resonance, Chap. 3. Wiley, Chichester, UK

    Google Scholar 

  2. Kupče Ē, Freeman R (2003) J Biomol NMR 27:101–113

    Article  Google Scholar 

  3. Kupče Ē, Nishida T, Freeman R (2003) Progr NMR Spectrosc 42:95–122

    Article  Google Scholar 

  4. Kupče Ē, Freeman R (2006) In: Arrondo JLR, Alonso A (eds) Advanced techniques in biophysics, Chap. 6. Springer, Berlin, pp 131–147

    Google Scholar 

  5. Ding K, Gronenborn A (2002) J Magn Reson 156:262–268

    Article  CAS  Google Scholar 

  6. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Proc Natl Acad Sci USA 102:10876–10881

    Article  CAS  Google Scholar 

  7. Fiorito F, Hiller S, Wider G, Wüthrich K (2006) J Biomol NMR 35:27–37

    Article  CAS  Google Scholar 

  8. Brüschweiler R, Zhang F (2004) J Chem Phys 120:5253–5260

    Article  Google Scholar 

  9. Zhang F, Brüschweiler R (2004) J Am Chem Soc 126:13180–13181

    Article  CAS  Google Scholar 

  10. Frydman L, Scherf T, Lupulescu A (2002) Proc Natl Acad Sci USA 99:15858

    Article  CAS  Google Scholar 

  11. Frydman L, Scherf T, Lupulescu A (2003) J Am Chem Soc 125:9204

    Article  CAS  Google Scholar 

  12. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) J Magn Reson 73:69–77

    CAS  Google Scholar 

  13. Chen J, Mandelshtam VA, Shaka AJ (2000) J Magn Reson 146:363–368

    Article  CAS  Google Scholar 

  14. Schmieder P, Stern AS, Wagner G, Hoch JC (1993) J Biomol NMR 3:569

    Article  CAS  Google Scholar 

  15. Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) J Biomol NMR 36:157–168

    Article  CAS  Google Scholar 

  16. Kazimierczuk K, Kozminski W, Zhukov I (2006) J Magn Reson 179:323–328

    Article  CAS  Google Scholar 

  17. Kupče Ē, Freeman R (2003) J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  18. Kupče Ē, Freeman R (2004) J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  19. Yoon JW, Godsill S, Kupče Ē, Freeman R (2006) Magn Reson Chem 44:197–209

    Article  CAS  Google Scholar 

  20. Schanda P, Brutscher B (2005) J Am Chem Soc 127:8014

    Article  CAS  Google Scholar 

  21. Schanda P, Kupče Ē, Brutscher B (2005) J Biomol NMR 33:199

    Article  CAS  Google Scholar 

  22. van de Ven FJM (1995) Multidimensional NMR in liquids. VCH, New York

    Google Scholar 

  23. Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy. Academic, San Diego

    Google Scholar 

  24. Moore GJ, Hrovat MI, Gonzalez RG (1991) Magn Reson Med 19:105–112

    Article  CAS  Google Scholar 

  25. Hou T, MacNamara E, MacNaughton M, Raftery D (1999) Anal Chim Acta 400:297–305

    Article  CAS  Google Scholar 

  26. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) Top Magn Reson Imaging 15:223–236

    Article  Google Scholar 

  27. Kupče Ē, Freeman R, John BK (2006) J Am Chem Soc 128:9606–9607

    Article  Google Scholar 

  28. Ernst RR, Bodenhausen G, Wokaun A (1997) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford

    Google Scholar 

  29. Robinson JN, Coy A, Dykstra R, Eccles CD, Hunter MW, Callaghan PT (2006) J Magn Reson 182:343–347

    Article  CAS  Google Scholar 

  30. Kupče Ē, Wrackmeyer B (2010) Appl Organomet Chem (Spl Issue: In Memoriam Professor Edmunds Lukevics) 24:837–841

    Google Scholar 

  31. Kupče Ē, Cheatham S, Freeman R (2007) Magn Reson Chem 45:378–380

    Article  Google Scholar 

  32. Bax A, Freeman R, Kempsell SP (1980) J Am Chem Soc 102:4849–4851

    Article  CAS  Google Scholar 

  33. Bax A, Freeman R, Kempsell SP (1980) J Magn Reson 41:349–353

    CAS  Google Scholar 

  34. Kupče Ē, Freeman R (2008) J Am Chem Soc 130:10788–10792

    Article  Google Scholar 

  35. Kupče Ē, Freeman SR (2010) Magn Reson Chem 48:333–336

    Google Scholar 

  36. Kupče Ē, Freeman R (2010) J Magn Reson 206:147–153

    Article  Google Scholar 

  37. Iijima T, Takegoshi K (2008) J Magn Reson 191:128–134

    Article  CAS  Google Scholar 

  38. Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006) Prog NMR Spectrosc 48:25

    Article  CAS  Google Scholar 

  39. Kupče Ē, Kay LE, Freeman R (2010) J Am Chem Soc 132:18008–18011

    Article  Google Scholar 

  40. Jeannerat D (2003) Magn Reson Chem 41:3–17

    Article  CAS  Google Scholar 

  41. Jeannerat D (2007) J Magn Reson 186:112–122

    Article  CAS  Google Scholar 

  42. Lescop E, Schanda P, Rasia R, Brutscher B (2007) J Am Chem Soc 129:2756–2757

    Article  CAS  Google Scholar 

  43. Hounsfield GN (1973) Br J Radiol 46:1016

    Article  CAS  Google Scholar 

  44. Zhi-Pei Liang, Lauterbur PC (2000) Principles of magnetic resonance imaging, Chap. 6. IEEE, New York, pp 187–216

    Google Scholar 

  45. Nagayama K, Bachmann P, Wuthrich K, Ernst RR (1978) J Magn Reson 31:133

    CAS  Google Scholar 

  46. Bodenhausen G, Ernst RR (1982) J Am Chem Soc 104:1304–1309

    Article  CAS  Google Scholar 

  47. Kupče Ē, Freeman R (2004) Concepts Magn Reson 22A:4–11

    Article  Google Scholar 

  48. Kupče Ē, Freeman R (2004) Concepts Magn Reson 23A:63–75

    Article  Google Scholar 

  49. Kupče Ē, Freeman R (2004) Spectroscopy 19(10):16–20

    Google Scholar 

  50. McIntyre L, Freeman R (1992) J Magn Reson 96:425

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ēriks Kupče .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kupče, Ē. (2011). NMR with Multiple Receivers. In: Heise, H., Matthews, S. (eds) Modern NMR Methodology. Topics in Current Chemistry, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_226

Download citation

Publish with us

Policies and ethics