Single Molecule Logical Devices

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 313)


After almost 40 years of development, molecular electronics has given birth to many exciting ideas that range from molecular wires to molecular qubit-based quantum computers. This chapter reviews our efforts to answer a simple question: how smart can a single molecule be? In our case a molecule able to perform a simple Boolean function is a child prodigy. Following the Aviram and Ratner approach, these molecules are inserted between several conducting electrodes. The electronic conduction of the resulting molecular junction is extremely sensitive to the chemical nature of the molecule. Therefore designing this latter correctly allows the implementation of a given function inside the molecular junction. Throughout the chapter different approaches are reviewed, from hybrid devices to quantum molecular logic gates. We particularly stress that one can implement an entire logic circuit in a single molecule, using either classical-like intramolecular connections, or a deformation of the molecular orbitals induced by a conformational change of the molecule. These approaches are radically different from the hybrid-device approach, where several molecules are connected together to build the circuit.


Intramolecular kirchhoff laws Molecular electronics Molecular logic gates Single molecule electronic circuits Quantum hamiltonian computing 


  1. 1.
    Tinder RF (2000) Engineering digital design, revised 2nd edn. Elsevier Academic, AmsterdamGoogle Scholar
  2. 2.
    Horowitz P, Hill W (1989) The art of electronics. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Riordan M (2005) How Europe missed the transistor. IEEE Spectrum 42:52Google Scholar
  4. 4.
    Shanon CE (1936) A symbolic analysis of relay and switching circuits. Master’s thesis, MIT 55. MIT, CambridgeGoogle Scholar
  5. 5.
    Saxena AN (2009) Invention of integrated circuits: untold important facts. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Landauer R (1990) Advanced technology and truth in advertising. Physica A 168:75Google Scholar
  7. 7.
    Intel Corporation (2009) Fact Sheet, Fun facts : exactly how small (and cool) is 32 nanometers?Google Scholar
  8. 8.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38:114Google Scholar
  9. 9.
    Tri-gate transistor architechture with high-k gate dielectrics: metal gates and strain engineering. Digest of Technical Papers, IEEE Trans VLSI Tech Symp 62Google Scholar
  10. 10.
    Landauer R (1996) Need for critical assessment. IEEE Trans Electron Devices 43:1637Google Scholar
  11. 11.
    Wigington RL (1959) A new concept in computing. Proc IRE 47:516Google Scholar
  12. 12.
    Goto E (1959) The parametron, a digital computing element which utilizes parametric oscillation. IEEE Trans Proc IRE 47:1304Google Scholar
  13. 13.
    Reimann OA, Kosonocky WF (1965) Progress in optical computer research. IEEE Spectrum 2:181Google Scholar
  14. 14.
    Pei-li L, De-xui H, Xin-Liang Z, Guang-xi Z (2006) Ultrahigh-speed all-optical half adder on four-wave mixing in semiconductor optical amplifier. Opt Express 14:11840Google Scholar
  15. 15.
    Aviram A, Ratner M (1974) Molecular rectifiers. Chem Phys Lett 29:277Google Scholar
  16. 16.
    Rectifying characteristics of Mg[(C16H33Q3CNQ LB film)]Pt structures. J Chem Soc Chem Commun 1374Google Scholar
  17. 17.
    Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803Google Scholar
  18. 18.
    Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726Google Scholar
  19. 19.
    Binnig G, Rohrer H (2000) Scanning tunneling microscopy. IBM J Res Dev 44:279Google Scholar
  20. 20.
    Aviram A, Joachim C, Pomerantz M (1988) Evidence of switching and rectification by a single molecule effected by a scanning tunneling microscope. Chem Phys Lett 146:490Google Scholar
  21. 21.
    Aviram A, Joachim C, Pomerantz M (1989) Chem Phys Lett 162:416Google Scholar
  22. 22.
    Strikov DB, Snider GS, Stewart DR, Williams RS (2008) The missing Memristor found Nature 453:80Google Scholar
  23. 23.
    Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408:541Google Scholar
  24. 24.
    Cuevas JC (2010) Molecular electronics: an introduction to theory and experiment. World Scientific Series in Nanotechnology and Nanoscience. World Scientific, SingaporeGoogle Scholar
  25. 25.
    Aviram A (1988) Molecules for memory, logic, and amplification. J Am Chem Soc 110:5687Google Scholar
  26. 26.
    Carter FL (1984) The molecular device computer: point of departure for large scale cellular automata. Physica D 10:175Google Scholar
  27. 27.
    Ellenbogen JC, Love JC (2000) Architectures for molecular electronic computers. Proc IEEE 88:386Google Scholar
  28. 28.
    Duchemin I, Renaud N, Joachim C (2008) A intramolecular digital 1/2-adder. Chem Phys Lett 452:269Google Scholar
  29. 29.
    Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50:1998Google Scholar
  30. 30.
    Landauer R (1957) Spatial variation of currents and fields due to localized scatterers. IBM J Res Dev 1:223Google Scholar
  31. 31.
    Lippmann BA, Schwinger J (1950) Variation principle for scattering processes I. Phys Rev 79:469Google Scholar
  32. 32.
    Mujica V, Kemp M, Ratner MA (1994) Electron conduction in molecular wires. I. A scattering formalism. J Chem Phys 101:6849Google Scholar
  33. 33.
    Mujica V, Kemp M, Ratner M (1994) Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J Chem Phys 101:6856Google Scholar
  34. 34.
    Pendry JB, Pretre AB, Krutzen BCH (1991) Theory of the scanning tunneling microscope. J Phys Condens Matter 3:4313Google Scholar
  35. 35.
    Todorov TN, Briggs GAD, Sutton AP (1993) Elastic quantum transport through small structures. J Phys Condens Matter 5:2389Google Scholar
  36. 36.
    Nieminen JA, Niemi E, Rieder KH (2004) Interference between competing tunneling channels and chemical resolution of STM. Surf Sci Lett 552:L47Google Scholar
  37. 37.
    Samanta MP, Tian W, Datta S, Henderson JI, Kubiak CP (1996) Electronic conduction through organic molecules. Phys Rev B 53:R7626Google Scholar
  38. 38.
    Tian W, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiac CP (1998) Conductance spectra of molecular wires. J Chem Phys 109:2874Google Scholar
  39. 39.
    Heurich J, Cuevas JC, Wenze W, Schön G (2002) Electrical transport through single-molecule junctions: from molecular orbitals to conduction channels. Phys Rev Lett 88:256803Google Scholar
  40. 40.
    Cuevas JC, Heurich J, Pauly F, Wenzel W, Schön G (2003) Theoretical description of the electrical conduction in atomic and molecular junctions. Nanotechnology 14:R29Google Scholar
  41. 41.
    Nieminem J, Lahti S, Paavilainen S (2002) Contrast changes in STM images and relations between different tunneling models. Phys Rev B 66:165421Google Scholar
  42. 42.
    Cerda J, van Hove MA (1997) Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys Rev B 56:15885Google Scholar
  43. 43.
    Pickup BT, Fowler PW (2008) An analytical model for steady-state currents in conjugated systems. Chem Phys Lett 459:198Google Scholar
  44. 44.
    Ernzerhof M, Bahmann H, Goyer F, Zhuang M, Rocheleau P (2006) Electron transmission through aromatic molecules. J Chem Theor Comput 2:1291Google Scholar
  45. 45.
    Solomon GC, Andrews DQ, Hansen T, Goldsmith RH, Wasielezski MR, van Duyne RP, Ratner MA (2008) Understanding quantum interferences in coherent molecular conduction. J Chem Phys 129:054701Google Scholar
  46. 46.
    Yeganeh S, Ratner MA, Mujica V (2007) Dynamics of charge transfer: rate processes formulated with nonequilibrium Green’s function. J Chem Phys 126:161103Google Scholar
  47. 47.
    Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105:2677Google Scholar
  48. 48.
    Hansen T, Solomon GC, Andrews DQ, Ratner MA (2009) Interfering pathway in benzene: an analytical treatment. J Chem Phys 131:194704Google Scholar
  49. 49.
    Solomon GC, Hermann C, Hansen T, Mujica V, Ratner MA (2010) Exploring local currents in molecular junctions. Nat Chem 2:223Google Scholar
  50. 50.
    Bar-Joseph I, Gurvitz SA (1991) Time-dependent approach to resonant tunneling and inelastic scattering. Phys Rev B 44:3332Google Scholar
  51. 51.
    Ness H, Fisher AJ (1997) Nonperturbative evaluation of STM tunneling probability from ab initio calculations. Phys Rev B56:12469Google Scholar
  52. 52.
    Sanchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP, Todorov N (2006) Molecular conduction: does time-dependent simulation tell you more than the Landauer approach? J Chem Phys 124:214708Google Scholar
  53. 53.
    Subotnik JE, Hansen T, Ratner MA, Nitzan A (2009) Nonequilibrium steady-state transport via the reduced density-matrix operator. J Chem Phys 130:144105Google Scholar
  54. 54.
    Stratford K, Beeby JL (1993) A time-dependent approach to conductance in narrow channel. J Phys Condens Matter 5:L289Google Scholar
  55. 55.
    Doyen G (1993) Tunnel current and generalized Ehrenfest theorem. J Phys Condens Matter 5:3305Google Scholar
  56. 56.
    Joachim C, Ratner MA (2005) Molecular electronics: some views on transport junctions and beyond. Proc Natl Acad Sci USA 102:8801Google Scholar
  57. 57.
    Remacle F, Levine RD (2006) Electrical transport in saturated and conjugated molecular wires. Faraday Discuss 131:45Google Scholar
  58. 58.
    Maciejko J, Wang J, Guo H (2006) Time-dependent quantum transport far from equilibriam: an exact nonlinear response theory. Phys Rev B 74:085324Google Scholar
  59. 59.
    Sautet P, Joachim C (1988) Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Phys Rev B 38:12238Google Scholar
  60. 60.
    Ami S, Joachim C (2002) Intramolecular circuits connected to N electrodes using a scattering matrix approach. Phys Rev B 65:155419Google Scholar
  61. 61.
    English RA, Davison SG (1994) Transmission properties of molecular switches in semiconducting polymers. Phys Rev B 49:8718Google Scholar
  62. 62.
    Villagomez CJ, Zambelli T, Gauthier S, Gourdon A, Barthes C, Stojkovic S, Joachim C (2007) A local view on hyperconjugation. Chem Phys Lett 450:107Google Scholar
  63. 63.
    Villagomez CJ, Zambelli T, Gauthier S, Gourdon A, Stojkovic S, Joachim C (2009) STM images of a large organic molecule adsorbed on a bare metal substrate or on a thin insulating layer: visualization of HOMO and LUMO. Surf Sci 603:1526Google Scholar
  64. 64.
    Bellec A, Ample F, Riedel D, Dujardin G, Joachim C (2009) Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett 9:144Google Scholar
  65. 65.
    Fano U (1961) Effects of interaction configuration on intensities and phase shifts. Phys Rev 124:1866Google Scholar
  66. 66.
    Fano U, Rau ARP (1986) Atomic collisions and spectra. Academic, Orlando, FL, USA, p 57Google Scholar
  67. 67.
    Mies FH (1968) Configuration interaction theory. effects of overlapping resonances. Phys Rev 175:164Google Scholar
  68. 68.
    Durand P, Paidarová I, Gadéa FX (2001) Theory of Fano profiles. J Phys B 34:1953Google Scholar
  69. 69.
    Durand P, Paidarová I (2002) Theory of generalized Fano profiles. J Phys B 35:469Google Scholar
  70. 70.
    Gurvitz SA, Kalbermann G (1987) Decay width and the shift of a quasistationary state. Phys Rev Lett 59:262Google Scholar
  71. 71.
    Reuter MG, Hansen T, Seideman T, Ratner MA (2009) Molecular transport junction with semiconductor electrodes: analytical forms for one-dimensional self-energies J. Phys Chem A 113:4665Google Scholar
  72. 72.
    Renaud N, Joachim C (2008) Design and stability of NOR and NAND logic gates constructed with three quantum states. Phys Rev A 78:062316Google Scholar
  73. 73.
    Joachim C, Launay JP (1986) Bloch effective Hamiltonian for the possibility of molecular switching in the ruthenium-bipyridylbutadiene-ruthenium system. Chem Phys 109:93Google Scholar
  74. 74.
    Soe W, Manzano C, Renaud N, de Mandoza P, de Sakrar A, Ample F, Echavarren AM, Chandrasekhar N, Hliwa M, Joachim C (2011) Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5:1436Google Scholar
  75. 75.
    Bloch C (1958) Sur la Théorie des Perturbations des États Liés. Nucl Phys 6:329Google Scholar
  76. 76.
    Durand P (1983) Direct determination of effective Hamiltonians by wave-operator methods. I. General formalism. Phys Rev A 28:3184Google Scholar
  77. 77.
    Sautet P, Joachim C (1988) Electronic interferences produced by benzene embedded in a polyacetylene chain. Chem Phys Lett 153:511Google Scholar
  78. 78.
    Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2008) When things are not as they seem: quantum interference turns molecular electron transfer “rules” upside down. J Am Chem Soc 130:7788Google Scholar
  79. 79.
    Cacciolati O, Joachim C, Martinez JP, Carcenac F (2004) Fabrication of N-electrodes nanojunction for monomolecular electronic interconnects. Int J Nanosci 3:233Google Scholar
  80. 80.
    Galperin M, Ratner MA, Nitzan A (2007) Molecular transport junctions: vibrational effects. J Phys Condens Matter 19:103201Google Scholar
  81. 81.
    Fu Q, Luo Y, Yang J, Hou J (2010) Understanding the concept of randomness in inelastic electron tunneling excitations. Phys Chem Chem Phys 12:12012Google Scholar
  82. 82.
    Sergueev N, Demkov AA, Guo H (2007) Inelastic resonant tunneling in C60 molecular junction. Phys Rev B75:233418Google Scholar
  83. 83.
    Seideman T, Guo H (2003) Quantum transport and current-triggered dynamics in molecular junctions. J Theor Comput Chem 2:439Google Scholar
  84. 84.
    Solomon GC, Gagliardi A, Pecchia A, Frauenheim T, Di Carlo A, Reimers JR, Hush NS (2006) Understanding the inelastic-tunneling spectra of alkanedithiols on gold. J Chem Phys 124:094704Google Scholar
  85. 85.
    Galperin M, Ratner MA, Nitzan A, Troisi A (2008) Nuclear coupling and polarization in molecular transport junction: beyond tunneling to function. Science 319:1056Google Scholar
  86. 86.
    Wintterlin J, Schuster R, Ertl G (1996) Existence of a ‘hot’ atoms mechanism for the dissociation of O2 on Pt(111). Phys Rev Lett 77:123Google Scholar
  87. 87.
    Stipe BC, Rezaei MA, Ho W, Gao S, Persson M, Lundquist BI (1997) Single molecule dissociations by tunneling electrons. Phys Rev Lett 78:4410Google Scholar
  88. 88.
    Hahn JR, Lee HJ, Ho W (2000) Electronic resonance and symmetry in single-molecule inelastic electron tunneling. Phys Rev Lett 85:1914Google Scholar
  89. 89.
    Zambelli T, Barth JV, Wintterlin J (2002) Thermal dissociation of chemisorbed oxygen molecules on Ag(110): an investigation by scanning tunneling microscopy. J Phys Condens Matter 14:4241Google Scholar
  90. 90.
    Sloan PA, Palmer RE (2005) Two-electron dissociation of single molecules by atomic manipulation at room temperature. Nature 434:367Google Scholar
  91. 91.
    Pascual JI, Lorente N, Song Z, Conrad H, Rust HP (2003) Selectivity in vibrationally mediated single-molecule chemistry. Nature 423:525Google Scholar
  92. 92.
    Stipe BC, Rezaei MA, Ho W (1998) Inducing and viewing the rotational motion of a single molecule. Science 279:1907Google Scholar
  93. 93.
    Gimzewski JK, Joachim C (1999) Nanoscale science of single molecule using local probes. Science 283:1683Google Scholar
  94. 94.
    Manzano C, Soe WH, Wong HS, Ample F, Gourdon A, Chandrasekhar N, Joachim C (2009) Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat Mater 8:576Google Scholar
  95. 95.
    Schwarzer D, Kutne P, Schroder C, Troe J (2004) Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: ballistic energy transport through molecular chains. J Chem Phys 121:1754Google Scholar
  96. 96.
    Galperin M, Nitzan A, Ratner MA (2007) Heat conduction in molecular transport junction. Phys Rev B 75:155312Google Scholar
  97. 97.
    Joachim C (1987) Control of the quantum path-target state distance: bistable-like characteristic in a small tight-binding system. J Phys A 20:L1149Google Scholar
  98. 98.
    Joachim C (1987) Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter. Chem Phys 116:339Google Scholar
  99. 99.
    Landauer R (1989) Can we switch by control of quantum mechanical transmission? Phys Today 42:119Google Scholar
  100. 100.
    Ami S, Joachim C (2001) Logic gates and memory cells based on single C60 electromechanical transistor. Nanotechnology 12:44Google Scholar
  101. 101.
    Eigler D, Lutz CP, Rudge WE (1991) An atomic switch realized with the scanning tunneling microscope. Nature 352:600Google Scholar
  102. 102.
    Joachim C, Sautet P, Lagier P (1992) The tip apex structure of the Eigler atomic switch. EuroPhys Lett 20:697Google Scholar
  103. 103.
    Moresco F, Meyer G, Rieder KH, Tang H, Gourdon A, Joachim C (2001) Recording intramolecular mechanics during the manipulation of a large molecule. Phys Rev Lett 87:088302Google Scholar
  104. 104.
    Loppacher C, Guggisberg M, Pfeiffer O, Meyer E, Bammerlin M, Lüthi R, Gimzewski JK, Joachim C (2003) Direct determination of the energy required to operate a single molecule switch. Phys Rev Lett 90:066107Google Scholar
  105. 105.
    Lastapis M, Martin M, Riedel D, Hellner L, Comtet G, Dujardin G (2005) Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308:1000Google Scholar
  106. 106.
    Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub H (2002) Single-molecule optomechanical cycle. Science 296:1102Google Scholar
  107. 107.
    Sautet P, Joachim C (1989) The salicylideneaniline molecular switch revisited. Chem Phys 135:99Google Scholar
  108. 108.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios negative differential resistance in molecular electronic devices. Science 286:1550Google Scholar
  109. 109.
    Jlidat N, Hliwa M, Joachim C (2008) A semi-classical XOR logic gate integrated in a single molecule. Chem Phys Lett 451:270Google Scholar
  110. 110.
    Ami S, Hliwa M, Joachim C (2003) Molecular OR and AND logic gates integrated in a single molecule. Chem Phys Lett 367:662Google Scholar
  111. 111.
    Metzger RM (2008) Unimolecular electronics. J Mater Chem 18:4364Google Scholar
  112. 112.
    Sautet P, Joachim C (1992) Are electronic interference effects important for stm imaging of substrates and adsorbates? A theoretical analysis. Ultramicroscopy 42:115Google Scholar
  113. 113.
    Higelin D, Sixl H (1983) Spectroscopic studies of the photochromism on N-salicylideneaniline mixed crystals and glasses. Chem Phys 77:391Google Scholar
  114. 114.
    Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2009) Electron transport through conjugated molecules: when the ? system only tells part of the story. ChemPhysChem 10:257Google Scholar
  115. 115.
    Bauer R, Neuhauser D (2002) Phase coherent electronics: a molecular switch based on quantum interference. J Am Chem Soc 124:4200Google Scholar
  116. 116.
    Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR (2010) Controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J Am Chem Soc 132:15427Google Scholar
  117. 117.
    Liljeroth P, Repp J, Meyer G (2007) Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317:1203Google Scholar
  118. 118.
    Joachim C, Gimzewski JK, Tang H (1998) Physical principles of the single-C60 transistor effect. Phys Rev B 58:16407Google Scholar
  119. 119.
    Tour JM, Kozaki M, Seminario JM (1998) Molecular scale electronics: a synthetic/computational approach to digital computing. J Am Chem Soc 120:8486Google Scholar
  120. 120.
    Joachim C, Gimzewski JK (1997) Electromechanical amplifier using a single molecule. Chem Phys Lett 265:353Google Scholar
  121. 121.
    Joachim C, Gimzewski JK (1998) A nanoscale single-molecule amplifier and its consequences. Proc IEEE 86:184Google Scholar
  122. 122.
    Ami S, Hliwa M, Joachim C (2003) Balancing a four-branch-single-molecule nanoscale Wheatstone bridge. Nanotechnology 14:283Google Scholar
  123. 123.
    Ample F, Duchemin I, Hliwa M, Joachim C (2011) Single OR-molecule and OR atomic circuit logic gates interconnected on Si(100)H surface. J Phys Condens Matter 23:125303Google Scholar
  124. 124.
    Joachim C, Launay JP, Woitellier S (1990) Distance dependence of the effective coupling parameters through conjugated ligands of the polyene type. Chem Phys 147:131Google Scholar
  125. 125.
    Magoga M, Joachim C (1991) Conductance of molecular wires connected or bonded in parallel. Phys Rev B 59:16011Google Scholar
  126. 126.
    Sautet P, Joachim C (1991) Calculation of the benzene on rhodium STM image. Chem Phys Lett 185:23Google Scholar
  127. 127.
    Jlidat N, Hliwa M, Joachim C (2009) A molecule OR logic gate with no molecular rectifier. Chem Phys Lett 470:275Google Scholar
  128. 128.
    Terman FE, Pettit JM (1952) Electronic measurements, 2nd edn. Radio Engineers Handbook, McGraw-Hill, LondonGoogle Scholar
  129. 129.
    Arden W, Brillouët M, Cogez P, Graef M, Huizing B and Mahnkopf R (2009) More-than-Moore, ITRS white paper.Google Scholar
  130. 130.
    Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as continuous function of its length. Science 323:1193Google Scholar
  131. 131.
    Renaud N, Ratner MA, Joachim C (2011) A time-dependent approach to electronic transmission in model molecular junctions. J Phys Chem B. Scholar
  132. 132.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183Google Scholar
  133. 133.
    Wu J, Pisula W, Mullen K (2007) Graphene molecules as potential material for electronics. Chem Rev 107:718Google Scholar
  134. 134.
    Li X, Wang X, Shang L, Lee S, Dai H (2008) Chemical derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229Google Scholar
  135. 135.
    Dayen JF, Mahmood A, Golubev DS, Roch-Jeune I, Salles P, Dujardin E (2008) Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons. Small 4:716Google Scholar
  136. 136.
    Park JG, Zhang C, Liang R, Wang B (2007) Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes. Nanotechnology 18:405306Google Scholar
  137. 137.
    Ewels CP, Heggie MI, Briddon PR (2002) Adatoms and nanoengineering of carbon. Chem Phys Lett 351:178Google Scholar
  138. 138.
    Frederick JH, Fujiwara Y, Penn JH, Yoshihara K, Petek H (1991) Models for stilbene photoisomerisation: experimental and theoretical studies of the excited-states dynamics of 1,2-diphenylcycloalkenes. J Phys Chem 95:2845Google Scholar
  139. 139.
    Laarhoven WH (1984) Aspects of the photochemistry of aryl ethylenes. Pure Appl Chem 56:1225Google Scholar
  140. 140.
    Irie M (2000) Photochromism: memories and switches - introduction. Chem Rev 100:1685Google Scholar
  141. 141.
    Mayne AJ, Riedel D, Comtet G, Dujardin G (2006) Atomic-scale studies of hydrogenated semiconductor surfaces. Prog Surf Sci 81:1Google Scholar
  142. 142.
    Bellec A, Riedel D, Dujardin G (2008) Dihydride dimer structures on the Si(100):H surface studied by low-temperature scanning tunneling microscopy. Phys Rev B 78:165302Google Scholar
  143. 143.
    Riedel D, Cranney M, Martin M, Guillory R, Dujardin G, Dubois M, Sautet P (2009) Surface-isomerization dynamics of trans-stilbene molecule adsorbed on Si(100)-2x1. J Am Chem Soc 131:5414Google Scholar
  144. 144.
    Soe W, Manzano C, Renaud N, de Mandoza P, de Sakrar A, Ample F, Echavarren AM, Chandrasekhar N, Hliwa M, Joachim C (2011) Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev B 83:155443Google Scholar
  145. 145.
    Stojkovic S, Joachim C, Grill L, Moresco F (2005) The contact conductance on a molecular wire. Chem Phys Lett 408:134Google Scholar
  146. 146.
    Renaud N, Joachim C (2011) Classical Boolean logic gates with quantum systems. J Phys A 44:155302Google Scholar
  147. 147.
    Duchemin I, Renaud N, Joachim C (2005) A quantum digital half-adder inside a single molecule. Chem Phys Lett 406:167Google Scholar
  148. 148.
    Renaud N, Ito M, Shangguan W, Saeys N, Hliwa M, Joachim C (2009) A NOR-AND quantum running gate molecule. Chem Phys Lett 472:74Google Scholar
  149. 149.
    Kawai H, Yeo YK, Saeys M, Joachim C (2010) Conductance decay of a surface hydrogen tunneling junction fabricated along a Si(001)-(2x1)-H atomic wire. Phys Rev B 81:195316Google Scholar
  150. 150.
    Joachim C, Martrou D, Rezeq M, Troadec C, Jie D, Chandrasekhar N, Gauthier S (2010) Multiple atomic-scale solid surface interconnects for atom circuits and molecule logic gates. J Phys Condens Matter 22:084025Google Scholar
  151. 151.
    Lwin MHT, Tun TN, Kim HH, Kajen RS, Chandrasekhar N, Joachim C (2010) Silicon on insulator nanoscale backside interconnects for atomic and molecular scale circuits. J Vac Sci Tech B 28:978Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA
  2. 2.Nanoscience Group and MANA Satellite, CEMES/CNRSToulouse CedexFrance
  3. 3.Faculty of SciencesBen M’Sik University Hassan II-MohammediaCasablancaMorocco

Personalised recommendations