Skip to main content

Automated Projection Spectroscopy and Its Applications

  • Chapter
  • First Online:
Novel Sampling Approaches in Higher Dimensional NMR

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 316))

Abstract

This chapter presents the NMR technique APSY (automated projection spectroscopy) and its applications for sequence-specific resonance assignments of proteins. The result of an APSY experiment is a list of chemical shift correlations for an N-dimensional NMR spectrum (N≥3). This list is obtained in a fully automated way by the dedicated algorithm GAPRO (geometric analysis of projections) from a geometric analysis of experimentally recorded, low-dimensional projections. Because the positions of corresponding peaks in multiple projections are correlated, thermal noise and other uncorrelated artifacts are efficiently suppressed. We describe the theoretical background of the APSY method and discuss technical aspects that guide its optimal use. Further, applications of APSY-NMR spectroscopy for fully automated sequence-specific backbone and side chain assignments of proteins are described. We discuss the choice of suitable experiments for this purpose and show several examples. APSY is of particular interest for the assignment of soluble unfolded proteins, which is a time-consuming task by conventional means. With this class of proteins, APSY-NMR experiments with up to seven dimensions have been recorded. Sequence-specific assignments of protein side chains in turn are obtained from a 5D TOCSY-APSY-NMR experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D (2D, 3D, 4D, 5D, 6D, 7D):

One- (two-, three-, four-, five-, six-, seven-) dimensional

ALASCA:

Algorithm for local and linear assignment of side chains from APSY data

APSY:

Automated projection spectroscopy

GAPRO:

Geometric analysis of projections

NMR:

Nuclear magnetic resonance

TOCSY:

Total correlation spectroscopy

References

  1. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  2. Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26:131–138

    Article  CAS  Google Scholar 

  3. Kay LE, Gardner KH (1997) Solution NMR spectroscopy beyond 25 kDa. Curr Opin Struct Biol 7:722–731

    Article  CAS  Google Scholar 

  4. Wüthrich K (2003) NMR studies of structure and function of biological macromolecules (Nobel lecture). Angew Chem Int Ed 42:3340–3363

    Article  Google Scholar 

  5. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  6. Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014

    Article  CAS  Google Scholar 

  7. Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  CAS  Google Scholar 

  8. Kozminski W, Zhukov I (2003) Multiple quadrature detection in reduced-dimensionality experiments. J Biomol NMR 26:157–166

    Article  CAS  Google Scholar 

  9. Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  CAS  Google Scholar 

  10. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308

    Article  CAS  Google Scholar 

  11. Brutscher B, Morelle N, Cordier F, Marion D (1995) Determination of an initial set of NOE-derived distance constraints for the structure determination of 15N/13C-labeled proteins. J Magn Reson B 109:238–242

    Article  CAS  Google Scholar 

  12. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  CAS  Google Scholar 

  13. Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  CAS  Google Scholar 

  14. Kupce E, Freeman R (2003) Reconstruction of the three-dimensional NMR spectrum of a protein from a set of plane projections. J Biomol NMR 27:383–387

    Article  CAS  Google Scholar 

  15. Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  CAS  Google Scholar 

  16. Kupce E, Freeman R (2004) Fast reconstruction of four-dimensional NMR spectra from plane projections. J Biomol NMR 28:391–395

    Article  CAS  Google Scholar 

  17. Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9:198–217

    Article  Google Scholar 

  18. Nagayama K, Bachmann P, Wüthrich K, Ernst RR (1978) The use of cross-sections and of projections in two-dimensional NMR spectroscopy. J Magn Reson 31:133–148

    CAS  Google Scholar 

  19. Mersereau RM, Oppenheim AV (1974) Digital reconstruction of multidimensional signals from their projections. Proc IEEE 62:1319–1338

    Article  Google Scholar 

  20. Lauterbur PC (1973) Image formation by induced local interactions − examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  21. Moseley HNB, Riaz N, Aramini JM, Szyperski T, Montelione GT (2004) A generalized approach to automated NMR peak list editing: application to reduced-dimensionality triple resonance spectra. J Magn Reson 170:263–277

    Article  CAS  Google Scholar 

  22. Freeman R, Kupce E (2004) Distant echoes of the accordion: Reduced dimensionality, GFT-NMR, and projection-reconstruction of multidimensional spectra. Concepts Magn Reson A 23:63–75

    Article  Google Scholar 

  23. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Article  CAS  Google Scholar 

  24. Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  CAS  Google Scholar 

  25. Malmodin D, Billeter M (2005) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487

    Article  CAS  Google Scholar 

  26. Kupce E, Freeman R (2006) Hyperdimensional NMR spectroscopy. J Am Chem Soc 128:6020–6021

    Article  CAS  Google Scholar 

  27. Szyperski T, Atreya HS (2006) Principles and applications of GFT projection NMR spectroscopy. Magn Reson Chem 44:S51–S60

    Article  CAS  Google Scholar 

  28. Coggins BE, Zhou P (2006) PR-CALC: a program for the reconstruction of NMR spectra from projections. J Biomol NMR 34:179–195

    Article  CAS  Google Scholar 

  29. Lescop E, Brutscher B (2007) Hyperdimensional protein NMR spectroscopy in peptide-sequence space. J Am Chem Soc 129:11916–11917

    Article  CAS  Google Scholar 

  30. Cornilescu G, Bahrami A, Tonelli M, Markley JL, Eghbalnia HR (2007) HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections. J Biomol NMR 38:341–351

    Article  CAS  Google Scholar 

  31. Mishkovsky M, Kupce E, Frydman L (2007) Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy. J Chem Phys 127:034507

    Article  Google Scholar 

  32. Zhang Q, Atreya HS, Kamen DE, Girvin ME, Szyperski T (2008) GFT projection NMR based resonance assignment of membrane proteins: application to subunit C of E. coli F1F0 ATP synthase in LPPG micelles. J Biomol NMR 40:157–163

    Article  CAS  Google Scholar 

  33. Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. J Am Chem Soc 130:3927–3936

    Article  CAS  Google Scholar 

  34. Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J Magn Reson 135:288–297

    Article  CAS  Google Scholar 

  35. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR 24:171–189

    Article  CAS  Google Scholar 

  36. Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3555

    Article  CAS  Google Scholar 

  37. Xia YL, Zhu G, Veeraraghavan S, Gao XL (2004) (3,2)D GFT-NMR experiments for fast data collection from proteins. J Biomol NMR 29:467–476

    Article  CAS  Google Scholar 

  38. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881

    Article  CAS  Google Scholar 

  39. Seavey BR, Farr EA, Westler WM, Markley JL (1991) A relational database for sequence-specific protein NMR data. J Biomol NMR 1:217–236

    Article  CAS  Google Scholar 

  40. Hiller S, Wider G, Wüthrich K (2008) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42:179–195

    Article  CAS  Google Scholar 

  41. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  42. Wider G (1998) Technical aspects of NMR spectroscopy with biological macromolecules and studies of hydration in solution. Prog Nucl Magn Reson Spectrosc 32:193–275

    Article  CAS  Google Scholar 

  43. Etezady-Esfarjani T, Peti W, Wüthrich K (2003) NMR assignment of the conserved hypothetical protein TM1290 of Thermotoga maritima. J Biomol NMR 25:167–168

    Article  CAS  Google Scholar 

  44. Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128:2571–2576

    Article  CAS  Google Scholar 

  45. Richarz R, Wüthrich K (1978) 13C NMR chemical shifts of common amino acid residues measured in aqueous solutions of linear tetrapeptides H−Gly−Gly−X−L-Ala−OH. Biopolymers 17:2133–2141

    Article  CAS  Google Scholar 

  46. Oh BH, Westler WM, Darba P, Markley JL (1988) Protein 13C spin systems by a single two-dimensional NMR experiment. Science 240:908–911

    Article  CAS  Google Scholar 

  47. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    CAS  Google Scholar 

  48. Güntert P, Salzmann M, Braun D, Wüthrich K (2000) Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. J Biomol NMR 18:129–137

    Article  Google Scholar 

  49. Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT − a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  CAS  Google Scholar 

  50. Fiorito F, Hiller S, Wider G, Wüthrich K (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR 35:27–37

    Article  CAS  Google Scholar 

  51. Gossert AD, Hiller S, Fernández C (2011) Automated NMR resonance assignment of large proteins for protein–ligand interaction studies. J Am Chem Soc 133:210–213

    Article  CAS  Google Scholar 

  52. Anfinsen CB (1973) Principles that govern folding of protein chains. Science 181:223–230

    Article  CAS  Google Scholar 

  53. Shortle D (1993) Denatured states of proteins and their roles in folding and stability. Curr Opin Struct Biol 3:66–74

    Article  CAS  Google Scholar 

  54. Plaxco KW, Gross M (1997) Cell biology – the importance of being unfolded. Nature 386:657–659

    Article  CAS  Google Scholar 

  55. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CR, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang CH, Kissinger CR, Bailey RW, Griswold MD, Chiu M, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  Google Scholar 

  56. Daggett V, Fersht AR (2003) Is there a unifying mechanism for protein folding? Trends Biochem Sci 28:18–25

    Article  CAS  Google Scholar 

  57. Mayor U, Guydosh NR, Johnson CM, Grossmann JG, Sato S, Jas GS, Freund SMV, Alonso DOV, Daggett V, Fersht AR (2003) The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421:863–867

    Article  CAS  Google Scholar 

  58. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  Google Scholar 

  59. Lindorff-Larsen K, Rogen P, Paci E, Vendruscolo M, Dobson CM (2005) Protein folding and the organization of the protein topology universe. Trends Biochem Sci 30:13–19

    Article  CAS  Google Scholar 

  60. Wüthrich K (1994) NMR assignments as a basis for structural characterization of denatured states of globular proteins. Curr Opin Struct Biol 4:93–99

    Article  Google Scholar 

  61. Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36:8977–8991

    Article  CAS  Google Scholar 

  62. Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–270

    Article  CAS  Google Scholar 

  63. Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828

    Article  CAS  Google Scholar 

  64. Morris GA, Freeman R (1979) Enhancement of NMR signals by polarization transfer. J Am Chem Soc 101:760–762

    Article  CAS  Google Scholar 

  65. Hiller S, Joss R, Wider G (2008) Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). J Am Chem Soc 130:12073–12079

    Article  CAS  Google Scholar 

  66. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  67. Emsley L, Bodenhausen G (1990) Gaussian pulse cascades – new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165:469–476

    Article  CAS  Google Scholar 

  68. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  CAS  Google Scholar 

  69. Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators − application to spin decoupling. J Magn Reson 77:274–293

    Google Scholar 

  70. Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling − WALTZ-16. J Magn Reson 52:335–338

    CAS  Google Scholar 

  71. Tafer H, Hiller S, Hilty C, Fernández C, Wüthrich K (2004) Nonrandom structure in the urea-unfolded Escherichia coli outer membrane protein X (OmpX). Biochemistry 43:860–869

    Article  CAS  Google Scholar 

  72. Braun D, Wider G, Wüthrich K (1994) Sequence-corrected 15N random coil chemical shifts. J Am Chem Soc 116:8466–8469

    Article  CAS  Google Scholar 

  73. Narayanan RL, Dürr UHN, Bibow S, Biernat J, Mandelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441-residues. J Am Chem Soc 132:11906–11907

    Article  CAS  Google Scholar 

  74. Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically enriched proteins. J Am Chem Soc 114:10974–10975

    Article  CAS  Google Scholar 

  75. Logan TM, Olejniczak ET, Xu RX, Fesik SW (1992) Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314:413–418

    Article  CAS  Google Scholar 

  76. Grzesiek S, Anglister J, Bax A (1993) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson B 101:114–119

    Article  CAS  Google Scholar 

  77. Jiang L, Coggins BE, Zhou P (2005) Rapid assignment of protein side chain resonances using projection-reconstruction of (4,3)D HC(CCO)NH and intra-HC(C)NH experiments. J Magn Reson 175:170–176

    Article  CAS  Google Scholar 

  78. Sun ZY, Hyberts SG, Rovnyak D, Park S, Stern AS, Hoch JC, Wagner G (2005) High-resolution aliphatic side-chain assignments in 3D HCcoNH experiments with joint H-C evolution and non-uniform sampling. J Biomol NMR 32:55–60

    Article  CAS  Google Scholar 

  79. Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing − application to proton correlation spectroscopy. J Magn Reson 53:521–528

    CAS  Google Scholar 

  80. Clore GM, Bax A, Driscoll PC, Wingfield PT, Gronenborn AM (1990) Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry 29:8172–8184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Swiss National Science Foundation, the ETH Zürich, the NCCR Structural Biology, and the Biozentrum Basel is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hiller, S., Wider, G. (2011). Automated Projection Spectroscopy and Its Applications. In: Billeter, M., Orekhov, V. (eds) Novel Sampling Approaches in Higher Dimensional NMR. Topics in Current Chemistry, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_189

Download citation

Publish with us

Policies and ethics