Skip to main content

Generalized Fourier Transform for Non-Uniform Sampled Data

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 316))

Abstract

Fourier transform can be effectively used for processing of sparsely sampled multidimensional data sets. It provides the possibility to acquire NMR spectra of ultra-high dimensionality and/or resolution which allow easy resonance assignment and precise determination of spectral parameters, e.g., coupling constants. In this chapter, the development and applications of non-uniform Fourier transform is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ernst RR, Anderson WA (1966) Rev Sci Instrum 37:93

    Article  CAS  Google Scholar 

  2. Jeener J (1971) Basko Polje, Yugoslavia

    Google Scholar 

  3. Aue WP, Bartholdi E, Ernst RR (1976) J Chem Phys 64:2229

    Article  CAS  Google Scholar 

  4. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  5. Montelione GT, Wagner G (1989) J Am Chem Soc 111:5474

    Article  CAS  Google Scholar 

  6. Ikura M, Kay LE, Bax A (1990) Biochemistry 29:4659

    Article  CAS  Google Scholar 

  7. Bax A, Grzesiek S (1993) Acc Chem Res 26:131

    Article  CAS  Google Scholar 

  8. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) J Am Chem Soc 116:11655

    Article  CAS  Google Scholar 

  9. Sattler M, Schleucher J, Griesinger C (1999) Prog Nucl Magn Reson Spectrosc 34:93

    Article  CAS  Google Scholar 

  10. Moskau D (2002) Concepts Magn Reson 15:164

    Article  Google Scholar 

  11. Szantay C (2008) Concepts Magn Reson Part A 32A:373

    Article  Google Scholar 

  12. Schanda P, Kupče Ē, Brutscher B (2005) J Biomol NMR 33:199

    Article  CAS  Google Scholar 

  13. Schanda P, Van Melckebeke H, Brutscher B (2006) J Am Chem Soc 128:9042

    Article  CAS  Google Scholar 

  14. Lescop E, Schanda P, Brutscher B (2007) J Magn Reson 187:163

    Article  CAS  Google Scholar 

  15. Frydman L, Scherf T, Lupulescu A (2002) Proc Natl Acad Sci USA 99:15858

    Article  CAS  Google Scholar 

  16. Mishkovsky M, Frydman L (2008) Chemphyschem 9:2340

    Article  CAS  Google Scholar 

  17. Mishkovsky M, Kupče Ē, Frydman L (2007) J Chem Phys 127:034507

    Article  Google Scholar 

  18. Gal M, Frydman L (2010) J Magn Reson 203:311

    Article  CAS  Google Scholar 

  19. Mishkovsky M, Frydman L (2009) Annu Rev Phys Chem 60:429

    Article  CAS  Google Scholar 

  20. Tal A, Frydman L (2010) Prog Nucl Magn Reson Spectrosc 57:241

    Article  CAS  Google Scholar 

  21. Led JJ, Gesmar H (2010) In: Morris GA, Emsley JW (eds) Multidimensional NMR methods for the solution state. Wiley, Chichester, p 131

    Google Scholar 

  22. Armstrong GS, Cano KE, Mandelshtam VA, Shaka AJ, Bendiak B (2004) J Magn Reson 170:156

    Article  CAS  Google Scholar 

  23. Armstrong GS, Mandelshtam VA, Shaka AJ, Bendiak B (2005) J Magn Reson 173:160

    Article  CAS  Google Scholar 

  24. Meng X, Nguyen BD, Ridge C, Shaka AJ (2009) J Magn Reson 196:12

    Article  CAS  Google Scholar 

  25. Brüschweiler R (2004) J Chem Phys 121:409

    Article  Google Scholar 

  26. Brüschweiler R, Zhang FL (2004) J Chem Phys 120:5253

    Article  Google Scholar 

  27. Snyder DA, Bruschweiler R (2009) J Phys Chem A 113:12898

    Article  CAS  Google Scholar 

  28. Snyder DA, Xu Y, Yang D, Bruschweiler R (2007) J Am Chem Soc 129:14126

    Article  CAS  Google Scholar 

  29. Trbovic N, Smirnov S, Zhang F, Bruschweiler R (2004) J Magn Reson 171:277

    Article  CAS  Google Scholar 

  30. Zhang FL, Bruschweiler R (2004) J Am Chem Soc 126:13180

    Article  CAS  Google Scholar 

  31. Robin M, Delsuc M-A, Guittet E, Lallemand J-Y (1991) J Magn Reson 92:645

    CAS  Google Scholar 

  32. Jeannerat D (2007) J Magn Reson 186:112

    Article  CAS  Google Scholar 

  33. Coggins BE, Venters RA, Zhou P (2010) Prog Nucl Magn Reson Spectrosc 57:381

    Article  CAS  Google Scholar 

  34. Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Prog Nucl Magn Reson Spectrosc 57:420

    Article  CAS  Google Scholar 

  35. Kim S, Szyperski T (2003) J Am Chem Soc 125:1385

    Article  CAS  Google Scholar 

  36. Ding KY, Gronenborn AM (2002) J Magn Reson 156:262

    Article  CAS  Google Scholar 

  37. Koźmiński W, Zhukov I (2003) J Biomol NMR 26:157

    Article  Google Scholar 

  38. Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Proc Natl Acad Sci USA 102:10876

    Article  CAS  Google Scholar 

  39. Malmodin D, Billeter M (2005) J Magn Reson 176:47

    Article  CAS  Google Scholar 

  40. Kupče Ē, Freeman R (2005) J Magn Reson 173:317

    Article  Google Scholar 

  41. Kupče Ē, Freeman R (2003) J Am Chem Soc 125:13958

    Article  Google Scholar 

  42. Kupče Ē, Freeman R (2004) Concepts Magn Reson Part A 22A:4

    Article  Google Scholar 

  43. Kupče Ē, Freeman R (2004) J Biomol NMR 28:391

    Article  Google Scholar 

  44. Kazimierczuk K, Koźmiński W, Zhukov I (2006) J Magn Reson 179:323

    Article  CAS  Google Scholar 

  45. Kazimierczuk K, Zawadzka A, Koźmiński W (2009) J Magn Reson 197:219

    Article  CAS  Google Scholar 

  46. Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2006) J Biomol NMR 36:157

    Article  CAS  Google Scholar 

  47. Laue ED, Skilling J, Staunton J, Sibisi S, Brereton RG (1985) J Magn Reson 62:437

    CAS  Google Scholar 

  48. Hoch JC, Stern AS (1996) NMR data processing. Wiley-Interscience, New York

    Google Scholar 

  49. Mobli M, Hoch JC (2008) Concepts Magn Reson Part A 32A:436

    Article  CAS  Google Scholar 

  50. Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) J Biomol NMR 33:1

    Article  CAS  Google Scholar 

  51. Jaravine V, Ibraghimov I, Orekhov VY (2006) Nat Meth 3:605

    Article  CAS  Google Scholar 

  52. Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) J Am Chem Soc 130:3927

    Article  CAS  Google Scholar 

  53. Szantay C (2008) Concepts Magn Reson Part A 32A:1

    Article  CAS  Google Scholar 

  54. Nyquist H (2002) Proc IEEE 90:280

    Article  Google Scholar 

  55. Marion D (2006) J Biomol NMR 36:45

    Article  CAS  Google Scholar 

  56. Coggins BE, Zhou P (2006) J Magn Reson 182:84

    Article  CAS  Google Scholar 

  57. Szyperski T, Yeh DC, Sukumaran DK, Moseley HN, Montelione GT (2002) Proc Natl Acad Sci USA 99:8009

    Article  CAS  Google Scholar 

  58. Malmodin D, Billeter M (2006) Magn Reson Chem 44:185

    Article  Google Scholar 

  59. Coggins BE, Zhou P (2007) J Magn Reson 184:207

    Article  CAS  Google Scholar 

  60. Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2007) J Magn Reson 188:344

    Article  CAS  Google Scholar 

  61. Kazimierczuk K, Zawadzka A, Koźmiński W (2008) J Magn Reson 192:123

    Article  CAS  Google Scholar 

  62. Hyberts SG, Takeuchi K, Wagner G (2010) J Am Chem Soc 132:2145

    Article  CAS  Google Scholar 

  63. Tarczynski A, Allay N (2003) 7th world multiconference on systemics, Cybernetics and Informatics, Proceedings, Vol IV, p 344

    Google Scholar 

  64. Pannetier N, Houben K, Blanchard L, Marion D (2007) J Magn Reson 186:142

    Article  CAS  Google Scholar 

  65. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge/New York

    Google Scholar 

  66. Davis PJ, Rabinowitz P (1984) Methods of numerical integration. Academic, New York

    Google Scholar 

  67. Barthold E, Ernst RR (1973) J Magn Reson 11:9

    Google Scholar 

  68. Hoch JC, Stern AS, Wagner G (1995) J Cell Biochem, Suppl. 21B: 76

    Google Scholar 

  69. Matsuki Y, Eddy MT, Herzfeld J (2009) J Am Chem Soc 131:4648

    Article  CAS  Google Scholar 

  70. Donoho DL (2006) Commun Pure Appl Math 59:797

    Article  Google Scholar 

  71. Lustig M, Donoho D, Pauly JM (2007) Magn Reson Med 58:1182

    Article  Google Scholar 

  72. Lustig M, Donoho DL, Santos JM, Pauly JM (2008) IEEE Signal Process Mag 25:72

    Article  Google Scholar 

  73. Drori I (2007) Eurasip J Adv Signal Process doi:10.1155/2007/20248

    Google Scholar 

  74. Shrot Y, Frydman L (2011) J Magn Reson 209:352

    Google Scholar 

  75. Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) J Biomol NMR 45:283

    Article  CAS  Google Scholar 

  76. Stern AS, Donoho DL, Hoch JC (2007) J Magn Reson 188:295

    Article  CAS  Google Scholar 

  77. Marion D (2005) J Biomol NMR 32:141

    Article  CAS  Google Scholar 

  78. Jiang B, Jiang X, Xiao N, Zhang X, Jiang L, Mao XA, Liu M (2010) J Magn Reson 204:165

    Article  CAS  Google Scholar 

  79. Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2008) J Am Chem Soc 130:5404

    Article  CAS  Google Scholar 

  80. Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010) J Magn Reson 205:286

    Article  CAS  Google Scholar 

  81. Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) J Magn Reson 202:109

    Article  CAS  Google Scholar 

  82. Coggins BE, Venters RA, Zhou P (2004) J Am Chem Soc 126:1000

    Article  CAS  Google Scholar 

  83. Coggins BE, Zhou P (2008) J Biomol NMR 42:225

    Article  CAS  Google Scholar 

  84. Werner-Allen JW, Coggins BE, Zhou P (2010) J Magn Reson 204:173

    Article  CAS  Google Scholar 

  85. Stanek J, Koźmiński W (2010) J Biomol NMR 47:65

    Article  CAS  Google Scholar 

  86. Högbom JA (1974) Astron Astrophys Suppl Ser 15:417

    Google Scholar 

  87. Keeler J (1984) J Magn Reson 56:463

    CAS  Google Scholar 

  88. Shaka AJ, Keeler J, Freeman R (1984) J Magn Reson 56:294

    CAS  Google Scholar 

  89. Barna JCJ, Tan SM, Laue ED (1988) J Magn Reson 78:327

    CAS  Google Scholar 

  90. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) J Magn Reson 73:69

    CAS  Google Scholar 

  91. Davies SJ, Bauer C, Hore PJ, Freeman R (1988) J Magn Reson 76:476

    CAS  Google Scholar 

  92. Motáčková V, Nováček J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Žídek L, Šanderová H, Krásný L, Koźmiński W, Sklenář V (2010) J Biomol NMR 48:169

    Article  Google Scholar 

  93. Eberstadt M, Gemmecker G, Mierke DF, Kessler H (1995) Angew Chem Int Ed Engl 34:1671

    Article  CAS  Google Scholar 

  94. Griesinger C, Sorensen OW, Ernst RR (1985) J Am Chem Soc 107:6394

    Article  CAS  Google Scholar 

  95. Misiak M, Koźmiński W (2007) Magn Reson Chem 45:171

    Article  CAS  Google Scholar 

  96. Misiak M, Koźmiński W, Kwasiborska M, Wójcik J, Ciepichal E, Swiezewska E (2009) Magn Reson Chem 47:825

    Article  CAS  Google Scholar 

  97. Meier S, Benie AJ, Duus JO, Sorensen OW (2009) J Magn Reson 200:340

    Article  CAS  Google Scholar 

  98. Meier S, Petersen BO, Duus JO, Sorensen OW (2009) Carbohydr Res 344:2274

    Article  CAS  Google Scholar 

  99. Findeisen M, Bermel W, Berger S (2006) Magn Reson Chem 44:455

    Article  CAS  Google Scholar 

  100. Misiak M, Koźmiński W (2009) Magn Reson Chem 47:205

    Article  CAS  Google Scholar 

  101. Ludwig C, Marin-Montesinos I, Saunders MG, Gunther UL (2010) J Am Chem Soc 132:2508

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the EC contract EAST-NMR no 228461. Bio-NMR project under the seventh Framework Programme of the EC grant agreement 261863 for conducting the research is gratefully acknowledged. A.Z.-K. thanks the Foundation for Polish Science for supporting her with the MPD Programme that was co-financed by the EU European Regional Development Fund. K.K. thanks the Foundation for Polish Science for supporting him with the KOLUMB scholarship. M.M. and W.K. acknowledge the Ministry of Science and Higher Education of Poland for the grant N204 137937 for the years 2009–2010. We are grateful to V. Motáčková, J. Nováček, L. Žídek, H. Šanderová, L. Krásný, and V. Sklenář for providing Fig. 18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiktor Koźmiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kazimierczuk, K., Misiak, M., Stanek, J., Zawadzka-Kazimierczuk, A., Koźmiński, W. (2011). Generalized Fourier Transform for Non-Uniform Sampled Data. In: Billeter, M., Orekhov, V. (eds) Novel Sampling Approaches in Higher Dimensional NMR. Topics in Current Chemistry, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_186

Download citation

Publish with us

Policies and ethics