Skip to main content

Unimolecular Electronic Devices

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 313))

Abstract

The first active electronic components used vacuum tubes with appropriately-shaped electrodes, then junctions of appropriately-doped Ge, Si, or GaAs semiconductors. Electronic components can now be made with appropriately-designed organic molecules. As the commercial drive to make ever-smaller and faster circuits approaches the 3-nm limit, these unimolecular organic devices may become more useful than doped semiconductors. Here we discuss the electrical contacts between metallic electrodes and organic molecular components, and survey representative organic wires composed of conducting groups and organic rectifiers composed of electron-donor and -acceptor groups, and the Aviram-Ratner proposal for unimolecular rectification. Molecular capacitors and amplifiers are discussed briefly. Molecular electronic devices are not only ultimately small (<3 nm in all directions) and fast, but their excited states may be able to decay by photons, avoiding the enormous heat dissipation endured by Si-based components that decay by phonons. An all-organic computer is an ultimate, but more distant, goal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Metzger RM (1991) Prospects for truly unimolecular devices. In: Metzger RM, Day P, Papavassiliou GC (eds) Lower-dimensional systems and molecular electronics. NATO ASI Series B248. Plenum press, New York, pp 659–666

    Google Scholar 

  2. Tour JM, Kozaki M, Seminario JM (1998) Molecular-scale electronics: a synthetic/computational approach to digital computing. J Am Chem Soc 120:8486–8493

    CAS  Google Scholar 

  3. Ferraris J, Cowan DO, Walatka V Jr, Perlstein JH (1973) Electron transfer in a new highly conducting donor acceptor complex. J Am Chem Soc 95:948–949

    CAS  Google Scholar 

  4. Cowan DO, Fortkort JA, Metzger RM (1991) Design constraints for organic metals and superconductors. In: Metzger RM, Day P, Papavassiliou GC (eds) Lower-dimensional systems and molecular electronics. NATO ASI Ser, vol B248. Plenum Press, New York, pp 1–22

    Google Scholar 

  5. Jérôme D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic organic conductor, (TMTSF)2PF6. J Phys Lett 41:L95–L97

    Google Scholar 

  6. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580

    Google Scholar 

  7. Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101, erratum (1978) Phys Rev Lett 40:1472

    CAS  Google Scholar 

  8. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611

    CAS  Google Scholar 

  9. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40:2581–2590

    CAS  Google Scholar 

  10. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40:2574–2580

    Google Scholar 

  11. Metzger RM (2008) Unimolecular electronics. J Mater Chem 18:4364–4396

    CAS  Google Scholar 

  12. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834

    CAS  Google Scholar 

  13. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114

    Google Scholar 

  14. ITRS-2007, “International Technology Roadmap for Semiconductors” (2007) version (http://www.itrs.net/reports) section on emerging research materials (sub-22 nm)

  15. Hoffmann G, Libioulle L, Berndt R (2002) Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution. Phys Rev B 65:212107

    Google Scholar 

  16. Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–2022

    CAS  Google Scholar 

  17. Blodgett KB, Langmuir I (1937) Built-up films of barium stearate and optical properties. Phys Rev 51:964–982

    CAS  Google Scholar 

  18. Langmuir I, Schaefer VJ (1938) Activities of urease and pepsin monolayers. J Am Chem Soc 60:1351–1360

    CAS  Google Scholar 

  19. Metzger RM, Baldwin JW, Shumate WJ, Peterson IR, Mani P, Mankey GJ, Morris T, Szulczewski G, Bosi S, Prato M, Comito A, Rubin Y (2003) Large current asymmetries and potential device properties of a Langmuir-Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B107:1021–1027

    Google Scholar 

  20. Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF (2004) Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4:133–136

    CAS  Google Scholar 

  21. Ashwell GJ, Tyrrell WD, Whittam AJ (2005) Molecular rectification: self-assembled monolayers in which donor-(?-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J Am Chem Soc 126:7102–7110

    Google Scholar 

  22. Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92–98

    CAS  Google Scholar 

  23. Bain CD, Troughton EB, Tao YT, Evail J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    CAS  Google Scholar 

  24. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    CAS  Google Scholar 

  25. Yu M, Bovet N, Satterly CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) True nature of an archetypical self-assembly system: mobile Au-thiolate species on Au(111). Phys Rev Lett 97:166102

    Google Scholar 

  26. Woodruff DP (2008) The interface structure of N-alkylthiolate self-assembled monolayers on coinage metal surfaces. Phys Chem Chem Phys 10:7211–7221

    CAS  Google Scholar 

  27. Maksymovych P, Voznyy O, Dougherty DB, Sorescu Dan DC, Yates JT (2010) Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog Surf Sci 85:206–240

    CAS  Google Scholar 

  28. Black JR (1969) Electromigration–a brief survey and some recent results. IEEE Trans El Dev ED 16:338–347

    CAS  Google Scholar 

  29. Prins F, Hayashi T, de Vos van Steenwijk BJA, Gao B, Osorio EA, Muraki K, van der Zant HSJ (2009) Room-temperature stability of Pt nanogaps formed by self-breaking. Appl Phys Lett 94:123108

    Google Scholar 

  30. Schottky W (1938) Halbleitertheorie der Sperrschicht. Naturwissenschaften 26:843

    CAS  Google Scholar 

  31. Mott NF (1938) Note on the contact between a metal and an insulator or semiconductor. Proc Camb Philol Soc 34:568–572

    CAS  Google Scholar 

  32. Cowley AM, Sze SM (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36:3212–3220

    CAS  Google Scholar 

  33. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, Chap.?5

    Google Scholar 

  34. Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1992) The electrical properties of metal-sandwiched Langmuir-Blodgett multilayers and monolayers of a redox-active organic molecular compound. J Appl Phys 71:756–768

    CAS  Google Scholar 

  35. Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) Rectifying characteristics of Mg | (C16H33-Q3CNQ LB film) | Pt structures. J Chem Soc Chem Commun 1374–1376

    Google Scholar 

  36. Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218–221

    CAS  Google Scholar 

  37. Novoselov AS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  38. Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B105:7280–7290

    Google Scholar 

  39. Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455–10466

    CAS  Google Scholar 

  40. Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1990) Fabrication and investigation of asymmetric current-voltage characteristics of a metal/Langmuir-Blodgett monolayer/metal structure. Appl Phys Lett 56:1916–1918

    CAS  Google Scholar 

  41. Xu T, Peterson IR, Lakshmikantham MV, Metzger RM (2001) Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes. Angew Chem Int Ed 40:1749–1752

    CAS  Google Scholar 

  42. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574

    CAS  Google Scholar 

  43. Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, Naciri J, Moore MH, Shashidhar R (2002) Effect of bond-length alternation in molecular wires. J Am Chem Soc 124:10654–10655

    CAS  Google Scholar 

  44. Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys Rev Lett 89:86802

    CAS  Google Scholar 

  45. Beebe JM, Kim B-S, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys Rev Lett 97:026801

    Google Scholar 

  46. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Experimental observation of the transition from weak link to tunnel junction. Physica C191:485–504

    Google Scholar 

  47. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–253

    CAS  Google Scholar 

  48. Park H, Li AKL, Alivisatos AP, Park J, McEuen PL (1999) Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75:301

    CAS  Google Scholar 

  49. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725

    CAS  Google Scholar 

  50. Strachan DR, Smith DE, Johnston DE, Park T-H, Therien MJ, Bonnell DA, Johnson AT (2005) Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl Phys Lett 86:043109

    Google Scholar 

  51. Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    CAS  Google Scholar 

  52. Zhou X-S, Wei Y-M, Liu L, Chen Z-B, Tang J, Mao B-W (2008) Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: an electrochemical strategy. J Am Chem Soc 130:13228–13230

    CAS  Google Scholar 

  53. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ (2003) Redox state dependence of single-molecule conductivity. J Am Chem Soc 125:15294–15295

    CAS  Google Scholar 

  54. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys Chem Chem Phys 6:4330–4337

    CAS  Google Scholar 

  55. Ohm GS (1827) Die Galvanische Kette, Mathematisch Bearbeitet. Riemann, Berlin

    Google Scholar 

  56. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM. J Res Dev 1:223–231

    Google Scholar 

  57. Chang AM (2001) Resistance of a perfect wire. Nature 411:39–40

    CAS  Google Scholar 

  58. de Picciotto R, Störmer HL, Pfeiffer LN, Baldwin KW, West KW (2001) Four-terminal resistance of a ballistic quantum wire. Nature 411:51–54

    Google Scholar 

  59. Joachim C, Gimzewski JK, Schlittler RR, Chavy C (1995) Electronic transparence of a single C60 molecule. Phys Rev Lett 74:2102–2105

    CAS  Google Scholar 

  60. Xiao X, Xu B, Tao NJ (2004) Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett 4:267–271

    CAS  Google Scholar 

  61. Haiss W, Martin S, Leary E, van Zalinge H, Higgins SJ, Bouffier L, Nichols RJ (2009) Impact of junction formation method and surface roughness on single-molecule conductance. J Phys Chem C113:5823–5833

    Google Scholar 

  62. Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D (2010) The experimental determination of the conductance of single molecules. Phys Chem Chem Phys 12:2801–2815

    CAS  Google Scholar 

  63. Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J Am Chem Soc 127:9235–9240

    CAS  Google Scholar 

  64. Getty SA, Engtrakul C, Wang L, Liu R, Ke S-H, Baranger HU, Yang W, Fuhrer MS, Sita LR (2005) Near-perfect conduction through a ferrocene-based molecular wire. Phys Rev B 71:241401

    Google Scholar 

  65. Mayor M, von Hänisch C, Weber HB, Reichert J, Beckmann B (2002) A trans-platinum(II) complex as a single-molecule insulator. Angew Chem Int Ed 41:1183–1186

    CAS  Google Scholar 

  66. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Löhneysen H (2002) Driving current through single organic molecules. Phys Rev Lett 88:176804

    CAS  Google Scholar 

  67. Kergueris C, Bourgoin J-P, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C (1999) Electron transport through a metal-molecule-metal junction. Phys Rev B59:12505–12513

    Google Scholar 

  68. He J, Chen F, Li J, Sankey OF, Terazono Y, Herrero C, Gust D, Moore TA, Moore AL, Lindsay SM (2005) Electronic decay constant of carotenoid polyenes from single-molecule measurements. J Am Chem Soc 127:1384–1385

    CAS  Google Scholar 

  69. Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as a continuous function of its length. Science 323:1193–1197

    CAS  Google Scholar 

  70. Hines T, Diez-Perez I, Hihath J, Liu HM, Wang ZS, Zhao JW, Zhou G, Muellen K, Tao NJ (2010) Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J Am Chem Soc 132:11658–11664

    CAS  Google Scholar 

  71. Yamada R, Kumazawa H, Tanaka S, Tada H (2009) Electrical resistance of long oligothiophene molecules. Appl Phys Exp 2:025002

    Google Scholar 

  72. Lu Q, Liu K, Zhang H, Du Z, Wang X, Wang F (2009) From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3:3861–3868

    CAS  Google Scholar 

  73. Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) Thermally activated electron transport in single redox molecules. J Am Chem Soc 129:11535–11542

    CAS  Google Scholar 

  74. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–908

    CAS  Google Scholar 

  75. Widawsky JR, Kamenetska M, Klare J, Nuckolls C, Steigerwald ML, Hybertsen MS, Venkataraman L (2009) Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions. Nanotechnology 20:434009

    CAS  Google Scholar 

  76. Krzeminski C, Delerue C, Allan G, Vuillaume D, Metzger RM (2001) Theory of rectification in a molecular monolayer. Phys Rev B 64:085405

    Google Scholar 

  77. Chabinyc ML, Chen X, Holmlin RE, Jacobs H, Skulason H, Frisbie CD, Mujica V, Ratner MA, Rampi MA, Whitesides GM (2002) Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. J Am Chem Soc 124:11731–11736

    Google Scholar 

  78. Mujica V, Ratner MA, Nitzan A (2002) Molecular rectification: why is it so rare? Chem Phys 281:147–150

    CAS  Google Scholar 

  79. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    CAS  Google Scholar 

  80. Batley M, Lyons LE (1968) Photoelectric emission from donor-acceptor solids and donor molecules. Mol Cryst 3:357–374

    Google Scholar 

  81. Dvorák V, Nemek I, Zyka J (1967) Electrochemical oxidation of some aromatic amines in acetonitrile medium II. benzidine, N,N,N’,N’-tetramethylbenzidine, and 1,4-phenylenediamine derivatives. Microchem J 12:324–349

    Google Scholar 

  82. Evans S, Green MLH, Jewitt B, Orchard AF, Pygall CF (1972) Electronic spectra of metal complexes containing ?-cyclopentadienyl and related ligands: part I. – He(I) photoelectron spectra of some closed-shell metallocenes. J Chem Soc Faraday Trans II 68:1847–1865

    CAS  Google Scholar 

  83. Lianos P, Georghiou S (1979) Complex formation between pyrene and the nucleotides GMP, CMP, TMP and AMP. Photochem Photobiol 29:13–21

    CAS  Google Scholar 

  84. Lichtenberger DL, Johnston RL, Hinkelmann K, Suzuki T, Wudl F (1990) Relative electron donor strengths of tetrathiafulvene derivatives: effects of chemical substitutions and the molecular environment from a combined photoelectron and electrochemical study. J Am Chem Soc 112:3302–3307

    CAS  Google Scholar 

  85. Garron R (1964) C R Hebd Seances Acad Sci 258:1458

    CAS  Google Scholar 

  86. Grepstad JK, Garland PO, Slagsvold BJ (1976) Anisotropic work function of clean and smooth low-index faces of aluminium. Surf Sci 57:348–362

    CAS  Google Scholar 

  87. Takahashi T, Tokailin H, Sagawa T (1985) Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys Rev B32:8317–8324

    Google Scholar 

  88. Potter HC, Blakeley JM (1975) LEED, Auger spectroscopy, and contact potential studies of copper–gold alloy single crystal surfaces. J Vac Sci Technol 12:635–642

    CAS  Google Scholar 

  89. Demuth JE (1977) Chemisorption of C2H2 on Pd(111) and Pt(111): formation of a thermally activated olefinic surface complex. Chem Phys Lett 45:12–17

    CAS  Google Scholar 

  90. Kebarle P, Chowdhury S (1987) Electron affinities and electron-transfer reactions. Chem Rev 87:513–534

    CAS  Google Scholar 

  91. Yang SH, Pettiette CL, Conceicão CJO, Smalley RE (1987) UPS of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139:233–238

    CAS  Google Scholar 

  92. Chen ECM, Wentworth WE (1975) A comparison of experimental determinations of electron affinities of ?-charge-transfer-complex acceptors. J Chem Phys 63:3183–3191

    CAS  Google Scholar 

  93. Compton RN, Cooper CD (1977) Negative ion properties of tetracyanoquinodimethan: electron affinity and compound states. J Chem Phys 66:4325–4329

    CAS  Google Scholar 

  94. Jin C, Haufler RE, Hettich RL, Bashick CM, Compton RN, Puretzky AA, Dem’yanenko AV, Tuinman AA (1994) Synthesis and characterization of molybdenum carbide clusters MonC4n (n?=?1 to 4). Science 263:68–71

    CAS  Google Scholar 

  95. Mikroyannidis JA, Stylianakis MM, Sharma GD, Balraju P, Roy MS (2009) A novel alternating phenylenevinylene copolymer with perylene bisimide units: synthesis, photophysical, electrochemical, and photovoltaic properties. J Phys Chem C113:7904–7912

    Google Scholar 

  96. Baldwin JW, Chen B, Street SC, Konovalov VV, Sakurai H, Hughes TV, Simpson CS, Lakshmikantham MV, Cava MP, Kispert LD, Metzger RM (1999) Spectroscopic studies of hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B103:4269–4277

    Google Scholar 

  97. Honciuc A, Otsuka A, Wang Y-H, McElwee SK, Woski SA, Saito G, Metzger RM (2006) Polarization of charge-transfer bands and rectification in hexadecylquinolinium 7,7,8-tricyanoquinodimethanide and its tetrafluoro analog. J Phys Chem B110:15085–15093

    Google Scholar 

  98. Okazaki N, Sambles JR, Jory MJ, Ashwell GJ (2002) Molecular rectification at 8 K in an Au | C16H33Q-3CNQ LB film | Au structure. Appl Phys Lett 81:2300–2302

    CAS  Google Scholar 

  99. Brady AC, Hodder B, Martin AS, Christopher JR, Ewels P, Jones R, Briddon PR, Musa AM, Panetta CA, Mattern DL (1999) Molecular rectification with M|(D-s-A LB film)|M junctions. J Mater Chem 9:2271–2275

    CAS  Google Scholar 

  100. Metzger RM (1999) The prospects for unimolecular rectification. In: Sasabe H (ed) Hyper-structured molecules I: chemistry, physics, and applications. Gordon & Breach Science Publishers, Amsterdam, pp 19–39

    Google Scholar 

  101. Chen B, Metzger RM (1999) Rectification between 370 K and 105 K in hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B103:4447–4451

    Google Scholar 

  102. Vuillaume D, Chen B, Metzger RM (1999) Electron transfer through a monolayer of hexadecylquinolinium tricyanoquinodimethanide. Langmuir 15:4011–4017

    CAS  Google Scholar 

  103. Jaiswal A, Rajagopal D, Lakshmikantham MV, Cava MP, Metzger RM (2007) Unimolecular rectification and other properties of CH3C(O)S-C14H28Q+-3CNQ- and CH3C(O)S-C16H32Q+-3CNQ- organized by self-assembly, Langmuir-Blodgett, and Langmuir-Schaefer techniques. Phys Chem Chem Phys 9:4007–4017

    CAS  Google Scholar 

  104. Baldwin JW, Amaresh RR, Peterson IR, Shumate WJ, Cava MP, Amiri MA, Hamilton R, Ashwell GJ, Metzger RM (2002) Rectification and nonlinear optical properties of a Langmuir-Blodgett monolayer of a pyridinium dye. J Phys Chem B106:12158–12164

    Google Scholar 

  105. Honciuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) Current rectification in a Langmuir-Schaefer monolayer of fullerene-bis-[4-diphenylamino-4”-(N-ethyl-N-2”’-ethyl)amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. J Phys Chem B109:857–871

    Google Scholar 

  106. Shumate WJ, Mattern DL, Jaiswal A, Burgess J, Dixon DA, White TR, Honciuc A, Metzger RM (2006) Spectroscopic and rectification studies of three donor-sigma-acceptor compounds, consisting of a one-electron donor (pyrene or ferrocene), a one-electron acceptor (perylenebisimide), and a C19 swallowtail. J Phys Chem B110:11146–11159

    Google Scholar 

  107. Shumate WJ (2005) Ph.D. dissertation, University of Alabama

    Google Scholar 

  108. Honciuc A, Metzger RM, Gong A, Spangler CW (2007) Elastic and inelastic electron tunneling spectroscopy of a new rectifying monolayer. J Am Chem Soc 129:8310–8319

    CAS  Google Scholar 

  109. Jaiswal A, Amaresh RR, Lakshmikantham MV, Honciuc A, Cava MP, Metzger RM (2003) Electrical rectification in a monolayer of zwitterions assembled by either physisorption or chemisorption. Langmuir 19:9043–9050

    CAS  Google Scholar 

  110. Xu T, Morris TA, Szulczewski GJ, Amaresh RR, Gao Y, Street SC, Kispert LD, Metzger RM, Terenziani F (2002) A spectroscopic study of hexadecylquinolinium tricyanoquinodimethanide as a monolayer and in bulk. J Phys Chem B106:10374–10381

    Google Scholar 

  111. Okazaki N, Sambles JR (2000) Extended abstracts of the international symposium on organic molecular electronics. Nagoya, Japan, p 66

    Google Scholar 

  112. Kwon O, McKee ML, Metzger RM (1999) Theoretical calculations of methylquinolinium tricyanoquinodimethanide (CH3Q-3CNQ) using a solvation model. Chem Phys Lett 313:321–331

    CAS  Google Scholar 

  113. Metzger RM (2011) The many faces of quinolinium tricyanoquinodimethanide. Gale PA, Steele JW (eds) Supramolecular chemistry: from molecules to nanomaterials. Anzenbacher P (ed) Section 7: Supramolecular devices. Wiley, London (in press)

    Google Scholar 

  114. Girlando A, Sissa C, Terenziani F, Painelli A, Chwialkowska A, Ashwell GJ (2007) In situ spectroscopic characterization of rectifying molecular monolayers self-assembled on gold. Chem Phys Chem 8:2195–2201

    CAS  Google Scholar 

  115. Ho G, Heath JR, Kontratenko M, Perepichka DF, Arseneault K, Pézolet M, Bryce MR (2005) The first studies of a tetrathiafulvalene-?-acceptor molecular rectifier. Chem Eur J 11:2914–2922

    CAS  Google Scholar 

  116. Wang W, Lee T, Reed MA (2004) Elastic and inelastic electron tunneling in alkane self-assembled monolayers. J Phys Chem B108:18398–18407

    Google Scholar 

  117. Mazur U, Hipps KW (1995) Resonant tunneling bands and electrochemical reduction potentials. J Phys Chem 99:6684–6688

    CAS  Google Scholar 

  118. Mazur U, Hipps KW (1999) Orbital-mediated tunneling, inelastic electron tunneling, and electrochemical potentials for metal phthalocyanine thin films. J Phys Chem B103:9721–9727

    Google Scholar 

  119. Perepichka DF, Bryce MR, Pearson C, Petty MC, McInnes EJL, Zhao JP (2003) A covalent tetrathiafulvalene-tetracyanoquinodimethane diad: extremely low HOMO-LUMO gap, thermoexcited electron transfer, and high-quality Langmuir-Blodgett films. Angew Chem Int Ed 42:4636–4639

    CAS  Google Scholar 

  120. Elbing M, Ochs R, Keontopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) A single-molecule diode. Proc Natl Acad Sci USA 102:8815–8820

    CAS  Google Scholar 

  121. Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127:10456–10457

    CAS  Google Scholar 

  122. Jiang P, Morales GM, You W, Yu LP (2004) Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed 43:4471–4475

    CAS  Google Scholar 

  123. Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1:635–641

    Google Scholar 

  124. Ashwell GJ, Tyrrell WD, Whittam AJ (2003) Molecular rectification: self-assembled monolayers of a donor–(?-bridge)–acceptor chromophore connected via a truncated Au–S–(CH2)3 bridge. J Mater Chem 13:2855–2857

    CAS  Google Scholar 

  125. Ashwell GJ, Chwialkowska A, Herrmann High LR (2004) Rectifying Au-S-CnH2n-P3CNQ derivatives. J Mater Chem 14:2848–2851

    CAS  Google Scholar 

  126. Ashwell GJ, Berry M (2005) Hybrid SAM/LB device structures: manipulation of the molecular orientation for nanoscale electronic applications. J Mater Chem 15:108–110

    CAS  Google Scholar 

  127. Ashwell GJ, Robinson BJ, Amiri MA, Locatelli D, Quici S, Roberto D (2005) Dipole reversal in Langmuir–Blodgett films of an optically nonlinear dye and its effect on the polarity for molecular rectification. J Mater Chem 15:4203–4205

    CAS  Google Scholar 

  128. Ashwell GJ, Chwialkowska A (2006) Controlled alignment of molecular diodes via ionic assembly of cationic donor-(pi-bridge)-acceptor molecules on anionic surfaces. Chem Commun 1404–1406

    Google Scholar 

  129. Ashwell GJ, Urasinska B, Tyrrell WD (2006) Molecules that mimic Schottky diodes. Phys Chem Chem Phys 8:3314–3319

    CAS  Google Scholar 

  130. Gayathri SS, Patnaik A (2006) Electrical rectification from a fullerene[60]-dyad based metal-organic-metal junction. Chem Commun 1977–1979

    Google Scholar 

  131. Averin DV, Likharev KK (1986) Coulomb blockade of tunneling, and coherent oscillations in small tunnel junctions. J Low Temp Phys 62:345–372

    Google Scholar 

  132. Shkrob IA, Schlueter JA (2006) Can a single molecule trap the electron? Chem Phys Lett 431:364–369

    CAS  Google Scholar 

  133. Schweikart KH, Malinovskii VL, Yasseri AA, Li J, Lysenko AB, Bocian DF, Lindsey JS (2003) Synthesis and characterization of bis(S-acetylthio)-derivatized europium triple-decker monomers and oligomers. Inorg Chem 42:7431–7446

    CAS  Google Scholar 

  134. Chen S (2004) Chemical manipulations of nanoscale electron transfers. J Electroanal Chem 574:153–165

    CAS  Google Scholar 

  135. Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, Gupta R, Sumanasekera GU, Iijima S, Eklund PC (2003) Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 27:257403

    Google Scholar 

  136. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552

    CAS  Google Scholar 

  137. Esaki L (1958) New phenomenon in narrow germanium p-n junctions. Phys Rev 109:603–604

    CAS  Google Scholar 

  138. Paloheimo J, Kuivalainen P, Stubb H, Vuorimaa E, Yli-Lahti P (1990) Molecular field-effect transistors using conducting polymer Langmuir-Blodgett films. Phys Lett 56:1157–1159

    CAS  Google Scholar 

  139. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wire. Nature 386:474–477

    CAS  Google Scholar 

  140. Song H, Kim Y, Jang YH, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462:1039–1043

    CAS  Google Scholar 

  141. Collier CP, Mattersteig G, Wong EW, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]catenane-based solid-state electronically reconfigurable switch. Science 289:1172–1175

    CAS  Google Scholar 

  142. He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) A conducting polymer nanojunction switch. J Am Chem Soc 123:7730–7731

    CAS  Google Scholar 

Download references

Acknowledgments

This work was achieved by the diligence and insight of so many colleagues, students, and post-doctoral fellows, to whom we owe an immense debt of gratitude, and facilitated by several grants from the United States National Science Foundation (the most recent being NSF-08-48206).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Metzger, R.M., Mattern, D.L. (2011). Unimolecular Electronic Devices. In: Metzger, R. (eds) Unimolecular and Supramolecular Electronics II. Topics in Current Chemistry, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_178

Download citation

Publish with us

Policies and ethics