Advertisement

Unimolecular Electronic Devices

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 313)

Abstract

The first active electronic components used vacuum tubes with appropriately-shaped electrodes, then junctions of appropriately-doped Ge, Si, or GaAs semiconductors. Electronic components can now be made with appropriately-designed organic molecules. As the commercial drive to make ever-smaller and faster circuits approaches the 3-nm limit, these unimolecular organic devices may become more useful than doped semiconductors. Here we discuss the electrical contacts between metallic electrodes and organic molecular components, and survey representative organic wires composed of conducting groups and organic rectifiers composed of electron-donor and -acceptor groups, and the Aviram-Ratner proposal for unimolecular rectification. Molecular capacitors and amplifiers are discussed briefly. Molecular electronic devices are not only ultimately small (<3 nm in all directions) and fast, but their excited states may be able to decay by photons, avoiding the enormous heat dissipation endured by Si-based components that decay by phonons. An all-organic computer is an ultimate, but more distant, goal.

Keywords

Aviram-Ratner theory Cold gold evaporation Electron-acceptor groups Electron-donor groups Langmuir-Blodgett film Langmuir-Blodgett monolayer Orbital-mediated tunneling Rectifier Scanning tunneling microscopy Schottky barrier Schottky-Mott theory Self-assembled film Self-assembled monolayer Unimolecular amplifier Unimolecular electronic devices 

Notes

Acknowledgments

This work was achieved by the diligence and insight of so many colleagues, students, and post-doctoral fellows, to whom we owe an immense debt of gratitude, and facilitated by several grants from the United States National Science Foundation (the most recent being NSF-08-48206).

References

  1. 1.
    Metzger RM (1991) Prospects for truly unimolecular devices. In: Metzger RM, Day P, Papavassiliou GC (eds) Lower-dimensional systems and molecular electronics. NATO ASI Series B248. Plenum press, New York, pp 659–666Google Scholar
  2. 2.
    Tour JM, Kozaki M, Seminario JM (1998) Molecular-scale electronics: a synthetic/computational approach to digital computing. J Am Chem Soc 120:8486–8493Google Scholar
  3. 3.
    Ferraris J, Cowan DO, Walatka V Jr, Perlstein JH (1973) Electron transfer in a new highly conducting donor acceptor complex. J Am Chem Soc 95:948–949Google Scholar
  4. 4.
    Cowan DO, Fortkort JA, Metzger RM (1991) Design constraints for organic metals and superconductors. In: Metzger RM, Day P, Papavassiliou GC (eds) Lower-dimensional systems and molecular electronics. NATO ASI Ser, vol B248. Plenum Press, New York, pp 1–22Google Scholar
  5. 5.
    Jérôme D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a synthetic organic conductor, (TMTSF)2PF6. J Phys Lett 41:L95–L97Google Scholar
  6. 6.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580Google Scholar
  7. 7.
    Chiang CK, Fincher CR Jr, Park YW, Heeger AJ, Shirakawa H, Louis EJ (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101, erratum (1978) Phys Rev Lett 40:1472Google Scholar
  8. 8.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611Google Scholar
  9. 9.
    MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel lecture). Angew Chem Int Ed 40:2581–2590Google Scholar
  10. 10.
    Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40:2574–2580Google Scholar
  11. 11.
    Metzger RM (2008) Unimolecular electronics. J Mater Chem 18:4364–4396Google Scholar
  12. 12.
    Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834Google Scholar
  13. 13.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114Google Scholar
  14. 14.
    ITRS-2007, “International Technology Roadmap for Semiconductors” (2007) version (http://www.itrs.net/reports) section on emerging research materials (sub-22 nm)
  15. 15.
    Hoffmann G, Libioulle L, Berndt R (2002) Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution. Phys Rev B 65:212107Google Scholar
  16. 16.
    Blodgett KB (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–2022Google Scholar
  17. 17.
    Blodgett KB, Langmuir I (1937) Built-up films of barium stearate and optical properties. Phys Rev 51:964–982Google Scholar
  18. 18.
    Langmuir I, Schaefer VJ (1938) Activities of urease and pepsin monolayers. J Am Chem Soc 60:1351–1360Google Scholar
  19. 19.
    Metzger RM, Baldwin JW, Shumate WJ, Peterson IR, Mani P, Mankey GJ, Morris T, Szulczewski G, Bosi S, Prato M, Comito A, Rubin Y (2003) Large current asymmetries and potential device properties of a Langmuir-Blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B107:1021–1027Google Scholar
  20. 20.
    Stewart DR, Ohlberg DAA, Beck PA, Chen Y, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF (2004) Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett 4:133–136Google Scholar
  21. 21.
    Ashwell GJ, Tyrrell WD, Whittam AJ (2005) Molecular rectification: self-assembled monolayers in which donor-(?-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J Am Chem Soc 126:7102–7110Google Scholar
  22. 22.
    Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92–98Google Scholar
  23. 23.
    Bain CD, Troughton EB, Tao YT, Evail J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335Google Scholar
  24. 24.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169Google Scholar
  25. 25.
    Yu M, Bovet N, Satterly CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) True nature of an archetypical self-assembly system: mobile Au-thiolate species on Au(111). Phys Rev Lett 97:166102Google Scholar
  26. 26.
    Woodruff DP (2008) The interface structure of N-alkylthiolate self-assembled monolayers on coinage metal surfaces. Phys Chem Chem Phys 10:7211–7221Google Scholar
  27. 27.
    Maksymovych P, Voznyy O, Dougherty DB, Sorescu Dan DC, Yates JT (2010) Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog Surf Sci 85:206–240Google Scholar
  28. 28.
    Black JR (1969) Electromigration–a brief survey and some recent results. IEEE Trans El Dev ED 16:338–347Google Scholar
  29. 29.
    Prins F, Hayashi T, de Vos van Steenwijk BJA, Gao B, Osorio EA, Muraki K, van der Zant HSJ (2009) Room-temperature stability of Pt nanogaps formed by self-breaking. Appl Phys Lett 94:123108Google Scholar
  30. 30.
    Schottky W (1938) Halbleitertheorie der Sperrschicht. Naturwissenschaften 26:843Google Scholar
  31. 31.
    Mott NF (1938) Note on the contact between a metal and an insulator or semiconductor. Proc Camb Philol Soc 34:568–572Google Scholar
  32. 32.
    Cowley AM, Sze SM (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36:3212–3220Google Scholar
  33. 33.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, Chap.?5Google Scholar
  34. 34.
    Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1992) The electrical properties of metal-sandwiched Langmuir-Blodgett multilayers and monolayers of a redox-active organic molecular compound. J Appl Phys 71:756–768Google Scholar
  35. 35.
    Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) Rectifying characteristics of Mg | (C16H33-Q3CNQ LB film) | Pt structures. J Chem Soc Chem Commun 1374–1376Google Scholar
  36. 36.
    Martin AS, Sambles JR, Ashwell GJ (1993) Molecular rectifier. Phys Rev Lett 70:218–221Google Scholar
  37. 37.
    Novoselov AS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  38. 38.
    Metzger RM, Xu T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B105:7280–7290Google Scholar
  39. 39.
    Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455–10466Google Scholar
  40. 40.
    Geddes NJ, Sambles JR, Jarvis DJ, Parker WG, Sandman DJ (1990) Fabrication and investigation of asymmetric current-voltage characteristics of a metal/Langmuir-Blodgett monolayer/metal structure. Appl Phys Lett 56:1916–1918Google Scholar
  41. 41.
    Xu T, Peterson IR, Lakshmikantham MV, Metzger RM (2001) Rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide between gold electrodes. Angew Chem Int Ed 40:1749–1752Google Scholar
  42. 42.
    Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574Google Scholar
  43. 43.
    Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, Naciri J, Moore MH, Shashidhar R (2002) Effect of bond-length alternation in molecular wires. J Am Chem Soc 124:10654–10655Google Scholar
  44. 44.
    Kushmerick JG, Holt DB, Yang JC, Naciri J, Moore MH, Shashidhar R (2002) Metal-molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys Rev Lett 89:86802Google Scholar
  45. 45.
    Beebe JM, Kim B-S, Gadzuk JW, Frisbie CD, Kushmerick JG (2006) Transition from direct tunneling to field emission in metal-molecule-metal junctions. Phys Rev Lett 97:026801Google Scholar
  46. 46.
    Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Experimental observation of the transition from weak link to tunnel junction. Physica C191:485–504Google Scholar
  47. 47.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–253Google Scholar
  48. 48.
    Park H, Li AKL, Alivisatos AP, Park J, McEuen PL (1999) Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75:301Google Scholar
  49. 49.
    Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruña HD, McEuen PL, Ralph DC (2002) Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417:722–725Google Scholar
  50. 50.
    Strachan DR, Smith DE, Johnston DE, Park T-H, Therien MJ, Bonnell DA, Johnson AT (2005) Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl Phys Lett 86:043109Google Scholar
  51. 51.
    Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223Google Scholar
  52. 52.
    Zhou X-S, Wei Y-M, Liu L, Chen Z-B, Tang J, Mao B-W (2008) Extending the capability of STM break junction for conductance measurement of atomic-size nanowires: an electrochemical strategy. J Am Chem Soc 130:13228–13230Google Scholar
  53. 53.
    Haiss W, van Zalinge H, Higgins SJ, Bethell D, Höbenreich H, Schiffrin DJ, Nichols RJ (2003) Redox state dependence of single-molecule conductivity. J Am Chem Soc 125:15294–15295Google Scholar
  54. 54.
    Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ (2004) Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys Chem Chem Phys 6:4330–4337Google Scholar
  55. 55.
    Ohm GS (1827) Die Galvanische Kette, Mathematisch Bearbeitet. Riemann, BerlinGoogle Scholar
  56. 56.
    Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM. J Res Dev 1:223–231Google Scholar
  57. 57.
    Chang AM (2001) Resistance of a perfect wire. Nature 411:39–40Google Scholar
  58. 58.
    de Picciotto R, Störmer HL, Pfeiffer LN, Baldwin KW, West KW (2001) Four-terminal resistance of a ballistic quantum wire. Nature 411:51–54Google Scholar
  59. 59.
    Joachim C, Gimzewski JK, Schlittler RR, Chavy C (1995) Electronic transparence of a single C60 molecule. Phys Rev Lett 74:2102–2105Google Scholar
  60. 60.
    Xiao X, Xu B, Tao NJ (2004) Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett 4:267–271Google Scholar
  61. 61.
    Haiss W, Martin S, Leary E, van Zalinge H, Higgins SJ, Bouffier L, Nichols RJ (2009) Impact of junction formation method and surface roughness on single-molecule conductance. J Phys Chem C113:5823–5833Google Scholar
  62. 62.
    Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D (2010) The experimental determination of the conductance of single molecules. Phys Chem Chem Phys 12:2801–2815Google Scholar
  63. 63.
    Xiao X, Nagahara LA, Rawlett AM, Tao N (2005) Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J Am Chem Soc 127:9235–9240Google Scholar
  64. 64.
    Getty SA, Engtrakul C, Wang L, Liu R, Ke S-H, Baranger HU, Yang W, Fuhrer MS, Sita LR (2005) Near-perfect conduction through a ferrocene-based molecular wire. Phys Rev B 71:241401Google Scholar
  65. 65.
    Mayor M, von Hänisch C, Weber HB, Reichert J, Beckmann B (2002) A trans-platinum(II) complex as a single-molecule insulator. Angew Chem Int Ed 41:1183–1186Google Scholar
  66. 66.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Löhneysen H (2002) Driving current through single organic molecules. Phys Rev Lett 88:176804Google Scholar
  67. 67.
    Kergueris C, Bourgoin J-P, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C (1999) Electron transport through a metal-molecule-metal junction. Phys Rev B59:12505–12513Google Scholar
  68. 68.
    He J, Chen F, Li J, Sankey OF, Terazono Y, Herrero C, Gust D, Moore TA, Moore AL, Lindsay SM (2005) Electronic decay constant of carotenoid polyenes from single-molecule measurements. J Am Chem Soc 127:1384–1385Google Scholar
  69. 69.
    Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L (2009) Conductance of a single conjugated polymer as a continuous function of its length. Science 323:1193–1197Google Scholar
  70. 70.
    Hines T, Diez-Perez I, Hihath J, Liu HM, Wang ZS, Zhao JW, Zhou G, Muellen K, Tao NJ (2010) Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence. J Am Chem Soc 132:11658–11664Google Scholar
  71. 71.
    Yamada R, Kumazawa H, Tanaka S, Tada H (2009) Electrical resistance of long oligothiophene molecules. Appl Phys Exp 2:025002Google Scholar
  72. 72.
    Lu Q, Liu K, Zhang H, Du Z, Wang X, Wang F (2009) From tunneling to hopping: a comprehensive investigation of charge transport mechanism in molecular junctions based on oligo(p-phenylene ethynylene)s. ACS Nano 3:3861–3868Google Scholar
  73. 73.
    Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N (2007) Thermally activated electron transport in single redox molecules. J Am Chem Soc 129:11535–11542Google Scholar
  74. 74.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–908Google Scholar
  75. 75.
    Widawsky JR, Kamenetska M, Klare J, Nuckolls C, Steigerwald ML, Hybertsen MS, Venkataraman L (2009) Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions. Nanotechnology 20:434009Google Scholar
  76. 76.
    Krzeminski C, Delerue C, Allan G, Vuillaume D, Metzger RM (2001) Theory of rectification in a molecular monolayer. Phys Rev B 64:085405Google Scholar
  77. 77.
    Chabinyc ML, Chen X, Holmlin RE, Jacobs H, Skulason H, Frisbie CD, Mujica V, Ratner MA, Rampi MA, Whitesides GM (2002) Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. J Am Chem Soc 124:11731–11736Google Scholar
  78. 78.
    Mujica V, Ratner MA, Nitzan A (2002) Molecular rectification: why is it so rare? Chem Phys 281:147–150Google Scholar
  79. 79.
    Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283Google Scholar
  80. 80.
    Batley M, Lyons LE (1968) Photoelectric emission from donor-acceptor solids and donor molecules. Mol Cryst 3:357–374Google Scholar
  81. 81.
    Dvorák V, Nemek I, Zyka J (1967) Electrochemical oxidation of some aromatic amines in acetonitrile medium II. benzidine, N,N,N’,N’-tetramethylbenzidine, and 1,4-phenylenediamine derivatives. Microchem J 12:324–349Google Scholar
  82. 82.
    Evans S, Green MLH, Jewitt B, Orchard AF, Pygall CF (1972) Electronic spectra of metal complexes containing ?-cyclopentadienyl and related ligands: part I. – He(I) photoelectron spectra of some closed-shell metallocenes. J Chem Soc Faraday Trans II 68:1847–1865Google Scholar
  83. 83.
    Lianos P, Georghiou S (1979) Complex formation between pyrene and the nucleotides GMP, CMP, TMP and AMP. Photochem Photobiol 29:13–21Google Scholar
  84. 84.
    Lichtenberger DL, Johnston RL, Hinkelmann K, Suzuki T, Wudl F (1990) Relative electron donor strengths of tetrathiafulvene derivatives: effects of chemical substitutions and the molecular environment from a combined photoelectron and electrochemical study. J Am Chem Soc 112:3302–3307Google Scholar
  85. 85.
    Garron R (1964) C R Hebd Seances Acad Sci 258:1458Google Scholar
  86. 86.
    Grepstad JK, Garland PO, Slagsvold BJ (1976) Anisotropic work function of clean and smooth low-index faces of aluminium. Surf Sci 57:348–362Google Scholar
  87. 87.
    Takahashi T, Tokailin H, Sagawa T (1985) Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys Rev B32:8317–8324Google Scholar
  88. 88.
    Potter HC, Blakeley JM (1975) LEED, Auger spectroscopy, and contact potential studies of copper–gold alloy single crystal surfaces. J Vac Sci Technol 12:635–642Google Scholar
  89. 89.
    Demuth JE (1977) Chemisorption of C2H2 on Pd(111) and Pt(111): formation of a thermally activated olefinic surface complex. Chem Phys Lett 45:12–17Google Scholar
  90. 90.
    Kebarle P, Chowdhury S (1987) Electron affinities and electron-transfer reactions. Chem Rev 87:513–534Google Scholar
  91. 91.
    Yang SH, Pettiette CL, Conceicão CJO, Smalley RE (1987) UPS of buckminsterfullerene and other large clusters of carbon. Chem Phys Lett 139:233–238Google Scholar
  92. 92.
    Chen ECM, Wentworth WE (1975) A comparison of experimental determinations of electron affinities of ?-charge-transfer-complex acceptors. J Chem Phys 63:3183–3191Google Scholar
  93. 93.
    Compton RN, Cooper CD (1977) Negative ion properties of tetracyanoquinodimethan: electron affinity and compound states. J Chem Phys 66:4325–4329Google Scholar
  94. 94.
    Jin C, Haufler RE, Hettich RL, Bashick CM, Compton RN, Puretzky AA, Dem’yanenko AV, Tuinman AA (1994) Synthesis and characterization of molybdenum carbide clusters MonC4n (n?=?1 to 4). Science 263:68–71Google Scholar
  95. 95.
    Mikroyannidis JA, Stylianakis MM, Sharma GD, Balraju P, Roy MS (2009) A novel alternating phenylenevinylene copolymer with perylene bisimide units: synthesis, photophysical, electrochemical, and photovoltaic properties. J Phys Chem C113:7904–7912Google Scholar
  96. 96.
    Baldwin JW, Chen B, Street SC, Konovalov VV, Sakurai H, Hughes TV, Simpson CS, Lakshmikantham MV, Cava MP, Kispert LD, Metzger RM (1999) Spectroscopic studies of hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B103:4269–4277Google Scholar
  97. 97.
    Honciuc A, Otsuka A, Wang Y-H, McElwee SK, Woski SA, Saito G, Metzger RM (2006) Polarization of charge-transfer bands and rectification in hexadecylquinolinium 7,7,8-tricyanoquinodimethanide and its tetrafluoro analog. J Phys Chem B110:15085–15093Google Scholar
  98. 98.
    Okazaki N, Sambles JR, Jory MJ, Ashwell GJ (2002) Molecular rectification at 8 K in an Au | C16H33Q-3CNQ LB film | Au structure. Appl Phys Lett 81:2300–2302Google Scholar
  99. 99.
    Brady AC, Hodder B, Martin AS, Christopher JR, Ewels P, Jones R, Briddon PR, Musa AM, Panetta CA, Mattern DL (1999) Molecular rectification with M|(D-s-A LB film)|M junctions. J Mater Chem 9:2271–2275Google Scholar
  100. 100.
    Metzger RM (1999) The prospects for unimolecular rectification. In: Sasabe H (ed) Hyper-structured molecules I: chemistry, physics, and applications. Gordon & Breach Science Publishers, Amsterdam, pp 19–39Google Scholar
  101. 101.
    Chen B, Metzger RM (1999) Rectification between 370 K and 105 K in hexadecylquinolinium tricyanoquinodimethanide. J Phys Chem B103:4447–4451Google Scholar
  102. 102.
    Vuillaume D, Chen B, Metzger RM (1999) Electron transfer through a monolayer of hexadecylquinolinium tricyanoquinodimethanide. Langmuir 15:4011–4017Google Scholar
  103. 103.
    Jaiswal A, Rajagopal D, Lakshmikantham MV, Cava MP, Metzger RM (2007) Unimolecular rectification and other properties of CH3C(O)S-C14H28Q+-3CNQ- and CH3C(O)S-C16H32Q+-3CNQ- organized by self-assembly, Langmuir-Blodgett, and Langmuir-Schaefer techniques. Phys Chem Chem Phys 9:4007–4017Google Scholar
  104. 104.
    Baldwin JW, Amaresh RR, Peterson IR, Shumate WJ, Cava MP, Amiri MA, Hamilton R, Ashwell GJ, Metzger RM (2002) Rectification and nonlinear optical properties of a Langmuir-Blodgett monolayer of a pyridinium dye. J Phys Chem B106:12158–12164Google Scholar
  105. 105.
    Honciuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) Current rectification in a Langmuir-Schaefer monolayer of fullerene-bis-[4-diphenylamino-4”-(N-ethyl-N-2”’-ethyl)amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. J Phys Chem B109:857–871Google Scholar
  106. 106.
    Shumate WJ, Mattern DL, Jaiswal A, Burgess J, Dixon DA, White TR, Honciuc A, Metzger RM (2006) Spectroscopic and rectification studies of three donor-sigma-acceptor compounds, consisting of a one-electron donor (pyrene or ferrocene), a one-electron acceptor (perylenebisimide), and a C19 swallowtail. J Phys Chem B110:11146–11159Google Scholar
  107. 107.
    Shumate WJ (2005) Ph.D. dissertation, University of AlabamaGoogle Scholar
  108. 108.
    Honciuc A, Metzger RM, Gong A, Spangler CW (2007) Elastic and inelastic electron tunneling spectroscopy of a new rectifying monolayer. J Am Chem Soc 129:8310–8319Google Scholar
  109. 109.
    Jaiswal A, Amaresh RR, Lakshmikantham MV, Honciuc A, Cava MP, Metzger RM (2003) Electrical rectification in a monolayer of zwitterions assembled by either physisorption or chemisorption. Langmuir 19:9043–9050Google Scholar
  110. 110.
    Xu T, Morris TA, Szulczewski GJ, Amaresh RR, Gao Y, Street SC, Kispert LD, Metzger RM, Terenziani F (2002) A spectroscopic study of hexadecylquinolinium tricyanoquinodimethanide as a monolayer and in bulk. J Phys Chem B106:10374–10381Google Scholar
  111. 111.
    Okazaki N, Sambles JR (2000) Extended abstracts of the international symposium on organic molecular electronics. Nagoya, Japan, p 66Google Scholar
  112. 112.
    Kwon O, McKee ML, Metzger RM (1999) Theoretical calculations of methylquinolinium tricyanoquinodimethanide (CH3Q-3CNQ) using a solvation model. Chem Phys Lett 313:321–331Google Scholar
  113. 113.
    Metzger RM (2011) The many faces of quinolinium tricyanoquinodimethanide. Gale PA, Steele JW (eds) Supramolecular chemistry: from molecules to nanomaterials. Anzenbacher P (ed) Section 7: Supramolecular devices. Wiley, London (in press)Google Scholar
  114. 114.
    Girlando A, Sissa C, Terenziani F, Painelli A, Chwialkowska A, Ashwell GJ (2007) In situ spectroscopic characterization of rectifying molecular monolayers self-assembled on gold. Chem Phys Chem 8:2195–2201Google Scholar
  115. 115.
    Ho G, Heath JR, Kontratenko M, Perepichka DF, Arseneault K, Pézolet M, Bryce MR (2005) The first studies of a tetrathiafulvalene-?-acceptor molecular rectifier. Chem Eur J 11:2914–2922Google Scholar
  116. 116.
    Wang W, Lee T, Reed MA (2004) Elastic and inelastic electron tunneling in alkane self-assembled monolayers. J Phys Chem B108:18398–18407Google Scholar
  117. 117.
    Mazur U, Hipps KW (1995) Resonant tunneling bands and electrochemical reduction potentials. J Phys Chem 99:6684–6688Google Scholar
  118. 118.
    Mazur U, Hipps KW (1999) Orbital-mediated tunneling, inelastic electron tunneling, and electrochemical potentials for metal phthalocyanine thin films. J Phys Chem B103:9721–9727Google Scholar
  119. 119.
    Perepichka DF, Bryce MR, Pearson C, Petty MC, McInnes EJL, Zhao JP (2003) A covalent tetrathiafulvalene-tetracyanoquinodimethane diad: extremely low HOMO-LUMO gap, thermoexcited electron transfer, and high-quality Langmuir-Blodgett films. Angew Chem Int Ed 42:4636–4639Google Scholar
  120. 120.
    Elbing M, Ochs R, Keontopp M, Fischer M, von Hänisch C, Weigend F, Evers F, Weber HB, Mayor M (2005) A single-molecule diode. Proc Natl Acad Sci USA 102:8815–8820Google Scholar
  121. 121.
    Morales GM, Jiang P, Yuan S, Lee Y, Sanchez A, You W, Yu L (2005) Inversion of the rectifying effect in diblock molecular diodes by protonation. J Am Chem Soc 127:10456–10457Google Scholar
  122. 122.
    Jiang P, Morales GM, You W, Yu LP (2004) Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed 43:4471–4475Google Scholar
  123. 123.
    Díez-Pérez I, Hihath J, Lee Y, Yu L, Adamska L, Kozhushner MA, Oleynik II, Tao N (2009) Rectification and stability of a single molecular diode with controlled orientation. Nat Chem 1:635–641Google Scholar
  124. 124.
    Ashwell GJ, Tyrrell WD, Whittam AJ (2003) Molecular rectification: self-assembled monolayers of a donor–(?-bridge)–acceptor chromophore connected via a truncated Au–S–(CH2)3 bridge. J Mater Chem 13:2855–2857Google Scholar
  125. 125.
    Ashwell GJ, Chwialkowska A, Herrmann High LR (2004) Rectifying Au-S-CnH2n-P3CNQ derivatives. J Mater Chem 14:2848–2851Google Scholar
  126. 126.
    Ashwell GJ, Berry M (2005) Hybrid SAM/LB device structures: manipulation of the molecular orientation for nanoscale electronic applications. J Mater Chem 15:108–110Google Scholar
  127. 127.
    Ashwell GJ, Robinson BJ, Amiri MA, Locatelli D, Quici S, Roberto D (2005) Dipole reversal in Langmuir–Blodgett films of an optically nonlinear dye and its effect on the polarity for molecular rectification. J Mater Chem 15:4203–4205Google Scholar
  128. 128.
    Ashwell GJ, Chwialkowska A (2006) Controlled alignment of molecular diodes via ionic assembly of cationic donor-(pi-bridge)-acceptor molecules on anionic surfaces. Chem Commun 1404–1406Google Scholar
  129. 129.
    Ashwell GJ, Urasinska B, Tyrrell WD (2006) Molecules that mimic Schottky diodes. Phys Chem Chem Phys 8:3314–3319Google Scholar
  130. 130.
    Gayathri SS, Patnaik A (2006) Electrical rectification from a fullerene[60]-dyad based metal-organic-metal junction. Chem Commun 1977–1979Google Scholar
  131. 131.
    Averin DV, Likharev KK (1986) Coulomb blockade of tunneling, and coherent oscillations in small tunnel junctions. J Low Temp Phys 62:345–372Google Scholar
  132. 132.
    Shkrob IA, Schlueter JA (2006) Can a single molecule trap the electron? Chem Phys Lett 431:364–369Google Scholar
  133. 133.
    Schweikart KH, Malinovskii VL, Yasseri AA, Li J, Lysenko AB, Bocian DF, Lindsey JS (2003) Synthesis and characterization of bis(S-acetylthio)-derivatized europium triple-decker monomers and oligomers. Inorg Chem 42:7431–7446Google Scholar
  134. 134.
    Chen S (2004) Chemical manipulations of nanoscale electron transfers. J Electroanal Chem 574:153–165Google Scholar
  135. 135.
    Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, Gupta R, Sumanasekera GU, Iijima S, Eklund PC (2003) Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 27:257403Google Scholar
  136. 136.
    Chen J, Reed MA, Rawlett AM, Tour JM (1999) Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286:1550–1552Google Scholar
  137. 137.
    Esaki L (1958) New phenomenon in narrow germanium p-n junctions. Phys Rev 109:603–604Google Scholar
  138. 138.
    Paloheimo J, Kuivalainen P, Stubb H, Vuorimaa E, Yli-Lahti P (1990) Molecular field-effect transistors using conducting polymer Langmuir-Blodgett films. Phys Lett 56:1157–1159Google Scholar
  139. 139.
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wire. Nature 386:474–477Google Scholar
  140. 140.
    Song H, Kim Y, Jang YH, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462:1039–1043Google Scholar
  141. 141.
    Collier CP, Mattersteig G, Wong EW, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR (2000) A [2]catenane-based solid-state electronically reconfigurable switch. Science 289:1172–1175Google Scholar
  142. 142.
    He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tsui R (2001) A conducting polymer nanojunction switch. J Am Chem Soc 123:7730–7731Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratory for Molecular Electronics, Department of ChemistryThe University of AlabamaTuscaloosaUSA
  2. 2.Department of Chemistry and BiochemistryThe University of Mississippi, UniversityMississippiUSA

Personalised recommendations