Skip to main content

Radical Additions to Chiral Hydrazones: Stereoselectivity and Functional Group Compatibility

  • Chapter
  • First Online:
Radicals in Synthesis III

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 320))

Abstract

Free radical additions to imino compounds offer increased synthetic accessibility of chiral amines, but lack of general methods for stereocontrol has hindered their development. This review focuses on two asymmetric amine synthesis strategies designed to address this problem, with emphasis on addition of functionalized radicals which may facilitate applications to synthesis of complex targets. First, chiral N-acylhydrazones are acceptors for intermolecular radical additions of a wide range of primary, secondary, and tertiary alkyl halides to the C=N bond, with radicals generated under manganese-, tin-, or boron-mediated conditions. A variety of aldehydes and ketones serve as viable precursors for the chiral hydrazones, and the highly stereoselective reactions tolerate electrophilic functionality in both coupling components. Second, radical precursors may be linked to chiral α-hydroxyhydrazones via a silicon tether to the hydroxyl group; conformational constraints impart stereocontrol during 5-exo radical cyclization under stannyl- or thiyl-mediated conditions. The silicon tether may later be removed to reveal the formal adducts of hydroxymethyl, vinyl, acetyl, and 2-oxoethyl radicals to the C=N bond. Methodology development and applications to biologically important targets are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative 2-step procedure involving prior removal of the acetonide [(1) 0.1 M methanolic HCl; (2) HgCl2 aq CH3CN] afforded the same mixture in 23% yield.

References

  1. Rowlands GJ (2009) Tetrahedron 65:8603–8655

    CAS  Google Scholar 

  2. Renaud P, Sibi M (eds) (2001) Radicals in organic synthesis. Wiley-VCH, New York

    Google Scholar 

  3. Giese B, Kopping B, Gobel T, Dickhaut J, Thoma G, Kulicke KJ, Trach F (1996) Org React 48:301–856

    CAS  Google Scholar 

  4. Curran DP, Porter NA, Giese B (1995) Stereochemistry of radical reactions: concepts guidelines and synthetic applications. VCH, New York

    Google Scholar 

  5. Jasperse CP, Curran DP, Fevig TL (1991) Chem Rev 91:1237–1286

    CAS  Google Scholar 

  6. Giese B (1986) Radicals in organic synthesis: formation of carbon-carbon bonds. Pergamon Press, New York

    Google Scholar 

  7. Hart DJ (1984) Science 223:883–887

    CAS  Google Scholar 

  8. Friestad GK (2001) Tetrahedron 57:5461–5496

    CAS  Google Scholar 

  9. Fallis AG, Brinza IM (1997) Tetrahedron 53:17543–17594

    CAS  Google Scholar 

  10. Friestad GK (2009) Addition of carbanions to azomethines. In: Enders D, Shaumann E (eds) Science of synthesis vol 40a: compounds with one saturated carbon-heteroatom bond: amines and ammonium salts. Thieme, Stuttgart

    Google Scholar 

  11. Yamada K-I, Tomioka K (2008) Chem Rev 108:2874–2886

    CAS  Google Scholar 

  12. Friestad GK, Mathies AK (2007) Tetrahedron 63:2541–2569

    CAS  Google Scholar 

  13. Ding H, Friestad GK (2005) Synthesis 2815–2829

    Google Scholar 

  14. Alvaro G, Savoia D (2002) Synlett 651–673

    Google Scholar 

  15. Kobayashi S, Ishitani H (1999) Chem Rev 99:1069–1094

    CAS  Google Scholar 

  16. Bloch R (1998) Chem Rev 98:1407–1438

    CAS  Google Scholar 

  17. Davis FA, Zhou P, Chen B-C (1998) Chem Soc Rev 27:13–18

    CAS  Google Scholar 

  18. Enders D, Reinhold U (1997) Tetrahedron Asymmetry 8:1895–1946

    CAS  Google Scholar 

  19. Denmark SE, Nicaise OJ-C (1996) J Chem Soc Chem Commun 999–1004

    Google Scholar 

  20. Stork G, Dowd SR (1963) J Am Chem Soc 85:2178–2180

    CAS  Google Scholar 

  21. Wittig G, Frommeld HD, Suchanek P (1963) Angew Chem Int Ed Engl 2:683

    Google Scholar 

  22. Guerrier L, Royer J, Grierson DS, Husson H-P (1983) J Am Chem Soc 105:7754–7755

    CAS  Google Scholar 

  23. Enders D, Diez E, Fernandez R, Martin-Zamora E, Munoz JM, Pappalardo RR, Lassaletta JM (1999) J Org Chem 64:6329–6336

    CAS  Google Scholar 

  24. Friestad GK (2005) Eur J Org Chem 3157–3172

    Google Scholar 

  25. Bertrand M, Feray L, Gastaldi S (2002) C R Acad Sci Paris Chimie 5:623–638, review

    CAS  Google Scholar 

  26. Miyabe H, Ueda M, Naito T (2004) Synlett 1140–1157

    Google Scholar 

  27. Booth SE, Jenkins PR, Swain CJ, Sweeney JB (1994) J Chem Soc Perkin Trans 1 3499–3508

    Google Scholar 

  28. Booth SE, Jenkins PR, Swain CJ (1998) J Braz Chem Soc 9:389–395 (Chemical Abstracts 130:38274)

    CAS  Google Scholar 

  29. Enders D (1984) In: Morrison JD (ed) Asymmetric synthesis. Academic Press, New York, review

    Google Scholar 

  30. Enders D, Schubert H, Nubling C (1986) Angew Chem Int Ed Engl 25:1109–1110

    Google Scholar 

  31. Takahashi H, Tomita K, Otomasu H (1979) J Chem Soc Chem Commun 668–669

    Google Scholar 

  32. Takahashi H, Suzuki Y (1983) Chem Pharm Bull 31:4295–4299

    CAS  Google Scholar 

  33. Denmark SE, Weber T, Piotrowski DW (1987) J Am Chem Soc 109:2224–2225

    CAS  Google Scholar 

  34. Breuil-Desvergnes V, Compain P, Vatèle J-M, Goré J (1999) Tetrahedron Lett 40:5009–5012

    CAS  Google Scholar 

  35. Russell GA, Yao C-F, Rajaratnam R, Kim BH (1991) J Am Chem Soc 113:373–375

    CAS  Google Scholar 

  36. Renaud P, Gerster M (1998) Angew Chem Int Ed 37:2563–2579

    Google Scholar 

  37. Guerin B, Ogilvie WW, Guindon Y (2001) In: Renaud P, Sibi M (eds) Radicals in organic synthesis. Wiley-VCH, New York

    Google Scholar 

  38. Burk MJ, Feaster JE (1992) J Am Chem Soc 114:6266–6267

    CAS  Google Scholar 

  39. Sturino CF, Fallis AG (1994) J Am Chem Soc 116:7447–7448

    CAS  Google Scholar 

  40. Evans DA, Kim AS (1995) In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis, vol 1. Wiley, New York

    Google Scholar 

  41. Kim M, White JD (1977) J Am Chem Soc 99:1172–1180

    CAS  Google Scholar 

  42. Ciufolini MA, Shimizu T, Swaminathan S, Xi N (1997) Tetrahedron Lett 38:4947–4950

    CAS  Google Scholar 

  43. Evans DA, Johnson DS (1999) Org Lett 1:595–598

    CAS  Google Scholar 

  44. Hynes J Jr, Doubleday WW, Dyckman AJ, Godfrey JD Jr, Grosso JA, Kiau S, Leftheris K (2004) J Org Chem 69:1368–1371

    CAS  Google Scholar 

  45. Friestad GK, Ji A (2008) Org Lett 10:2311–2313

    CAS  Google Scholar 

  46. Shen Y, Friestad GK (2002) J Org Chem 67:6236–6239

    CAS  Google Scholar 

  47. Friestad GK, Qin J (2000) J Am Chem Soc 122:8329–8330

    CAS  Google Scholar 

  48. Friestad GK, Draghici C, Soukri M, Qin J (2005) J Org Chem 70:6330–6338

    CAS  Google Scholar 

  49. Qin J, Friestad GK (2003) Tetrahedron 59:6393–6402

    CAS  Google Scholar 

  50. Lim D, Coltart DM (2008) Angew Chem Int Ed 47:5207–5210

    CAS  Google Scholar 

  51. Nozaki K, Oshima K, Utimoto K (1991) Bull Chem Soc Jpn 64:403–409

    CAS  Google Scholar 

  52. Brown HC, Midland MM (1972) Angew Chem Int Ed Engl 11:692–700

    CAS  Google Scholar 

  53. Fernandez M, Alonso R (2003) Org Lett 5:2461–2464

    CAS  Google Scholar 

  54. Kim S, Lee IY, Yoon J-Y, Oh DH (1996) J Am Chem Soc 118:5138–5139

    CAS  Google Scholar 

  55. Kim S, Yoon J-Y (1997) J Am Chem Soc 119:5982–5983

    CAS  Google Scholar 

  56. Ryu I, Kuriyama H, Minakata S, Komatsu M, Yoon J-Y, Kim S (1999) J Am Chem Soc 121:12190–12191

    CAS  Google Scholar 

  57. Jeon G-H, Yoon J-Y, Kim S, Kim SS (2000) Synlett 128–130

    Google Scholar 

  58. Kim S, Kim N, Yoon J-Y, Oh DH (2000) Synlett 1148–1150

    Google Scholar 

  59. Kim S, Song H-J, Choi T-L, Yoon J-Y (2001) Angew Chem Int Ed 40:2524–2526

    CAS  Google Scholar 

  60. Kim S, Kavali R (2002) Tetrahedron Lett 43:7189–7191

    CAS  Google Scholar 

  61. Pauson PL (1995) In: Paquette LA (ed) Encyclopedia of reagents for organic synthesis, vol 2. Wiley, New York

    Google Scholar 

  62. Meyer TJ, Caspar JV (1985) Chem Rev 85:187

    CAS  Google Scholar 

  63. Gilbert BC, Parsons AF (2002) J Chem Soc Perkin Trans 2:367–387

    Google Scholar 

  64. Herrick RS, Herrinton TR, Walker HW, Brown TL (1985) Organometallics 4:42–45

    CAS  Google Scholar 

  65. Giese B, Thoma G (1991) Helv Chim Acta 74:1135–1142

    CAS  Google Scholar 

  66. Gilbert BC, Kalz W, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (1999) Tetrahedron Lett 40:6095–6098

    CAS  Google Scholar 

  67. Gilbert BC, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (1999) Synth Commun 29:2711–2718

    CAS  Google Scholar 

  68. Gilbert BC, Kalz W, Lindsay CI, McGrail PT, Parsons AF, Whittaker DTE (2000) J Chem Soc Perkin Trans 1 1187–1194

    Google Scholar 

  69. Friestad GK, Qin J (2001) J Am Chem Soc 123:9922–9923

    CAS  Google Scholar 

  70. Friestad GK, Qin J, Suh Y, Marié J-C (2006) J Org Chem 71:7016–7027

    CAS  Google Scholar 

  71. Callaghan O, Lampard C, Kennedy AR, Murphy JA (1999) J Chem Soc Perkin Trans 1 995–1001

    Google Scholar 

  72. Jahn U, Muller M, Aussieker S (2000) J Am Chem Soc 122:5212–5213

    CAS  Google Scholar 

  73. Harrowven DC, Lucas MC, Howes PD (2001) Tetrahedron 57:791–804

    CAS  Google Scholar 

  74. Rivkin A, Nagashima T, Curran DP (2003) Org Lett 5:419–422

    CAS  Google Scholar 

  75. Denes F, Chemla F, Normant JF (2003) Angew Chem Int Ed 42:4043–4046

    CAS  Google Scholar 

  76. Bazin S, Feray L, Vanthuyne N, Bertrand MP (2005) Tetrahedron 61:4261–4274

    CAS  Google Scholar 

  77. Ueda M, Miyabe H, Sugino H, Miyata O, Naito T (2005) Angew Chem Int Ed 44:6190–6193

    CAS  Google Scholar 

  78. Denes F, Cutri S, Perez-Luna A, Chemla F (2006) Chem Eur J 12:6506–6513

    CAS  Google Scholar 

  79. Maruyama T, Mizuno Y, Shimizu I, Suga S (2007) J Am Chem Soc 129:1902–1903

    CAS  Google Scholar 

  80. Miyata O, Takahashi S, Tamura A, Ueda M, Naito T (2008) Tetrahedron 64:1270–1284

    CAS  Google Scholar 

  81. Enders D, Tiebes J (1993) Liebigs Ann Chem 173–177

    Google Scholar 

  82. Yamazaki N, Kibayashi C (1997) Tetrahedron Lett 38:4623–4626

    CAS  Google Scholar 

  83. Reding MT, Buchwald SL (1998) J Org Chem 63:6344–6347

    CAS  Google Scholar 

  84. Wilkinson TJ, Stehle NW, Beak P (2000) Org Lett 2:155–158

    CAS  Google Scholar 

  85. Kim YH, Choi JY (1996) Tetrahedron Lett 37:5543–5546

    CAS  Google Scholar 

  86. Korapala CS, Qin J, Friestad GK (2007) Org Lett 9:4243–4246

    CAS  Google Scholar 

  87. Ordonez M, Cativiela C (2007) Tetrahedron Asymmetry 18:3–99

    CAS  Google Scholar 

  88. Trabocchi A, Guarna F, Guarna A (2005) Curr Org Chem 9:1127–1153

    CAS  Google Scholar 

  89. Matthew S, Schupp PJ, Leusch H (2008) J Nat Prod 71:1113–1116

    CAS  Google Scholar 

  90. Kunze B, Bohlendorf B, Reichenbach H, Hofle G (2008) J Antibiot 61:18–26

    CAS  Google Scholar 

  91. Oh D-C, Strangman WK, Kauffman CA, Jensen PR, Fenical W (2007) Org Lett 9:1525–1528

    CAS  Google Scholar 

  92. Milanowski DJ, Gustafson KR, Rashid MA, Pannell LK, McMahon JB, Boyd MR (2004) J Org Chem 69:3036–3042

    CAS  Google Scholar 

  93. Williams PG, Luesch H, Yoshida WY, Moore RE, Paul VJ (2003) J Nat Prod 66:595–598

    CAS  Google Scholar 

  94. Horgen FD, Kazmierski EB, Westenburg HE, Yoshida WY, Scheuer PJ (2002) J Nat Prod 65:487–491

    CAS  Google Scholar 

  95. Dado GP, Gellman SH (1994) J Am Chem Soc 116:1054–1062

    CAS  Google Scholar 

  96. Hanessian S, Luo X, Schaum R, Michnick S (1998) J Am Chem Soc 120:8569–8570

    CAS  Google Scholar 

  97. Sanjayan GJ, Stewart A, Hachisu S, Gonzalez R, Watterson MP, Fleet GWJ (2003) Tetrahedron Lett 44:5847–5851

    CAS  Google Scholar 

  98. Seebach D, Schaeffer L, Brenner M, Hoyer D (2003) Angew Chem Int Ed 42:776–778

    CAS  Google Scholar 

  99. Farrera-Sinfreu J, Zaccaro L, Vidal D, Salvatella X, Giralt E, Pons M, Albericio F, Royo M (2004) J Am Chem Soc 126:6048–6057

    CAS  Google Scholar 

  100. Vasudev PG, Ananda K, Chatterjee S, Aravinda S, Shamala N, Balaram P (2007) J Am Chem Soc 129:4039–4048

    CAS  Google Scholar 

  101. Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H (2000) J Antibiot 53:879–885

    CAS  Google Scholar 

  102. Höfle G, Glaser N, Leibold T, Karama U, Sasse F, Steinmetz H (2003) Pure Appl Chem 75:167–178

    Google Scholar 

  103. Friestad GK, Deveau AM, Marié J-C (2004) Org Lett 6:3249–3252

    CAS  Google Scholar 

  104. Friestad GK, Banerjee K (2009) Org Lett 11:1095–1098

    CAS  Google Scholar 

  105. Lin CH (1993) Synth React Inorg Met-Org Chem 23:1097–1106

    CAS  Google Scholar 

  106. Salazar J, Lopez SE, Rebollo O (2003) J Fluorine Chem 124:111–113

    CAS  Google Scholar 

  107. Iranpoor N, Zeynizadeh B (1999) J Chem Res (S) 124–125

    Google Scholar 

  108. Prashad M, Hu B, Har D, Repic O, Blacklock TJ (2000) Tetrahedron Lett 41:9957–9961

    CAS  Google Scholar 

  109. Schaum R (1998) Ph.D Thesis, Université de Montreal, Montreal, Canada

    Google Scholar 

  110. Torrente S, Alonso R (2001) Org Lett 3:1985–1987

    CAS  Google Scholar 

  111. Miyabe H, Yamaoka Y, Takemoto Y (2005) J Org Chem 70:3324–3327

    CAS  Google Scholar 

  112. Ramon DJ, Yus M (2004) Curr Org Chem 8:149–183, review

    CAS  Google Scholar 

  113. Obrecht D, Bohdal U, Broger C, Bur D, Lehmann C, Ruffieux R, Schönholzer P, Spiegler C, Müller K (1995) Helv Chim Acta 78:563–580

    CAS  Google Scholar 

  114. Husson H-P, Royer J (1999) Chem Soc Rev 28:383–394

    CAS  Google Scholar 

  115. Nishiyama H, Kitajima T, Matsumoto M, Itoh K (1984) J Org Chem 49:2298–2300

    CAS  Google Scholar 

  116. Stork G, Kahn M (1985) J Am Chem Soc 107:500–501

    CAS  Google Scholar 

  117. Gauthier DR Jr, Zandi KS, Shea KJ (1998) Tetrahedron 54:2289–2338

    CAS  Google Scholar 

  118. Fensterbank L, Malacria M, Sieburth SM (1997) Synthesis 813–854

    Google Scholar 

  119. Fleming I, Barbero A, Walter D (1997) Chem Rev 97:2063–2192

    CAS  Google Scholar 

  120. Bols M, Skrydstrup T (1995) Chem Rev 95:1253–1277

    CAS  Google Scholar 

  121. Friestad GK (1999) Org Lett 1:1499–1501

    CAS  Google Scholar 

  122. Friestad GK, Massari SE (2000) Org Lett 2:4237–4240

    CAS  Google Scholar 

  123. Friestad GK, Massari SE (2004) J Org Chem 69:863–875

    CAS  Google Scholar 

  124. Friestad GK, Jiang T, Mathies AK (2007) Tetrahedron 63:3964–3972

    CAS  Google Scholar 

  125. Friestad GK, Jiang T, Fioroni GM (2003) Tetrahedron: Asymmetry 14:2853–2856

    CAS  Google Scholar 

  126. Miyabe H, Fujii K, Goto T, Naito T (2000) Org Lett 2:4071–4074

    CAS  Google Scholar 

  127. Inokuchi T, Kawafuchi H (2001) Synlett 421–423

    Google Scholar 

  128. Clerici A, Cannella R, Pastori N, Panzeri W, Porta O (2006) Tetrahedron 62:5986–5994

    CAS  Google Scholar 

  129. Kolter T, Sandhoff K (1999) Angew Chem Int Ed 38:1532–1568

    CAS  Google Scholar 

  130. Heightman TD, Vasella AT (1999) Angew Chem Int Ed 38:750–770

    CAS  Google Scholar 

  131. Chapleur Y (ed) (1998) Carbohydrate mimics. Wiley-VCH, Weinheim

    Google Scholar 

  132. Nash RJ, Watson AA, Asano N (1996) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Tarrytown New York, Pergamon

    Google Scholar 

  133. Hauser FM, Ellenberger SR (1986) Chem Rev 86:35–67, review

    CAS  Google Scholar 

  134. Friestad GK, Mathies AK (2007) Tetrahedron 63:9373–9381 (Corrigendum: Friestad GK, Mathies AK (2007) Tetrahedron 63:13039)

    CAS  Google Scholar 

  135. Friestad GK, Jiang T, Fioroni GM (2008) Tetrahedron 64:11549–11557

    CAS  Google Scholar 

  136. Friestad GK, Fioroni GM (2005) Org Lett 7:2393–2396

    CAS  Google Scholar 

  137. Doi T, Shibata K, Kinbara A, Takahashi T (2007) Chem Lett 36:1372–1373

    CAS  Google Scholar 

  138. Mendlik MT, Tao P, Hadad CM, Coleman RS, Lowary TL (2006) J Org Chem 71:8059–8070

    CAS  Google Scholar 

  139. Parker KA, Chang W (2005) Org Lett 7:1785–1788

    CAS  Google Scholar 

  140. Trost BM, Jiang CH, Hammer K (2005) Synthesis 3335–3345

    Google Scholar 

  141. Ginesta X, Pasto M, Pericas MA, Riera A (2003) Org Lett 5:3001–3004

    CAS  Google Scholar 

  142. Cutchins WW, McDonald FE (2002) Org Lett 4:749–752

    CAS  Google Scholar 

  143. Davies SG, Smyth GD, Chippindale AM (1999) J Chem Soc Perkin Trans 1 3089–3104

    Google Scholar 

  144. Sibi M, Lu J, Edwards J (1997) J Org Chem 62:5864–5872

    CAS  Google Scholar 

  145. DeShong P, Dicken CM, Leginus JM, Whittle RR (1984) J Am Chem Soc 106:5598–5602

    CAS  Google Scholar 

  146. Xu Z, Johannes CW, La DS, Hofilena GE, Hoveyda AH (1997) Tetrahedron 53:16377–16390

    CAS  Google Scholar 

  147. Mukaiyama T, Goto Y, Shoda S (1983) Chem Lett 671–674

    Google Scholar 

  148. Fuganti C, Grasselli P, Pedrocchi-Fantoni G (1983) J Org Chem 48:910–912

    Google Scholar 

  149. Kita Y, Itoh F, Tamura O, Ke YY, Miki T, Tamura Y (1989) Chem Pharm Bull 37:1446–1451

    CAS  Google Scholar 

  150. Hatanaka M, Ueda I (1991) Chem Lett 61–64

    Google Scholar 

  151. Po S-Y, Uang B-J (1994) Tetrahedron: Asymmetry 5:1869–1872

    CAS  Google Scholar 

  152. Ding H, Friestad GK (2004) Org Lett 6:637–640

    CAS  Google Scholar 

  153. Feringa BL (1986) J Chem Soc Chem Commun 909–910

    Google Scholar 

  154. Kang S-K, Jung K-Y, Chung J-U, Namkoong E-Y, Kim T-H (1995) J Org Chem 60:4678–4679

    CAS  Google Scholar 

  155. Stragies R, Blechert S (2000) J Am Chem Soc 122:9584–9591

    CAS  Google Scholar 

  156. Hosokawa T, Aoki S, Takano M, Nakahira T, Yoshida Y, Murahashi S-I (1991) J Chem Soc Chem Commun 1559–1560

    Google Scholar 

  157. Lai J, Shi X, Dai L (1992) J Org Chem 57:3485–3487

    CAS  Google Scholar 

  158. Abbaci B, Florent J-C, Monneret C (1989) Bull Soc Chim Fr 667–672

    Google Scholar 

  159. Shelton CJ, Harding MM (1995) J Chem Res (S) 158

    Google Scholar 

  160. Shelton CJ, Harding MM (1995) J Chem Res (M) 1201–1219

    Google Scholar 

  161. Autrey RL, Scullard PW (1968) J Am Chem Soc 90:4924–4929

    CAS  Google Scholar 

  162. Corey EJ, Shulman JI (1970) J Org Chem 35:777–780

    CAS  Google Scholar 

  163. Mukaiyama T, Kamio K, Kobayashi S, Takei M (1972) Bull Chem Soc Jpn 45:3723

    CAS  Google Scholar 

  164. Mura AJ Jr, Majetich G, Grieco PA, Cohen T (1975) Tetrahedron Lett 16:4437–4440

    Google Scholar 

  165. Grayson JI, Warren S (1977) J Chem Soc Perkin Trans 1 2263–2272

    Google Scholar 

  166. Pearson WH, Bergmeier SC, Williams JP (1992) J Org Chem 57:3977–3987

    CAS  Google Scholar 

  167. Almqvist F, Ekman N, Frejd T (1996) J Org Chem 61:3794–3798

    CAS  Google Scholar 

  168. Barton TJ, Lin J, Ijadi-Maghsoodi S, Power MD, Zhang X, Ma Z, Shimizu H, Gordon MS (1995) J Am Chem Soc 117:11695–11703

    CAS  Google Scholar 

  169. Matsumoto H, Kato T, Matsubara I, Hoshino Y, Nagai Y (1979) Chem Lett 1287–1290

    Google Scholar 

  170. Kimura Y, Matsumoto T, Suzuki M, Terashima S (1986) Bull Chem Soc Jpn 59:663–664

    CAS  Google Scholar 

  171. Friestad GK, Shen Y, Ruggles EL (2003) Angew Chem Int Ed 42:5061–5063

    CAS  Google Scholar 

  172. Jang DO, Kim SY (2008) J Am Chem Soc 130:16152–16153

    CAS  Google Scholar 

  173. Lee S, Kim S (2009) Tetrahedron Lett 50:3345–3348

    CAS  Google Scholar 

  174. Friestad GK, Ji A, Korapala CS, Qin J (2011) Org Biomol Chem 4039–4043

    Google Scholar 

Download references

Acknowledgment

Generous support for our programs in radical addition methods and applications to natural products by NSF (CHE-0096803 and CHE-0749850) and NIH (R01-GM67187) are deeply appreciated. Research Corporation, Petroleum Research Fund, and Vermont EPSCoR have also provided funding for parts of this work. Many devoted students and postdoctoral associates are responsible for developing our program in chiral amine synthesis, and their efforts are gratefully acknowledged. This chapter was prepared during an appointment as an Obermann Scholar in the Obermann Center for Advanced Studies (University of Iowa) which is acknowledged with appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory K. Friestad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friestad, G.K. (2011). Radical Additions to Chiral Hydrazones: Stereoselectivity and Functional Group Compatibility. In: Heinrich, M., Gansäuer, A. (eds) Radicals in Synthesis III. Topics in Current Chemistry, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_163

Download citation

Publish with us

Policies and ethics