Solid-State 19F-NMR of Peptides in Native Membranes

  • Katja Koch
  • Sergii Afonin
  • Marco Ieronimo
  • Marina Berditsch
  • Anne S. Ulrich
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 306)

Abstract

To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues.

Here, we discuss a solid-state 19F-NMR approach that has been developed for structural studies of MAPs in lipid bilayers, and how this can be translated to measurements in native biomembranes. We review the essentials of the methodology and discuss key objectives in the practice of 19F-labelling of peptides. Furthermore, the preparation of macroscopically oriented biomembranes on solid supports is discussed in the context of other membrane models. Two native biomembrane systems are presented as examples: human erythrocyte ghosts as representatives of eukaryotic cell membranes, and protoplasts from Micrococcus luteus as membranes from Gram-positive bacteria. Based on our latest experimental experience with the antimicrobial peptide gramicidin S, the benefits and some implicit drawbacks of using such supported native membranes in solid-state 19F-NMR analysis are discussed.

Keywords

Solid-state NMR structure analysis 19F-labeling Membrane-active peptides Native biomembranes Oriented membrane models Antimicrobial peptides 

References

  1. 1.
    Serber Z, Selenko P, Hansel R, Reckel S, Lohr F, Ferrell JE, Wagner G, Dotsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709Google Scholar
  2. 2.
    Burz DS, Dutta K, Cowburn D, Shekhtman A (2006) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3:91–93Google Scholar
  3. 3.
    Burz DS, Shekhtman A (2008) In-cell biochemistry using NMR spectroscopy. PLoS One 3:e2571Google Scholar
  4. 4.
    Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith BO, Shirakawa M, Guntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105Google Scholar
  5. 5.
    Reckel S, Hansel R, Lohr F, Dotsch V (2007) In-cell NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 51:91–101Google Scholar
  6. 6.
    McNeill SA, Gor’kov PL, Shetty K, Brey WW, Long JR (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197:135–144Google Scholar
  7. 7.
    Dvinskikh SV, Castro V, Sandstrom D (2004) Heating caused by radiofrequency irradiation and sample rotation in C-13 magic angle spinning NMR studies of lipid membranes. Magn Reson Chem 42:875–881Google Scholar
  8. 8.
    Griffin RG, Prisner TF (2010) High field dynamic nuclear polarization-the renaissance. Phys Chem Chem Phys 12:5737–5740Google Scholar
  9. 9.
    Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253Google Scholar
  10. 10.
    Reckel S, Lohr F, Dotsch V (2005) In-cell NMR spectroscopy. ChemBioChem 6:1601–1606Google Scholar
  11. 11.
    Bhattacharya A (2009) Protein structures: structures of desire. Nature 459:24–27Google Scholar
  12. 12.
    Brown FF, Campbell ID, Kuchel PW, Rabenstein DC (1977) Human erythrocyte metabolism studies by H-1 spin-echo NMR. FEBS Lett 82:12–16Google Scholar
  13. 13.
    Pielak GJ, Li CG, Miklos AC, Schlesinger AP, Slade KM, Wang GF, Zigoneanu IG (2009) Protein nuclear magnetic resonance under physiological conditions. Biochemistry-US 48:226, 9170Google Scholar
  14. 14.
    Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H, Shirakawa M (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109Google Scholar
  15. 15.
    Hu KN, Tycko R (2010) What can solid state NMR contribute to our understanding of protein folding? Biophys Chem 151:10–21Google Scholar
  16. 16.
    Bockmann A, Meier BH (2010) Prions en route from structural models to structures. Prion 4:72–79Google Scholar
  17. 17.
    Brown MF, Salgado GFJ, Struts AV (2010) Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BBA-Biomembranes 1798:177–193Google Scholar
  18. 18.
    Tompa P (2009) Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins. FEBS J 276:5406–5415Google Scholar
  19. 19.
    Ramamoorthy A (2009) Beyond NMR spectra of antimicrobial peptides: dynamical images at atomic resolution and functional insights. Solid State Nucl Mag 35:201–207Google Scholar
  20. 20.
    Baldus M (2007) Magnetic resonance in the solid state: applications to protein folding, amyloid fibrils and membrane proteins. Eur Biophys J 36(Suppl 1):S37–48Google Scholar
  21. 21.
    Opella SJ, Nevzorov A, Mesleb MF, Marassi FM (2002) Structure determination of membrane proteins by NMR spectroscopy. Biochem Cell Biol 80:597–604Google Scholar
  22. 22.
    Afonin S, Juretic D, Separovic F, Ulrich AS (2011) Special issue on membrane-active peptides. Eur Biophys J 40:347–348Google Scholar
  23. 23.
    Naito A (2009) Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl Mag 36:67–76Google Scholar
  24. 24.
    Hong M (2006) Oligomeric structure, dynamics, and orientation of membrane proteins from solid-state NMR. Structure 14:1731–1740Google Scholar
  25. 25.
    Hong M (2007) Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR spectroscopy. J Phys Chem B 111:10340–10351Google Scholar
  26. 26.
    Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides – using a sequence template to guide structure–activity relationship studies. BBA-Biomembranes 1758:1436–1449Google Scholar
  27. 27.
    Scott RW, DeGrado WF, Tew GN (2008) De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19:620–627Google Scholar
  28. 28.
    Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. BBA-Biomembranes 1462:11–28Google Scholar
  29. 29.
    Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460Google Scholar
  30. 30.
    Danielson MA, Falke JJ (1996) Use of F-19 NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195Google Scholar
  31. 31.
    Yu JX, Kodibagkar VD, Cui WN, Mason RP (2005) F-19: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848Google Scholar
  32. 32.
    Ulrich AS (1999) High resolution solid state NMR, 1H, 19F. In: Lindon J, Tranter G, Holmes J (eds) Encyclopedia of spectroscopy and spectrometry. Elsevier, Oxford, pp 813–825Google Scholar
  33. 33.
    Strandberg E, Wadhwani P, Tremouilhac P, Durr UHN, Ulrich AS (2006) Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of H-2-labels versus high sensitivity of F-19-NMR. Biophys J 90:1676–1686Google Scholar
  34. 34.
    Glaser RW, Ulrich AS (2003) Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications. J Magn Reson 164:104–114Google Scholar
  35. 35.
    Wadhwani P, Strandberg E (2009) Structure analysis of membrane-active peptides using 19F-labeled amino acids and solid-state NMR. In: Ojima I (ed) Fluorine in medicinal chemistry and chemical biology. Wiley, Chichester, pp 463–493Google Scholar
  36. 36.
    Wadhwani P, Tremouilhac P, Strandberg E, Afonin S, Grage S, Ieronimo M, Berditsch M, Ulrich AS (2007) Using fluorinated amino acids for structure analysis of membrane-active peptides by solid-state 19F-NMR. In: Soloshonok V, Mikami K, Yamazaki T, Welch JT, Honek J (eds) Current fluoroorganic chemistry (ACS symposium series). American Chemical Society, Washington, pp 431–446Google Scholar
  37. 37.
    Ulrich AS (2005) Solid state F-19 NMR methods for studying biomembranes. Prog Nucl Magn Reson Spectrosc 46:1–21Google Scholar
  38. 38.
    Mason RP (1999) Transmembrane pH gradients in vivo: measurements using fluorinated vitamin B6 derivatives. Curr Med Chem 6:481–499Google Scholar
  39. 39.
    Brindle K, Williams S-P, Boulton M (1989) 19F NMR detection of a fluorine-labelled enzyme in vivo. FEBS Lett 255:121–124Google Scholar
  40. 40.
    Li CG, Wang GF, Wang YQ, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RAS, Mehl RA, Pielak GJ (2010) Protein F-19 NMR in Escherichia coli. J Am Chem Soc 132:321–327Google Scholar
  41. 41.
    Gor’kov PL, Witter R, Chekmenev EY, Nozirov F, Fu R, Brey WW (2007) Low-E probe for F-19-H-1 NMR of dilute biological solids. J Magn Reson 189:182–189Google Scholar
  42. 42.
    Haase J, Curro NJ, Slichter CP (1998) Double resonance probes for close frequencies. J Magn Reson 135:273–279Google Scholar
  43. 43.
    Graether SP, DeVries JS, McDonald R, Rakovszky ML, Sykes BD (2006) A H-1/F-19 minicoil NMR probe for solid-state NMR: application to 5-fluoroindoles. J Magn Reson 178:65–71Google Scholar
  44. 44.
    Andrushchenko VV, Vogel HJ, Prenner EJ (2007) Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. J Pept Sci 13:37–43Google Scholar
  45. 45.
    Valenti LE, Paci MB, De Pauli CP, Giacomelli CE (2011) Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: trifluoroacetic acid removal and band assignment. Anal Biochem 410:118–123Google Scholar
  46. 46.
    Glaser RW, Sachse C, Durr UHN, Wadhwani P, Ulrich AS (2004) Orientation of the antimicrobial peptide PGLa in lipid membranes determined from F-19-NMR dipolar couplings of 4-CF3-phenylglycine labels. J Magn Reson 168:153–163Google Scholar
  47. 47.
    Park SH, Das BB, De Angelis AA, Scrima M, Opella SJ (2010) Mechanically, magnetically, and “rotationally aligned” membrane proteins in phospholipid bilayers give equivalent angular constraints for NMR structure determination. J Phys Chem B 114:13995–14003Google Scholar
  48. 48.
    Strandberg E, Ulrich AS (2004) NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson A 23A:89–120Google Scholar
  49. 49.
    Strandberg E, Esteban-Martin S, Salgado J, Ulrich AS (2009) Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. Biophys J 96:3223–3232Google Scholar
  50. 50.
    Esteban-Martin S, Strandberg E, Salgado J, Ulrich AS (2010) Solid state NMR analysis of peptides in membranes: influence of dynamics and labeling scheme. BBA-biomembranes 1798:252–257Google Scholar
  51. 51.
    Esteban-Martin S, Strandberg E, Fuertes G, Ulrich AS, Salgado J (2009) Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis. Biophys J 96:3233–3241Google Scholar
  52. 52.
    Afonin S, Dur UHN, Glaser RW, Ulrich AS (2004) ‘Boomerang’-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state F-19 NMR. Magn Reson Chem 42:195–203Google Scholar
  53. 53.
    Mykhailiuk PK, Afonin S, Palamarchuk GV, Shishkin OV, Ulrich AS, Komarov IV (2008) Synthesis of trifluoromethyl-substituted proline analogues as F-19 NMR labels for peptides in the polyproline II conformation. Angew Chem Int Edit 47:5765–5767Google Scholar
  54. 54.
    Grasnick D, Sternberg U, Strandberg E, Wadhwani P, Ulrich AS (2011) Irregular structure of the HIV fusion peptide in membranes demonstrated by solid-state NMR and MD simulations Eur Biophys J 40:529–543Google Scholar
  55. 55.
    Auger M (2000) Biological membrane structure by solid-state NMR. Curr Issues Mol Biol 2:119–124Google Scholar
  56. 56.
    Rainey JK, Sykes BD (2005) Optimizing oriented planar-supported lipid samples for solid-state protein NMR. Biophys J 89:2792–2805Google Scholar
  57. 57.
    Aisenbrey C, Bertani P, Bechinger B (2010) Solid-state NMR investigations of membrane-associated antimicrobial peptides. Methods Mol Biol 618:209–233Google Scholar
  58. 58.
    Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285:11039–11044Google Scholar
  59. 59.
    Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH (2010) Site-specific labeling of proteins with NMR-active unnatural amino acids. J Biomol NMR 46:89–100Google Scholar
  60. 60.
    Staunton D, Schlinkert R, Zanetti G, Colebrook SA, Campbell LD (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn Reson Chem 44:S2–9Google Scholar
  61. 61.
    Kubyshkin VS, Komarov IV, Afonin S, Mykhailiuk PK, Grage SL, Ulrich AS (2011) Trifluoromethyl-substituted α-amino acids as solid state 19F-NMR labels for structural studies of membrane-bound peptides. In: Gouverneur V, Müller K (eds) Fluorine in pharmaceutical and medicinal chemistry: from biophysical aspects to clinical applications. Imperial College Press (in press)Google Scholar
  62. 62.
    Wadhwani P, Afonin S, Ieromino M, Buerck J, Ulrich AS (2006) Optimized protocol for synthesis of cyclic gramicidin S: starting amino acid is key to high yield. J Org Chem 71:55–61Google Scholar
  63. 63.
    Fields GB, Noble RL (1990) Solid-phase peptide-synthesis utilizing 9-fluorenylmethoxycarbonyl amino-acids. Int J Pept Prot Res 35:161–214Google Scholar
  64. 64.
    Mikhailiuk PK, Afonin S, Chernega AN, Rusanov EB, Platonov MO, Dubinina GG, Berditsch M, UIrich AS, Komarov IV (2006) Conformationally rigid trifluoromethyl-substituted alpha-amino acid designed for peptide structure analysis by solid-state F-19 NMR spectroscopy. Angew Chem Int Edit 45:5659–5661Google Scholar
  65. 65.
    Salgado J, Grage SL, Kondejewski LH, Hodges RS, McElhaney RN, Ulrich AS (2001) Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state F-19-NMR. J Biomol NMR 21:191–208Google Scholar
  66. 66.
    Afonin S, Glaser RW, Berditchevskaia M, Wadhwani P, Guhrs KH, Mollmann U, Perner A, Ulrich AS (2003) 4-Fluorophenylglycine as a label for F-19 NMR structure analysis of membrane-associated peptides. ChemBioChem 4:1151–1163Google Scholar
  67. 67.
    Afonin S, Mikhailiuk PK, Komarov IV, Ulrich AS (2007) Evaluating the amino acid CF3-bicyclopentylglycine as a new label for solid-state F-19-NMR structure analysis of membrane-bound peptides. J Pept Sci 13:614–623Google Scholar
  68. 68.
    Mink C (2009) Zusammenhänge von Struktur und Funktion unterschiedlicher membranaktiver Peptide. PhD thesis, University of Karlsruhe (KIT)Google Scholar
  69. 69.
    Tiltak D (2009) Strukturelle und funktionelle Untersuchungen der antimikrobiellen Peptide MSI- 103 und Temporin A. PhD thesis, University of Karlsruhe (KIT)Google Scholar
  70. 70.
    Maisch D, Wadhwani P, Afonin S, Bottcher C, Koksch B, Ulrich AS (2009) Chemical labeling strategy with (R)- and (S)-trifluoromethylalanine for solid state 19F NMR analysis of peptaibols in membranes. J Am Chem Soc 131:15596–15597Google Scholar
  71. 71.
    Pervushin KV, Orekhov V, Popov AI, Musina L, Arseniev AS (1994) Three-dimensional structure of (1–71)bacterioopsin solubilized in methanol/chloroform and SDS micelles determined by 15N-1H heteronuclear NMR spectroscopy. Eur J Biochem 219:571–583Google Scholar
  72. 72.
    Tyukhtenko S, Tiburu EK, Deshmukh L, Vinogradova O, Janero DR, Makriyannis A (2009) NMR solution structure of human cannabinoid receptor-1 helix 7/8 peptide: candidate electrostatic interactions and microdomain formation. Biochem Biophys Res Commun 390:441–446Google Scholar
  73. 73.
    Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M (2003) The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci USA 100:10706–10711Google Scholar
  74. 74.
    Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C (2008) The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 47:1668–1671Google Scholar
  75. 75.
    Sanders CR, Sonnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44 Spec No:S24–40Google Scholar
  76. 76.
    Henry GD, Sykes BD (1994) Methods to study membrane protein structure in solution. Methods Enzymol 239:515–535Google Scholar
  77. 77.
    Fernandez C, Wuthrich K (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 555:144–150Google Scholar
  78. 78.
    Sanders CR, Hare BJ, Howard KP, Prestegard JH (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26:421–444Google Scholar
  79. 79.
    Marcotte I, Auger M (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concept Magn Reson A 24A:17–37Google Scholar
  80. 80.
    Matsumori N, Murata M (2010) 3D structures of membrane-associated small molecules as determined in isotropic bicelles. Nat Prod Rep 27:1480–1492Google Scholar
  81. 81.
    Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335Google Scholar
  82. 82.
    Canlas CG, Ma D, Tang P, Xu Y (2008) Residual dipolar coupling measurements of transmembrane proteins using aligned low-q bicelles and high-resolution magic angle spinning NMR spectroscopy. J Am Chem Soc 130:13294–13300Google Scholar
  83. 83.
    Cross TA, Sharma M, Yi M, Zhou HX (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36:117–125Google Scholar
  84. 84.
    Wang G (2008) NMR of membrane-associated peptides and proteins. Curr Protein Pept Sci 9:50–69Google Scholar
  85. 85.
    Bader R, Lerch M, Zerbe O (2003) NMR of membrane-associated peptides and proteins. In: Zerbe O (ed) BioNMR in drug research. Wiley-VCH, Weinheim, pp 95–120Google Scholar
  86. 86.
    Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grelard A, Opella SJ, Marassi FM, Dufourc EJ (2009) Bicelles: a natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie 91:744–751Google Scholar
  87. 87.
    Nieh MP, Raghunathan VA, Glinka CJ, Harroun TA, Pabst G, Katsaras J (2004) Magnetically alignable phase of phospholipid “bicelle” mixtures is a chiral nematic made up of wormlike micelles. Langmuir 20:7893–7897Google Scholar
  88. 88.
    van Dam L, Karlsson G, Edwards K (2006) Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. Langmuir 22:3280–3285Google Scholar
  89. 89.
    Prosser RS, Hwang JS, Vold RR (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J 74:2405–2418Google Scholar
  90. 90.
    Borch J, Hamann T (2009) The nanodisc: a novel tool for membrane protein studies. Biol Chem 390:805–814Google Scholar
  91. 91.
    Gregoriadis G (1993) Liposome technology. CRC Press, Boca Raton, FLGoogle Scholar
  92. 92.
    Storm G, Crommelin DJA (1998) Liposomes: quo vadis? Pharm Sci Technol To 1:19–31Google Scholar
  93. 93.
    Da Costa G, Mouret L, Chevance S, Le Rumeur E, Bondon A (2007) NMR of molecules interacting with lipids in small unilamellar vesicles. Eur Biophys J Biophy 36:933–942Google Scholar
  94. 94.
    Leland DS (1996) Clinical virology. W.B. Saunders, PhiladelphiaGoogle Scholar
  95. 95.
    Tremouilhac P, Strandberg E, Wadhwani P, Ulrich AS (2006) Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state H-2-NMR. BBA-Biomembranes 1758:1330–1342Google Scholar
  96. 96.
    Afonin S, Durr UHN, Wadhwani P, Salgado J, Ulrich AS (2008) Solid state NMR structure analysis of the antimicrobial peptide gramicidin S in lipid membranes: concentration-dependent re-alignment and self-assembly as a beta-barrel. Top Curr Chem 273:139–154Google Scholar
  97. 97.
    Grage SL, Afonin S, Ulrich AS (2010) Dynamic transitions of membrane-active peptides. Methods Mol Biol 618:183–207Google Scholar
  98. 98.
    Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS (2008) Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers; observed by solid state F-19 NMR spectroscopy. J Am Chem Soc 130:16512–16514Google Scholar
  99. 99.
    Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS (2009) Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. BBA-Biomembranes 1788:1667–1679Google Scholar
  100. 100.
    Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11:540–547Google Scholar
  101. 101.
    Kosol S, Zangger K (2010) Dynamics and orientation of a cationic antimicrobial peptide in two membrane-mimetic systems. J Struct Biol 170:172–179Google Scholar
  102. 102.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55Google Scholar
  103. 103.
    Graham JM, Higgins JA (1998) Molekularbiologische Membrananalyse. Spektrum Akademischer Verlag GmbH, HeidelbergGoogle Scholar
  104. 104.
    Hanke W, Hanke R (1997) Methoden der Membranphysiologie. Spektrum Akademischer, HeidelbergGoogle Scholar
  105. 105.
    Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Bio 11:593–598Google Scholar
  106. 106.
    Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14Google Scholar
  107. 107.
    Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  108. 108.
    Voet DJ, Voet JG, Pratt CW (2010) Lehrbuch der Biochemie. Wiley-VCH, WeinheimGoogle Scholar
  109. 109.
    Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol R 67:686–723Google Scholar
  110. 110.
    Sutcliffe IC, Shaw N (1991) Atypical lipoteichoic acids of Gram-positive bacteria. J Bacteriol 173:7065–7069Google Scholar
  111. 111.
    Kennedy LD (1974) Teichoic-acid synthesis in Bacillus-stearothermophilus. Biochem J 138:525–535Google Scholar
  112. 112.
    Owen P, Salton MRJ (1975) Succinylated mannan in membrane system of Micrococcus-lysodeikticus. Biochem Biophys Res Commun 63:875–880Google Scholar
  113. 113.
    Powell DA, Duckworth M, Baddiley J (1975) Membrane-associated lipomannan in micrococci. Biochem J 151:387–397Google Scholar
  114. 114.
    Schlegel HG (1992) Allgemeine Mikrobiologie. Georg Thieme Verlag, StuttgartGoogle Scholar
  115. 115.
    Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24:1693–1703Google Scholar
  116. 116.
    Kondejewski LH, Farmer SW, Wishart DS, Kay CM, Hancock REW, Hodges RS (1996) Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem 271:25261–25268Google Scholar
  117. 117.
    Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53:3538–3540Google Scholar
  118. 118.
    Evans WH, Graham JM (1991) Struktur und Funktion biologischer Membranen. Georg Thieme Verlag, StuttgartGoogle Scholar
  119. 119.
    Begemann H, Rastatter J (1993) Klinische Hämatologie. Georg Thieme Verlag, StuttgartGoogle Scholar
  120. 120.
    Baake M, Gilles A (1994) Hämatologie. Theorie und Praxis für medizinische Assistenzberufe. GIT Verlag GmbH, DarmstadtGoogle Scholar
  121. 121.
    Schwoch G, Passow H (1973) Preparation and properties of human erythrocyte-ghosts. Mol Cell Biochem 2:197–218Google Scholar
  122. 122.
    Hanahan DJ, Ekholm JE (1974) The preparation of red cell ghosts (membranes). Methods Enzymol 31:168–172Google Scholar
  123. 123.
    Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130Google Scholar
  124. 124.
    Ieronimo M, Afonin S, Koch K, Berditsch M, Wadhwani P, Ulrich AS (2010) 19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. J Am Chem Soc 132:8822–8824Google Scholar
  125. 125.
    Steck TL (1974) The organization of proteins in the human red blood cell membrane. A review J Cell Biol 62:1–19Google Scholar
  126. 126.
    McLaughlin AC, Cullis PR, Hemminga MA, Hoult DI, Radda GK, Ritchie GA, Seeley PJ, Richards RE (1975) Application of 31P NMR to model and biological membrane systems. FEBS Lett 57:213–218Google Scholar
  127. 127.
    Yeagle PL (1982) 31P nuclear magnetic resonance studies of the phospholipid-protein interface in cell membranes. Biophys J 37:227–239Google Scholar
  128. 128.
    Grobner G, Taylor A, Williamson PT, Choi G, Glaubitz C, Watts JA, de Grip WJ, Watts A (1997) Macroscopic orientation of natural and model membranes for structural studies. Anal Biochem 254:132–138Google Scholar
  129. 129.
    Rockland LB (1960) Saturated salt solutions for static control of relative humidity between 5-degrees-C and 40-degrees-C. Anal Chem 32:1375–1376Google Scholar
  130. 130.
    Afonin S (2004) Structural studies on membrane-active peptides in lipid bilayers by solid state 19F-NMR. PhD thesis, University of JenaGoogle Scholar
  131. 131.
    Martin HH (1963) Bacterial protoplasts – a review. J Theor Biol 5:1–34Google Scholar
  132. 132.
    Pless DD, Schmit AS, Lennarz WJ (1975) The characterization of mannan of Micrococcus lysodeikticus as an acidic lipopolysaccharide. J Biol Chem 250:1319–1327Google Scholar
  133. 133.
    de Bony J, Lopez A, Gilleron M, Welby M, Laneelle G, Rousseau B, Beaucourt JP, Tocanne JF (1989) Transverse and lateral distribution of phospholipids and glycolipids in the membrane of the bacterium Micrococcus luteus. Biochemistry-Us 28:3728–3737Google Scholar
  134. 134.
    Hurley JH, Boura E, Carlson LA, Rozycki B (2010) Membrane budding. Cell 143:875–887Google Scholar
  135. 135.
    Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057Google Scholar
  136. 136.
    Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581Google Scholar
  137. 137.
    Beveridge TJ (1999) Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733Google Scholar
  138. 138.
    Mashburn-Warren L, Mclean RJC, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6:214–219Google Scholar
  139. 139.
    Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957Google Scholar
  140. 140.
    Renelli M, Matias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiol-Sgm 150:2161–2169Google Scholar
  141. 141.
    Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas-aeruginosa in association with membrane-vesicles during normal growth and exposure to gentamicin – a novel mechanism of enzyme-secretion. J Bacteriol 177:3998–4008Google Scholar
  142. 142.
    Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D, Simmaco M (2000) Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267:1447–1454Google Scholar
  143. 143.
    Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry-Us 35:11361–11368Google Scholar
  144. 144.
    Blazyk J, Wiegand R, Klein J, Hammer J, Epand RM, Epand RF, Maloy WL, Kari UP (2001) A novel linear amphipathic beta-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. J Biol Chem 276:27899–27906Google Scholar
  145. 145.
    Steiner V, Schar M, Bornsen KO, Mutter M (1991) Retention behaviour of a template-assembled synthetic protein and its amphiphilic building blocks on reversed-phase columns. J Chromatogr 586:43–50Google Scholar
  146. 146.
    Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E (2006) Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl Environ Microbiol 72:3302–3308Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Katja Koch
    • 1
  • Sergii Afonin
    • 2
  • Marco Ieronimo
    • 1
  • Marina Berditsch
    • 1
  • Anne S. Ulrich
    • 1
    • 2
  1. 1.Institute of Organic Chemistry and CFNKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations