Advertisement

Microfluidics pp 261-294 | Cite as

Integrated Multifunctional Microfluidics for Automated Proteome Analyses

  • John K. Osiri
  • Hamed Shadpour
  • Małgorzata A. Witek
  • Steven A. SoperEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 304)

Abstract

Proteomics is a challenging field for realizing totally integrated microfluidic systems for complete proteome processing due to several considerations, including the sheer number of different protein types that exist within most proteomes, the large dynamic range associated with these various protein types, and the diverse chemical nature of the proteins comprising a typical proteome. For example, the human proteome is estimated to have >106 different components with a dynamic range of >1010. The typical processing pipeline for proteomics involves the following steps: (1) selection and/or extraction of the particular proteins to be analyzed; (2) multidimensional separation; (3) proteolytic digestion of the protein sample; and (4) mass spectral identification of either intact proteins (top-down proteomics) or peptide fragments generated from proteolytic digestions (bottom-up proteomics). Although a number of intriguing microfluidic devices have been designed, fabricated and evaluated for carrying out the individual processing steps listed above, work toward building fully integrated microfluidic systems for protein analysis has yet to be realized. In this chapter, information will be provided on the nature of proteomic analysis in terms of the challenges associated with the sample type and the microfluidic devices that have been tested to carry out individual processing steps. These include devices such as those for multidimensional electrophoretic separations, solid-phase enzymatic digestions, and solid-phase extractions, all of which have used microfluidics as the functional platform for their implementation. This will be followed by an in-depth review of microfluidic systems, which are defined as units possessing two or more devices assembled into autonomous systems for proteome processing. In addition, information will be provided on the challenges involved in integrating processing steps into a functional system and the approaches adopted for device integration. In this chapter, we will focus exclusively on the front-end processing microfluidic devices and systems for proteome processing, and not on the interface technology of these platforms to mass spectrometry due to the extensive reviews that already exist on these types of interfaces.

Keywords

Integrated microsystems Isoelectric focusing Microfluidics Orthogonality Proteome Top-down and bottom-up analysis Two-dimensional electrophoresis 

Abbreviations

BMA

Butyl methacrylate

BSA

Bovine serum albumin

CGE-PP

Chip gel electrophoresis protein profiling

EDMA

Ethylene dimethylacrylate

EGDMA

Ethylene glycol dimethacrylate

ESI

Electrospray ionization

GBP

Gold binding peptide

GMA

Glycidyl methacrylate

IEF

Isoelectric focusing

IMAC

Immobilized metal affinity chromatography

LMA

Lauryl methacrylate

MEKC

Micellar electrokinetic capillary electrophoresis

MudPIT

Multidimensional protein identification technology

NDA

Naphthalene-2,3-dicarboxaldehyde

PCR

Polymerase chain reaction

PDMS

Poly(dimethylsiloxane)

PMMA

Poly(methyl methacrylate)

PVDF

Poly(vinylidene difluoride)

SDS-PAGE

Sodium dodecylsulfate–poly(acrylamide) gel electrophoresis

SPE

Solid phase extraction

References

  1. 1.
    Wilkins MR, Sanchez JC, Gooley AA, Appel RD, HumpherySmith I, Hochstrasser DF, Williams KL (1996) Biotechnol Genet Eng Rev 13:19Google Scholar
  2. 2.
    de Hoog CL, Mann M (2004) Annu Rev Genomics Hum Genet 5:267Google Scholar
  3. 3.
    Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, HumpherySmith I, Williams KL, Hochstrasser DF (1996) Biotechnology 14:61Google Scholar
  4. 4.
    Jackson LO, Borkman S, Liyanage R, Wilkens CL (2006) Trends Anal Chem 25:1046Google Scholar
  5. 5.
    Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008) Bmc Genomics 9Google Scholar
  6. 6.
    Kato M, Sakai-Kato K, Jin H, Kubota K, Miyano H, Toyo’oka T, Dulay MT, Zare RN (2004) Anal Chem 76:1896Google Scholar
  7. 7.
    Anderson NL, Anderson NG (1998) Electrophoresis 19:1853Google Scholar
  8. 8.
    Hu S, Michels DA, Fazal MA, Ratisoontorn C, Cunningham ML, Dovichi NJ (2004) Anal Chem 76:4044Google Scholar
  9. 9.
    Kussmann M, Affolter M, Fay LB (2005) Comb Chem High Throughput Screen 8:679Google Scholar
  10. 10.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XQH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang JH, Miklos GLG, Nelson C, Broder S, Clark AG, Nadeau C, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng ZM, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge WM, Gong FC, Gu ZP, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke ZX, Ketchum KA, Lai ZW, Lei YD, Li ZY, Li JY, Liang Y, Lin XY, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue BX, Sun JT, Wang ZY, Wang AH, Wang X, Wang J, Wei MH, Wides R, Xiao CL, Yan CH, Yao A, Ye J, Zhan M, Zhang WQ, Zhang HY, Zhao Q, Zheng LS, Zhong F, Zhong WY, Zhu SPC, Zhao SY, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An HJ, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi HY, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays AD, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu XJ, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen MY, Wu D, Wu M, Xia A, Zandieh A, Zhu XH (2001) Science 291:1304Google Scholar
  11. 11.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang HM, Yu J, Wang J, Huang GY, Gu J, Hood L, Rowen L, Madan A, Qin SZ, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan HQ, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JGR, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang WH, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz JR, Slater G, Smit AFA, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ (2001) Nature 409:860Google Scholar
  12. 12.
    Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu ZY, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH (2003) Electrophoresis 24:3533Google Scholar
  13. 13.
    Anderson NL, Anderson NG (2002) Mol Cell Proteomics 1:845Google Scholar
  14. 14.
    Kim H, Page GP, Barnes S (2004) Nutrition 20:155Google Scholar
  15. 15.
    Lay JO, Borgmann S, Liyanage R, Wilkins CL (2006) Trends Analyt Chem 25:1046Google Scholar
  16. 16.
    Ahmed N, Rice GE (2005) J Chromatogr B 815:39Google Scholar
  17. 17.
    Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A (2004) Proteomics 4:3686Google Scholar
  18. 18.
    Ransohoff DF (2005) Nat Rev Cancer 5:142Google Scholar
  19. 19.
    Coombes KR, Morris JRS, Hu JH, Edmonson SR, Baggerly KA (2005) Nat Biotechnol 23:291Google Scholar
  20. 20.
    Haynes PA, Yates JR (2000) Yeast 17:81Google Scholar
  21. 21.
    Schluter H, Apweiler R, Holzhutter H-G, Jungblut PR (2009) Chem Cent J 3:1Google Scholar
  22. 22.
    Emmett MR, Caprioli RM (1994) J Am Soc Mass Spectrom 5:605Google Scholar
  23. 23.
    Bollag DM, Edelstein SJ (eds) (1991) Protein methods, Wiley-Liss, New YorkGoogle Scholar
  24. 24.
    Dignam JD (1990) Meth Enzymol 182:194Google Scholar
  25. 25.
    Lenstra JA, Bloemendal H (1983) Eur J Biochem 135:413Google Scholar
  26. 26.
    Toda T, Ishijima Y, Matsushita H, Yoshida M, Kimura N (1994) Electrophoresis 15:984Google Scholar
  27. 27.
    Sanchez J-C, Appel RD, Golaz O, Pasquali C, Ravier F, Bairoch A, Hochstrasser DF (1995) Electrophoresis 16:1131Google Scholar
  28. 28.
    Portig I, Pankuweit S, Lottspeich F, Maisch B (1996) Electrophoresis 17:803Google Scholar
  29. 29.
    Cull M, McHenry CS (1990) Meth Enzymol 182:147Google Scholar
  30. 30.
    Jazwinski SM (1990) Meth Enzymol 182:154Google Scholar
  31. 31.
    Kawaguchi S-i, Kuramitsu S (1995) Electrophoresis 16:1060Google Scholar
  32. 32.
    Goerg A, Postel W, Guenther S (1988) Electrophoresis 9:531Google Scholar
  33. 33.
    Teixeira-Gomes AP, Cloeckaert A, Bezard G, Dubray G, Zygmunt MS (1997) Electrophoresis 18:156Google Scholar
  34. 34.
    Ames GFL, Nikaido K (1976) Biochemistry 15:616Google Scholar
  35. 35.
    Goerg A, Boguth G, Obermaier C, Posch A, Weiss W (1995) Electrophoresis 16:1079Google Scholar
  36. 36.
    Goerg A, Postel W, Domscheit A, Guenther S (1988) Electrophoresis 9:681Google Scholar
  37. 37.
    Posch A, van den Berg BM, Berg HCJ, Goerg A (1995) Electrophoresis 16:1312Google Scholar
  38. 38.
    Gegenheimer P (1990) Meth Enzymol 182:174Google Scholar
  39. 39.
    Li PCH, Harrison DJ (1997) Anal Chem 69:1564Google Scholar
  40. 40.
    Di Carlo D, Jeong KH, Lee LP (2003) Lab Chip 3:287Google Scholar
  41. 41.
    Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS, Ramsey JM (1998) Anal Chem 70:158Google Scholar
  42. 42.
    Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GTA, Northrup MA (2001) Anal Chem 73:492Google Scholar
  43. 43.
    Lee SW, Tai YC (1999) Sens Actuators A Phys 73:74Google Scholar
  44. 44.
    Lu H, Schmidt MA, Jensen KF (2005) Lab Chip 5:23Google Scholar
  45. 45.
    Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Electrophoresis 7:52Google Scholar
  46. 46.
    Wu FS, Wang MY (1984) Anal Biochem 139:100Google Scholar
  47. 47.
    Harrison PA, Black CC (1982) Plant Physiol 70:1359Google Scholar
  48. 48.
    Rabilloud T (1996) Electrophoresis 17:813Google Scholar
  49. 49.
    Theillet C, Delpeyroux F, Fiszman M, Reigner P, Esnault R (1982) Planta 155:478Google Scholar
  50. 50.
    Badock V, Steinhusen U, Bommert K, Otto A (2001) Electrophoresis 22:2856Google Scholar
  51. 51.
    Issaq HJ, Conrads TP, Janini GM, Veenstra TD (2002) Electrophoresis 23:3048Google Scholar
  52. 52.
    Bauer A, Kuster B (2003) Eur J Biochem 270:570Google Scholar
  53. 53.
    Peng J, Gygi SP (2001) J Mass Spectrom 36:1083Google Scholar
  54. 54.
    Kutter JP, Jacobson SC, Ramsey JM (2000) J Microcolumn Sep. 12:93–97Google Scholar
  55. 55.
    Kutter JP, Jacobson SC, Matsubara N, Ramsey JM (1998) Anal Chem 70:3291Google Scholar
  56. 56.
    Lion N, Gellon JO, Jensen H, Girault HH (2003) J Chromatogr A 1003:11Google Scholar
  57. 57.
    Mao X, Luo Y, Dai Z, Wang K, Du Y, Lin BC (2004) Anal Chem 76:6941Google Scholar
  58. 58.
    Service RF (2001) Science 294:2074Google Scholar
  59. 59.
    Smith RD (2000) Nat Biotechnol 18:1041Google Scholar
  60. 60.
    Wang H, Hanash S (2003) J Chromatogr B 787:11Google Scholar
  61. 61.
    Chen XX, Wu HK, Mao CD, Whitesides GM (2002) Anal Chem 74:1772Google Scholar
  62. 62.
    Molloy MP, Brzezinski EE, Hang JQ, McDowell MT, VanBogelen RA (2003) Proteomics 3:1912Google Scholar
  63. 63.
    Ibel K, May RP, Kirschner K, Szadkowski H, Mascher E, Lundahl P (1990) Eur J Biochem 190:311Google Scholar
  64. 64.
    Laemmli UK (1970) Nature (London, United Kingdom) 227:680Google Scholar
  65. 65.
    Schaegger H, Von Jagow G (1987) Anal Biochem 166:368Google Scholar
  66. 66.
    Giddings JC (1967) Anal Chem 39:1027Google Scholar
  67. 67.
    Stroink T, Ortiz MC, Bult A, Lingeman H, de Jong GJ, Underberg WJM (2005) J Chromatogr B 817:49Google Scholar
  68. 68.
    Giddings JC (1984) Anal Chem 56:1258AGoogle Scholar
  69. 69.
    Giddings JC (1987) J High Resolut Chromatogr 10:319Google Scholar
  70. 70.
    Cortes HJ (1992) J Chromatogr 626:3Google Scholar
  71. 71.
    Cortes HJ (ed) (1990) Multidimensional chromatography: techniques and applications. In: Chromatographic science series, vol 50. Marcel Dekker, New YorkGoogle Scholar
  72. 72.
    Venkatramani CJ, Xu J, Phillips JB (1996) Anal Chem 68:1486Google Scholar
  73. 73.
    Erni F, Frei RW (1978) J Chromatogr 149:561Google Scholar
  74. 74.
    Rocklin RD, Ramsey RS, Ramsey JM (2000) Anal Chem 72:5244Google Scholar
  75. 75.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Anal Chem 77:6426Google Scholar
  76. 76.
    Slonecker PJ, Li XD, Ridgway TH, Dorsey JG (1996) Anal Chem 68:682Google Scholar
  77. 77.
    Gray M, Dennis GR, Wormell P, Shalliker RA, Slonecker P (2002) J Chromatogr A 975:285Google Scholar
  78. 78.
    Chen H, Fan ZH (2009) Electrophoresis 30:758Google Scholar
  79. 79.
    Li Y, Buch JS, Rosenberger F, Devoe DL, Lee CS (2004) Anal Chem 76:742Google Scholar
  80. 80.
    Yang S, Liu JK, Lee CS, Devoe DL (2009) Lab Chip 9:592Google Scholar
  81. 81.
    Shadpour H, Soper SA (2006) Anal Chem 78:3519Google Scholar
  82. 82.
    Osiri JK, Shadpour H, Park S, Snowden BC, Chen ZY, Soper SA (2008) Electrophoresis 29:4984Google Scholar
  83. 83.
    Ethier M, Hou W, Duewel HS, Figeys D (2006) J Proteome Res 5:2754Google Scholar
  84. 84.
    Liu Y, Zhong W, Meng S, Kong J, Lu H, Yang P, Girault HH, Liu B (2006) Chem Eur J 12:6585Google Scholar
  85. 85.
    Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) Anal Biochem 203:173Google Scholar
  86. 86.
    Ru QC, Zhua LA, Katenhusena RA, Silbermana J, Brzeskia H, Liebmana M, Shriver CD (2006) J Chromatogr A 1111:175Google Scholar
  87. 87.
    Huang Y, Shan W, Liu B, Liu Y, Zhang Y, Zhao Y, Lu H, Tang Y, Yang P (2006) Lab Chip 6:534Google Scholar
  88. 88.
    Kumarathasan P, Mohottalage S, Goegan P, Vincent R (2005) Anal Biochem 346:85Google Scholar
  89. 89.
    Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Nature 379:466Google Scholar
  90. 90.
    Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Electrophoresis 20:601Google Scholar
  91. 91.
    Klammer AA, MacCoss MJ (2006) J Proteome Res 5:695Google Scholar
  92. 92.
    Lundell N, Schreitmüller T (1999) Anal Biochem 266:31Google Scholar
  93. 93.
    Schaefer H, Chamrad DC, Marcus K, Reidegeld KA, Blüggel M, Meyer HE (2005) Proteomics 5:846Google Scholar
  94. 94.
    Křenková J, Foret F (2004) Electrophoresis 25:3550Google Scholar
  95. 95.
    Massolini G, Calleri E (2005) J Sep Sci 28:7Google Scholar
  96. 96.
    Duan J, Liang Z, Yang C, Zhang J, Zhang L, Zhang W, Zhang Y (2006) Proteomics 6:412Google Scholar
  97. 97.
    Slysz GW, Lewis DF, Schriemer DC (2006) J Proteome Res 5:1959Google Scholar
  98. 98.
    Duan J, Sun L, Liang Z, Zhang J, Wang H, Zhang L, Zhang W, Zhang Y (2006) J Chromatogr A 1106:165Google Scholar
  99. 99.
    Strader MB, Tabb DL, Hervey WJ, Pan C, Hurst GB (2006) Anal Chem 78:125Google Scholar
  100. 100.
    Lazar IM, Ramsey RS, Ramsey JM (2001) Anal Chem 73:1733Google Scholar
  101. 101.
    Sim TS, Kim E-M, Joo HS, Kim BG, Kim Y-K (2006) Lab Chip 6:1056Google Scholar
  102. 102.
    Pramanik BN, Mirza UA, Ing YH, Liu Y-H, Bartner PL, Weber PC, Bose AK (2002) Protein Sci 11:2676Google Scholar
  103. 103.
    López-Ferrer D, Capelo JL, Vázquez J (2005) J Proteome Res 4:1569Google Scholar
  104. 104.
    López-Ferrer D, Hixson KK, Smallwood H, Squier TC, Petritis K, Smith RD (2009) Anal Chem 81:6272Google Scholar
  105. 105.
    Liu J, Lin S, Qi D, Deng C, Yang P, Zhang X (2007) J Chromatogr A 1176:169Google Scholar
  106. 106.
    Nesmelova IV, Skirda VD, Fedotov VD (2002) Biopolymers 63:132Google Scholar
  107. 107.
    Peterson DS, Rohr T, Svec F, Fréchet JMJ (2002) Anal Chem 74:4081Google Scholar
  108. 108.
    Wang C, Oleschuk R, Ouchen F, Li J, Thibault P, Harrison DJ (2000) Rapid Commun Mass Spectrom 14:1377Google Scholar
  109. 109.
    Slovakova M, Minc N, Bilkova Z, Smadja C, Faigle W, Fütterer C, Taverna M, Viovy J-L (2005) Lab Chip 5:935Google Scholar
  110. 110.
    Xie S, Svec F, Fréchet JMJ (1999) Biotechnol Bioeng 62:30Google Scholar
  111. 111.
    Svec F (2006) Electrophoresis 27:947Google Scholar
  112. 112.
    McCarley RL, Vaidya B, Wei S, Smith AF, Patel AB, Feng J, Murphy MC, Soper SA (2005) J Am Chem Soc 127:842Google Scholar
  113. 113.
    Qi S, Liu X, Ford S, Barrows J, Thomas G, Kelly K, McCandless A, Lian K, Goettert J, Soper SA (2002) Lab Chip 2:88Google Scholar
  114. 114.
    Musyimi HK, Guy J, Narcisse DA, Soper SA, Murray KK (2005) Electrophoresis 26:4703Google Scholar
  115. 115.
    Lee J, Soper SA, Murray KK (2009) J Mass Spectrom 44:579Google Scholar
  116. 116.
    Hood L (2002) J Proteome Res 1:399Google Scholar
  117. 117.
    Laurell T, Marko-Varga G (2002) Proteomics 2:345Google Scholar
  118. 118.
    O’Connor CD, Pickard K (2003) In: Day INM (ed) Microarrays & microplates: applications in biomedical sciences. BIOS Scientific, Abingdon, UK, pp 61–88Google Scholar
  119. 119.
    Chang H-T, Huang Y-F, Chiou S-H, Chiu T-C, Hsieh M-M (2004) Curr Proteomics 1:325Google Scholar
  120. 120.
    Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Anal Chem 77:57Google Scholar
  121. 121.
    Yue GE, Roper MG, Balchunas C, Pulsipher A, Coon JJ, Shabanowitz J, Hunt DF, Landers JP, Ferrance JP (2006) Anal Chim Acta 564:116Google Scholar
  122. 122.
    Dahlin AP, Bergstroem SK, Andren PE, Markides KE, Bergquist J (2005) Anal Chem 77:5356Google Scholar
  123. 123.
    Fortier M-H, Bonneil E, Goodley P, Thibault P (2005) Anal Chem 77:1631Google Scholar
  124. 124.
    Gao J, Xu J, Locascio LE, Lee CS (2001) Anal Chem 73:2648Google Scholar
  125. 125.
    Hardouin J, Duchateau M, Joubert-Caron R, Caron M (2006) Rapid Commun Mass Spectrom 20:3236Google Scholar
  126. 126.
    Long ZC, Shen Z, Wu DP, Qin JH, Lin BC (2007) Lab Chip 7:1819Google Scholar
  127. 127.
    Broyles BS, Jacobson SC, Ramsey JM (2003) Anal Chem 75:2761Google Scholar
  128. 128.
    Ramsey JD, Collins GE (2005) Anal Chem 77:6664Google Scholar
  129. 129.
    Yang WC, Sun XH, Pan T, Woolley AT (2008) Electrophoresis 29:3429Google Scholar
  130. 130.
    Proczek G, Augustin V, Descroix S, Hennion MC (2009) Electrophoresis 30:515Google Scholar
  131. 131.
    Tuomikoski S, Virkkala N, Rovio S, Hokkanen A, Siren H, Franssila S (2006) J Chromatogr A 1111:258Google Scholar
  132. 132.
    Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Anal Chem 78:4976Google Scholar
  133. 133.
    Carlier J, Arscott S, Thomy V, Camart JC, Cren-Olive C, Le Gac S (2005) J Chromatogr A 1071:213–222Google Scholar
  134. 134.
    Gottschlich N, Culbertson CT, McKnight TE, Jacobson SC, Ramsey JM (2000) J Chromatogr B 745:243Google Scholar
  135. 135.
    Dodge A, Brunet E, Chen S, Goulpeau J, Labas V, Vinh J, Tabeling P (2006) Analyst 131:1122Google Scholar
  136. 136.
    Huh YS, Park TJ, Lee EZ, Hong WH, Lee SY (2008) Electrophoresis 29:2960Google Scholar
  137. 137.
    Herr AE, Hatch AV, Throckmorton DJ, Tran HM, Brennan JS, Giannobile WV, Singh AK (2007) “Microfluidic immunoassays as rapid saliva-based clinical diagnostics.”Proc Natl Acad Sci USA, 104(13), 5268–5273Google Scholar
  138. 138.
    Stachowiak JC, Shugard EE, Mosier BP, Renzi RF, Caton PF, Ferko SM, de Vreugde JLV, Yee DD, Haroldsen BL, VanderNoot VA (2007) Anal Chem 79:5763Google Scholar
  139. 139.
    Osiri JK, Shadpour H, Soper SA (2010) Anal Bioanal Chem 398:489Google Scholar
  140. 140.
    Peterson DS, Rohr T, Svec F, Frechet JMJ (2003) Anal Chem 75:5328Google Scholar
  141. 141.
    Zhang N, Li L (2004) Rapid Commun Mass Spectrom 18:889Google Scholar
  142. 142.
    Lee J, Musyimi HK, Soper SA, Murray KK (2008) J Am Soc Mass Spectrom 19:964Google Scholar
  143. 143.
    Xu YC, Vaidya B, Patel AB, Ford SM, McCarley RL, Soper SA (2003) Anal Chem 75:2975Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • John K. Osiri
    • 1
    • 2
  • Hamed Shadpour
    • 1
    • 2
  • Małgorzata A. Witek
    • 1
    • 2
  • Steven A. Soper
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Mechanical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations