Advertisement

Electrorheological Fluid and Its Applications in Microfluidics

  • Limu Wang
  • Xiuqing Gong
  • Weijia WenEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 304)

Abstract

Microfluidics is a low-cost technique for fast-diagnosis and microsynthesis. Within a decade it might become the foundation of point-of-care and lab-on-a-chip applications. With microfluidic chips, high-throughput sample screening and information processing are made possible. The picoliter droplet runs in microfluidic chips are ideal miniaturized vessels for microdetection and microsynthesis. Meanwhile, individual manipulation of microdroplets remains a challenge: the shortcomings in automatic, reliable, and scalable methods for logic control prevent further integration of microfluidic applications. The giant electrorheological fluid (GERF), which is a kind of “smart” colloid, has tunable viscosity under the influence of external electric field. Therefore, GERF is introduced as the active controlling medium, with real-time response in on-chip fluid control. This review article introduces the working principles and fabrication methods of different types of electrorheological fluid, and extensively describes the strategies of GERF-assisted microfluidic controlling schemes.

Keywords

Electrorheological fluid Logic control Microfluidics Microdroplet 

Abbreviation

AgPDMS

Silver-PDMS composite

CPDMS

Carbon-PDMS composite

CPU

Central processing unit

CTP

Calcium and titanium precipitate

DNA

Deoxyribonucleic acid

ERF

Electrorheological fluid

EWOD

Electrowetting on dielectric

GERF

Giant electrorheological fluid

LOC

Lab-on-a-chip

MCM-41

Mobil composition of matter no. 41

MWNT

Multiwall-nanotube

PANI

Polyaniline

PCR

Polymerase chain reaction

PDMS

Polydimethylsiloxane

PM

Polar-molecule

PMMA

Poly(methyl metharcylate)

POC

Point of care

PPY

Polypyrrole

PS

Polystyrene

SBA-15

Santa Barbara amorphous no.15

Notes

Acknowledgements

This publication is based on work supported by Award No. SA-C0040/UK-C0016, made by King Abdullah University of Science and Technology (KAUST) and Hong Kong RGC grants HKUST 603608.

References

  1. 1.
    McDonald JC, Duffy DC, Anderson JR et al (2000) Electrophoresis 21:27CrossRefGoogle Scholar
  2. 2.
    Quake SR, Scherer A (2000) Science 290:1536CrossRefGoogle Scholar
  3. 3.
    Dudek MM, Lindahl TL, Killard AJ (2010) Anal Chem 82:2029CrossRefGoogle Scholar
  4. 4.
    Srinivasan V, Pamula VK, Fair RB (2004) Lab Chip 4:310CrossRefGoogle Scholar
  5. 5.
    Lin BC, Gao Y, Qin JH (2009) J Chin Chem Soc 56:1Google Scholar
  6. 6.
    Malic L, Brassard D, Veres T et al (2010) Lab Chip 10:418CrossRefGoogle Scholar
  7. 7.
    Epstein IR (2007) Science 315:775CrossRefGoogle Scholar
  8. 8.
    Beer NR, Rose KA, Kennedy IM (2009) Lab Chip 9:841CrossRefGoogle Scholar
  9. 9.
    Unger MA, Chou H, Thorsen T et al (2000) Science 288:113CrossRefGoogle Scholar
  10. 10.
    Pollack MG, Fair RB, Shenderov AD (2000) Appl Phys Lett 77:1725CrossRefGoogle Scholar
  11. 11.
    Fair RB (2007) Microfluid Nanofluid 3:245Google Scholar
  12. 12.
    Su F, Chakrabarty K, Fair RB (2006) IEEE Trans Comput Aided Des Integr Circ Syst 25:211CrossRefGoogle Scholar
  13. 13.
    Wen W, Huang X, Yang S et al (2003) Nat Mater 2:727CrossRefGoogle Scholar
  14. 14.
    Tao R, Sun JM (1991) Phys Rev Lett 67:398CrossRefGoogle Scholar
  15. 15.
    Halsey TC (1992) Science 258:761CrossRefGoogle Scholar
  16. 16.
    Ma H, Wen W, Tam WY et al (2003) Adv Phys 52:343CrossRefGoogle Scholar
  17. 17.
    Papadopoulos CA (1998) Mechatronics 8:719CrossRefGoogle Scholar
  18. 18.
    Choi W, Tuteja A, McKinley GH (2009) Adv Mater 21:2190CrossRefGoogle Scholar
  19. 19.
    Hao T (2001) Adv Mater 13:1847Google Scholar
  20. 20.
    Winslow WM (1949) J Appl Phys 20:1137CrossRefGoogle Scholar
  21. 21.
    Li Y, Chen Y, Conrad H (1995) ASME 235:29Google Scholar
  22. 22.
    Conrad H, Li Y, Chen Y (1995) J Rheol 39:1041CrossRefGoogle Scholar
  23. 23.
    Wu CW, Conrad H (1996) J Phys D 29:3147CrossRefGoogle Scholar
  24. 24.
    Lu KQ, Shen R, Wang XZ et al (2005) Int J Mod Phys B 19:1065CrossRefGoogle Scholar
  25. 25.
    Lu KQ, Shen R, Wang XZ et al (2006) Chin Phys 15:2476CrossRefGoogle Scholar
  26. 26.
    Cheng Y, Wu K, Liu F et al (2010) ACS Appl Mater Interfaces 2:621CrossRefGoogle Scholar
  27. 27.
    Shen R, Wang X, Lu Y et al (2009) Adv Mater 21:4631CrossRefGoogle Scholar
  28. 28.
    Shen R, Wang XZ, Wen WJ et al (2005) Int J Mod Phys B 19:1104CrossRefGoogle Scholar
  29. 29.
    Yin JB, Zhao XP (2004) Chem Mater 16:321CrossRefGoogle Scholar
  30. 30.
    Zhao XP, Yin JB (2002) Chem Mater 14:2258CrossRefGoogle Scholar
  31. 31.
    Yin JB, Zhao XP (2006) J Phys Chem B 110:12916CrossRefGoogle Scholar
  32. 32.
    Yin J, Zhao X, Xiang L et al (2009) Soft Matter 5:4687CrossRefGoogle Scholar
  33. 33.
    Shen C, Wen W, Yang S et al (2006) J Appl Phys 99:106104CrossRefGoogle Scholar
  34. 34.
    Wen WJ, Huang XX, Sheng P (2004) Appl Phys Lett 85:299CrossRefGoogle Scholar
  35. 35.
    Li J, Gong X, Chen S et al (2010) J Appl Phys 107:093507CrossRefGoogle Scholar
  36. 36.
    Parmar KPS, Meheust Y, Schjelderupsen B et al (2008) Langmuir 24:1814CrossRefGoogle Scholar
  37. 37.
    Yoshimoto S (2005) Macromol Rapid Commun 26:857CrossRefGoogle Scholar
  38. 38.
    Kim JW, Liu F, Choi HJ et al (2003) Polymer 44:289CrossRefGoogle Scholar
  39. 39.
    Cho MS, Choi HJ, Ahn WS (2004) Langmuir 20:202CrossRefGoogle Scholar
  40. 40.
    Cho MS, Choi HJ, Kim KY et al (2002) Macromol Rapid Commun 23:713CrossRefGoogle Scholar
  41. 41.
    Park SJ, Cho MS, Lim ST et al (2005) Macromol Rapid Commun 26:1563CrossRefGoogle Scholar
  42. 42.
    Cho MS, Cho YH, Choi HJ et al (2003) Langmuir 19:5875CrossRefGoogle Scholar
  43. 43.
    Gong X, Wu J, Huang X et al (2008) Nanotechnology 19:165602CrossRefGoogle Scholar
  44. 44.
    Zeng S, Li B, Su X et al (2009) Lab Chip 9:1340CrossRefGoogle Scholar
  45. 45.
    Hosokawa K, Maeda R (2000) Micromech Microeng 10:415CrossRefGoogle Scholar
  46. 46.
    Hosokawa K, Fujii T, Endo I (1999) Anal Chem 71:4781CrossRefGoogle Scholar
  47. 47.
    Groisman A, Enzelberger M, Quake SR (2003) Science 300:955CrossRefGoogle Scholar
  48. 48.
    Yu Q, Bauer JM, Moore JS et al (2001) Appl Phys Lett 78:2589CrossRefGoogle Scholar
  49. 49.
    Beebe DJ, Moore JS, Bauer JM et al (2000) Nature 404:588CrossRefGoogle Scholar
  50. 50.
    Pal R, Yang M, Johnson BN et al (2004) Anal Chem 76:3740CrossRefGoogle Scholar
  51. 51.
    Elizabeth Hulme S, Shevkoplyas SS, Whitesides GM (2009) Lab Chip 9:79CrossRefGoogle Scholar
  52. 52.
    Zheng Y, Dai W, Wu H (2009) Lab Chip 9:469CrossRefGoogle Scholar
  53. 53.
    Weibel DB, Kruithof M, Potenta S et al (2005) Anal Chem 77:4726CrossRefGoogle Scholar
  54. 54.
    Weibel DB, Siegel AC, Lee A et al (2007) Lab Chip 7:1832CrossRefGoogle Scholar
  55. 55.
    Yoshida K, Kikuchi M, Park JH et al (2002) Sens Actuators A Phys 95:227CrossRefGoogle Scholar
  56. 56.
    Zhang M, Wu J, Niu X et al (2008) Phys Rev E 78:066305CrossRefGoogle Scholar
  57. 57.
    Eddings MA, Johnson MA, Gale BK (2008) J Micromech Microeng 18:067001CrossRefGoogle Scholar
  58. 58.
    Leclerc E, Sakai Y, Fujii T (2003) Biomed Microdevices 5:109CrossRefGoogle Scholar
  59. 59.
    Moreira NH, Almeida AL, Piazzeta MH et al (2009) Lab Chip 9:115CrossRefGoogle Scholar
  60. 60.
    Ng JMK, Gitlin I, Stroock AD et al (2002) Electrophoresis 23:3461CrossRefGoogle Scholar
  61. 61.
    Sia SK, Whitesides GM (2003) Electrophoresis 24:3563CrossRefGoogle Scholar
  62. 62.
    Niu X, Peng S, Liu L et al (2007) Adv Mater 19:2682CrossRefGoogle Scholar
  63. 63.
    Niu X, Zhang M, Peng S et al (2007) Biomicrofluidics 1:044101CrossRefGoogle Scholar
  64. 64.
    Liu L, Peng S, Niu X et al (2006) Appl Phys Lett 89:223521CrossRefGoogle Scholar
  65. 65.
    Valero A, Post JN, van Nieuwkasteele JW et al (2008) Lab Chip 8:62CrossRefGoogle Scholar
  66. 66.
    Fox MB, Esveld DC, Valero A et al (2006) Anal Bio Chem 385:474CrossRefGoogle Scholar
  67. 67.
    Khine M, Lau A, Ionescu-Zanetti C et al (2005) Lab Chip 5:38CrossRefGoogle Scholar
  68. 68.
    Young H, Boris R (2003) Sens Actuators A Phys 104:205CrossRefGoogle Scholar
  69. 69.
    Derveaux S, Stubbe BG, Roelant C et al (2008) Anal Chem 80:85CrossRefGoogle Scholar
  70. 70.
    DeMello AJ (2006) Nature 442:394CrossRefGoogle Scholar
  71. 71.
    Kutter JP (2000) Trac Trends Anal Chem 19:352CrossRefGoogle Scholar
  72. 72.
    Wang L, Zhang M, Yang M et al (2009) Biomicrofluidics 3:034105CrossRefGoogle Scholar
  73. 73.
    Nakano M, Katou T, Satou A et al (2002) J Intell Mater Syst Struct 13:503CrossRefGoogle Scholar
  74. 74.
    Niu X, Wen W, Lee YK (2005) Appl Phys Lett 87:243501CrossRefGoogle Scholar
  75. 75.
    Liu L, Chen X, Niu X et al (2006) Appl Phys Lett 89:083505CrossRefGoogle Scholar
  76. 76.
    Niu X, Liu L, Wen W et al (2006) Appl Phys Lett 88:153508CrossRefGoogle Scholar
  77. 77.
    Liu L, Niu X, Wen W et al (2006) Appl Phys Lett 88:173505CrossRefGoogle Scholar
  78. 78.
    Nguyen NT, Truong TQ (2004) Sens Actuators B 97:137–143CrossRefGoogle Scholar
  79. 79.
    Niu X, Zhang M, Wu J et al (2009) Soft Matter 5:576–581CrossRefGoogle Scholar
  80. 80.
    Zhan W, Crooks R (2003) J Am Chem Soc 125:9934CrossRefGoogle Scholar
  81. 81.
    Wang X, Zhou J, Tam TK et al (2009) Bioelectrochemistry 77:69CrossRefGoogle Scholar
  82. 82.
    Thorsen T, Maerkl SJ, Quake SR (2002) Science 298:580CrossRefGoogle Scholar
  83. 83.
    Rhee M, Burns MA (2009) Lab Chip 9:3131CrossRefGoogle Scholar
  84. 84.
    Weaver JA, Melin J, Stark D et al (2010) Nat Phys 6:218CrossRefGoogle Scholar
  85. 85.
    Prakash M, Gershenfeld N (2007) Science 315:832CrossRefGoogle Scholar
  86. 86.
    Mosadegh B, Kuo C, Tung Y et al (2010) Nat Phys 6:433CrossRefGoogle Scholar
  87. 87.
    Cheow LF, Yobas L, Kwong D (2007) Appl Phys Lett 90:054107CrossRefGoogle Scholar
  88. 88.
    Srinivasan V, Pamula VK, Fair RB (2004) Anal Chim Acta 507:145CrossRefGoogle Scholar
  89. 89.
    Pamula VK, Srinivasan V, Chakrapani H et al (2005) Proc IEEE Int Conf Micro Electro Mech Syst MEMS :722Google Scholar
  90. 90.
    Wang L, Zhang M, Li J et al (2010) Lab Chip 10:2869CrossRefGoogle Scholar
  91. 91.
    Rhee M, Burns MA (2008) Lab Chip 8:1365CrossRefGoogle Scholar
  92. 92.
    Liu L, Cao W, Wu J et al (2008) Biomicrofluidics 2:034103CrossRefGoogle Scholar
  93. 93.
    Wheeler AR, Throndset WR, Whelan RJ et al (2003) Anal Chem 75:3581CrossRefGoogle Scholar
  94. 94.
    Beer NR, Hindson BJ, Wheeler EK et al (2007) Anal Chem 79:8471CrossRefGoogle Scholar
  95. 95.
    Adleman LM (1994) Science 266:1021CrossRefGoogle Scholar
  96. 96.
    Benenson Y, Gil B, Ben-Dor U, Adar R et al (2004) Nature 429:423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and KAUST-HKUST Micro/Nano-Fluidics Joint LaboratoryThe Hong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations