Advertisement

Flow Control Methods and Devices in Micrometer Scale Channels

  • Shuichi ShojiEmail author
  • Kentaro Kawai
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 304)

Abstract

Recent advances in the fabrication of microflow devices using micro-electromechanical systems (MEMS) technology are described. Passive and active liquid flow control and particle-handling methods in micrometer-scale channels are reviewed. These methods are useful in micro total analysis systems (μTAS) and laboratory-on-a-chip systems. Multiple flow control systems (i.e., arrayed microvalves) for advanced high-throughput microflow systems are introduced. Examples of microflow devices and systems for chemical and biochemical applications are also described.

Keywords

Laminar flow Micro-electromechanical systems Micro total analysis systems Microchannel Microfluidics Microvalve 

Abbreviations

μTAS

Micro total analysis systems

CFD

Computational fluid dynamics

CMOS

Complementary metal-oxide semiconductor

DEMUX

Demultiplexer

DEP

Dielectrophoresis

EOF

Electro-osmotic flow

MEMS

Micro-electromechanical systems

ODEP

Optically induced dielectrophoretic

PDMS

Poly(dimethylsiloxane)

Re

Reynolds number

TGP

Thermoreversible gelation polymer

Notes

Acknowledgments

The authors would like to thank Dr. Jun Mizuno, Dr. Tetsushi Sekiguchi at Waseda University, Prof. Takashi Funatsu at the University of Tokyo, Dr. Takahiro Arakawa at Tokyo Dental & Medical University, Yoshitaka Shirasaki at Riken, and Dr. Masaki Kanai at Shimadzu Co.

References

  1. 1.
    Madou MJ (2002) Fundamentals of microfabrication. CRC, New YorkGoogle Scholar
  2. 2.
    Shoji S (1998) Technology in chemistry and life science. Top Curr Chem 194:163–188CrossRefGoogle Scholar
  3. 3.
    Tabeling P (2005) Introduction to microfluidics. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whiteside GM (2002) Chaotic mixer for microchannels. Science 295:647–651CrossRefGoogle Scholar
  5. 5.
    Sato H, Ito S, Tajima K, Orimoto N, Shoji S (2005) PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow. Sens Actuators A 119:365–371CrossRefGoogle Scholar
  6. 6.
    Kim DS, Lee SW, Kwon TH, Lee SS (2002) Barrier embedded chaotic micromixer. In: Baba Y, Shoji S, Berg A (eds) Proceedings 6th international conference on micro total analysis systems (μTAS’02), Nara, Japan, 3–7 November 2002. Kluwer, The Netherlands, pp 757–759Google Scholar
  7. 7.
    Larsen UD, Blankenstein G, Branebjerg (1997) Microchip coulter particle counter. In: Proceedings international conference on solid-state sensors and actuators, Transducers’97, Chicago, IL, 16–19 June 1997, pp 1319–1322Google Scholar
  8. 8.
    Kawai K, Kanai M, Munaka T, Abe H, Murakami A, Shoji S (2008) Parallel and passive distribution to arrayed microwells using self-regulating pinched flow. Sens Mater 20(6):281–288Google Scholar
  9. 9.
    Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ (2004) Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 4:576–580CrossRefGoogle Scholar
  10. 10.
    Onoe H, Gojo R, Tssuda Y, Kiriya D, Takeuchi S (2010) Core-shell gel wires for the construction of large area heterogeneous structures with biomaterials. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 248–251Google Scholar
  11. 11.
    Tashiro K, Sekiguchi T, Shoji S, Funatsu T, Masumoto W, Sato H (2000) Design and simulation of particles and biomolecules handling microflow cells with three-dimensional sheath flow. In: Proceedings 4th international conference on micro total analysis systems (μTAS), Enschede, The Netherlands, 14–18 May 2000. Kluwer, The Netherlands, pp 209–212Google Scholar
  12. 12.
    Sundararajan N, Pio MS, Lee LP, Berlin A (2004) Three-dimensional hydrodynamic focusing in plolydimethylsiloxane (PDMS) microchannels. IEEE JMEMS 13(4):559–567Google Scholar
  13. 13.
    Mao X, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”-implementing three-dimensional hydrodynamic focusing with a single-layer planer microfluidic device. Lab Chip 7:1260–1262CrossRefGoogle Scholar
  14. 14.
    Zhuang GS, Jensen TG, Kutter JP (2008) Thee-dimensional hydrodynamic focusing over a wide Reynolds number range using a two-layer microfluidic design. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 1357–1359Google Scholar
  15. 15.
    Shirasaki Y, Goto M, Sugino H, Arakawa T, Yoon D, Mizuno J, Shoji S, Funatsu T (2010) A microfluidic mammalian cell sorter with thermal gelation polymer solution. In: Proceedings 14th international conference on miniaturized systems for chemistry and life sciences (μTAS’10), Groningen, The Netherlands, 3–7 October 2010, pp 1571–1573Google Scholar
  16. 16.
    Gambin Y, Simonnet C, VanDelinder V, Deniz A, Groisman A (2010) Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Lab Chip 10:598–609CrossRefGoogle Scholar
  17. 17.
    Sato H, Sasamoto Y, Sekiguchi T, Homma T, Shoji S (2007) Multiple core-sheath liquid transfer using matrix arrangement of 3D sheath flows. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October pp 1571–1573Google Scholar
  18. 18.
    Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8:1097–1103CrossRefGoogle Scholar
  19. 19.
    Seki M, Yamada M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471CrossRefGoogle Scholar
  20. 20.
    Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784CrossRefGoogle Scholar
  21. 21.
    Choi S, Song S, Choi C, Park J-K (2009) Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal Chem 81:50–55CrossRefGoogle Scholar
  22. 22.
    Choi S, Song S, Choi C, Park J-K (2009) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81:1964–1968CrossRefGoogle Scholar
  23. 23.
    Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M (2007) Microfluidic devices for size-dependant separation of live cells. Biomed Microdevices 9:637–645CrossRefGoogle Scholar
  24. 24.
    Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239CrossRefGoogle Scholar
  25. 25.
    Blankenstein G, Scampavia L, Branebjerg J, Larsen UD, Ruzica J, (1996) Flow switch for analyte injection and cell/particle sorting. In: Proceedings 2nd international conference on miniaturized total analysis systems (μTAS’96), Basel, Switzerland, 19–22 November 1996, pp 82–84Google Scholar
  26. 26.
    Wolff A, Larsen UD, Blankenstein G, Philip J, Telleman P (1998) Rare event cell sorting in a microfluidic system for application in prenatal diagnosis. In: Harrison DJ, Berg A (eds). Proceedings micro total analysis systems workshop (μTAS’98), Banff, Canada, 13–16 October 1998. Kluwer, The Netherlands, pp 77–80Google Scholar
  27. 27.
    Fisher JS, Kuo TS, Poulos J, Lee AP (2007) Design parameters for 1XN microdroplet switch. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October 2007, pp 1531–1533Google Scholar
  28. 28.
    Kanai K, Ikeda S, Tanaka J, Go GS, Nakanishi H, Shoji S (2004) The multiple sample injector using improved sheath flow to prevent sample dilution. Sens Actuators A 111:32–36CrossRefGoogle Scholar
  29. 29.
    Ohtsuka S, Kanai M, Hayashi M, Nakanishi H, Shoji S (2004) Development of individual cell sorting system for intercellular reaction analysis. In: Proceedings 8th international conference on miniaturized systems for chemistry and life sciences (μTAS’04), Malmö, Sweden, 26–30 September 2004, vol 1, pp 30–32Google Scholar
  30. 30.
    Chen CH, Cho SH, Erten A, Lo YH (2008) High-throughput cell sorter with piezoelectric actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 155–157Google Scholar
  31. 31.
    Klammer I, Buchenauer A, Dura G, Mokwa W, Schnakenberg U, (2008) A novel valve for microfluidic PDMS-based systems. In: Proceedings IEEE 21st international conference on micro electro mechanical systems, Tucson, AZ, 13–17 January 2008, pp 626–629Google Scholar
  32. 32.
    Lin Y-H, Lee C-H, Lee G-B (2008) A new droplet formation chip utilizing controllable moving-wall structure for double emulsion applications. In: Proceedings IEEE 21st international conference on micro electro mechanical systems, Tucson, AZ, 13–17 January 2008, pp 22–25Google Scholar
  33. 33.
    Iwai K, Takeuchi S (2009) A dynamic microarray with pneumatic valves for selective trapping and releasing of microbeads. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 371–373Google Scholar
  34. 34.
    Wakui D, Takahashi S, Sekiguchi T, Shoji S (2010) Multi channel droplet sorting device with horizontal pneumatic actuation using single layer PDMS flexible parallel walls. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 144–147Google Scholar
  35. 35.
    Takao H, Tanaka N, Sugiura M, Sawada K, Ishida M (2009) Non-linear fluidic integrated circuits realized by pneumatic-field effect transducers with controllable output resistance. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 503–506Google Scholar
  36. 36.
    Takahashi K, Hattori A, Suzuki I, Ichiki T, Yasuda K (2004) Non-destructive on-chip cell sorting system with real-time microscopic image processing. J Nanobiotechnology 2:5–12CrossRefGoogle Scholar
  37. 37.
    Ahn B, Panchapakesan R, Lee K, Oh KW (2008) Fast, robust and simultaneous sorting with droplet generation by synchronized high switching frequency of electrostatic actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 119–121Google Scholar
  38. 38.
    Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP (2007) Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7:1114–1120CrossRefGoogle Scholar
  39. 39.
    Zhang L, Bossche A (2009) A novel device for particle batch separation based on dielectrophoresis. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 2151–2154Google Scholar
  40. 40.
    Chang S, Cho Y-H, (2007) A continuous multi-size particle separator using negative dielectrophoretic virtual pillars induced by a planar spot electrode array. In: Proceedings IEEE 20th international conference on micro electro mechanical systems, Hyogo, Japan, 21–25 January 2007, pp 19–22Google Scholar
  41. 41.
    Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Foster AH, Kariv I, Marchand J, Bulter WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23(1):83–87CrossRefGoogle Scholar
  42. 42.
    Shirasaki Y, Tanaka J, Makazu H, Tashiro K, Shoji S, Tsukita S, Funatsu T (2006) On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Anal Chem 78(3):695–701CrossRefGoogle Scholar
  43. 43.
    Arakawa T, Shirasaki Y, Aoki T, Funatsu T, Shoji S (2007) Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel. Sens Actuators A 135:99–105CrossRefGoogle Scholar
  44. 44.
    Sugino H, Ozaki K, Shirasaki Y, Arakawa T, Shoji S, Funatsu T (2009) On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation. Lab Chip 9:1254–1260CrossRefGoogle Scholar
  45. 45.
    Ozaki K, Sugino H, Arakawa T, Shirasaki Y, Funatsu T, Shoji S, (2009) High performance multiple E. coli cell sorting system using thermosensitive hydrogel and fluorescence spectrum detection. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1856–1858Google Scholar
  46. 46.
    Ozaki K, Sugino H, Shirasaki Y, Aoki T, Arakawa T, Funatsu T, Shoji S (2010) Microfluidic cell sorter with flow switching triggered by a sol-gel Transition of a therm-resersible gelation polymer. Sens Actuators B 150:449–455CrossRefGoogle Scholar
  47. 47.
    Lin W-Y, Lee G-B (2009) A new micro flow cytometer using optically-induced dielectrophoretic forces for continuous microparticle counting and sorting. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08) San Diego, USA, Korea, 1–5 November 2009, pp 47–50Google Scholar
  48. 48.
    Lee G-B, Lin Y-H, Lin W-Y, Wang W, Guo T-F, (2009) Optically-induced dielectrophoresis using polymer materials for biomedical applications. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 2135–2138Google Scholar
  49. 49.
    Arai F, Sakuma S, Yamabishi Y, Onda K (2009) Powerful actuation of magnetized microtoll by focused magnetic field on a disposable microfluidic chip. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 51–54Google Scholar
  50. 50.
    Yamanishi Y, Feng L, Arai F (2010) On-demand and size-controlled production of emulsion droplet in microfluidic devices. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 1087–1090Google Scholar
  51. 51.
    Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in microfluidic chips. Lab Chip 4:131–135CrossRefGoogle Scholar
  52. 52.
    Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221CrossRefGoogle Scholar
  53. 53.
    Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2007) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74CrossRefGoogle Scholar
  54. 54.
    Grover WH, Jensen EC, Lvester RHC, Mathies RA (2006) Programmable pneumatic logical circuits for microfluidic device control. In: Proceedings 10th international conference on miniaturized systems for chemistry and life sciences (μTAS’06), Tokyo, Japan, 5–9 November 2006, pp 506–508Google Scholar
  55. 55.
    Rhee M, Burns MA (2009) Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9:3131–3143CrossRefGoogle Scholar
  56. 56.
    Gu W, Chen H, Tung YC, Meiners JC, Takayama S (2007) Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays. Appl Phys Lett 90(3):033505CrossRefGoogle Scholar
  57. 57.
    Lee DW, Cho Y-H (2009) A quaternary microfluidic multiplexer using dynamic control of pressure valves having different thresholds. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 433–436Google Scholar
  58. 58.
    Kawai K, Kanai M, Shoji S (2007) Efficient addressable fluid control system using pneumatic valve array. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October 2007, pp 32–34Google Scholar
  59. 59.
    Kawai K, Shibata Y, Shoji S (2009) 100 Picoliter droplet handling using 256 (28) microvalve array with 18 multiplexed control lines. In: proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June, 2009, pp 802–805Google Scholar
  60. 60.
    Yamada M, Seki M (2004) Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Anal Chem 76(4):895–899CrossRefGoogle Scholar
  61. 61.
    Sato T, Kawai K, Kanai M, Shoji S (2009) Development of all fluoroplastic microfluidic device applied as a nanoliter sample injector. Jpn J Appl Phys 48:No.06FJ03Google Scholar
  62. 62.
    Lin B-C, Su Y-C (2008) On-demand droplet metering and fusion utilizing membrane actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 86–88Google Scholar
  63. 63.
    Fujii M, Kawai K, Shoji S (2009) Multi uniform picoliter volume droplets generation and sorting device for digital picoliter dispenser. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1356–1358Google Scholar
  64. 64.
    Suzuki Y, Kanai M, Kawai K, Nishimoto T, Shoji S (2007) Spatially focused reagent injection system for cell analysis using 3-D sheath flow scanner. In: Proceedings 14th international conference on solid-state sensors, actuators and microsystems, Transducers’07, Lyon, France, 10–14 June 2007, pp 25–28Google Scholar
  65. 65.
    Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563. doi: 10.1021/ac071311w CrossRefGoogle Scholar
  66. 66.
    Fordyce PM, Gerber D, Tran D, Zheng J, Li H (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28:970–975CrossRefGoogle Scholar
  67. 67.
    Lee PJ, Hung PJ, Rao VM, Lee LP (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14CrossRefGoogle Scholar
  68. 68.
    Shibata Y, Kawai K, Kanai M, Shoji S (2009) Precise volume controlled multi reagents injective microwell array for efficient cell function analysis. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1488–1490Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Electronic and Photonic Systems, Faculty of Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Department of Precision Science and Technology, Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations