Skip to main content

Flow Control Methods and Devices in Micrometer Scale Channels

  • Chapter
  • First Online:
Microfluidics

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 304))

Abstract

Recent advances in the fabrication of microflow devices using micro-electromechanical systems (MEMS) technology are described. Passive and active liquid flow control and particle-handling methods in micrometer-scale channels are reviewed. These methods are useful in micro total analysis systems (μTAS) and laboratory-on-a-chip systems. Multiple flow control systems (i.e., arrayed microvalves) for advanced high-throughput microflow systems are introduced. Examples of microflow devices and systems for chemical and biochemical applications are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μTAS:

Micro total analysis systems

CFD:

Computational fluid dynamics

CMOS:

Complementary metal-oxide semiconductor

DEMUX:

Demultiplexer

DEP:

Dielectrophoresis

EOF:

Electro-osmotic flow

MEMS:

Micro-electromechanical systems

ODEP:

Optically induced dielectrophoretic

PDMS:

Poly(dimethylsiloxane)

Re:

Reynolds number

TGP:

Thermoreversible gelation polymer

References

  1. Madou MJ (2002) Fundamentals of microfabrication. CRC, New York

    Google Scholar 

  2. Shoji S (1998) Technology in chemistry and life science. Top Curr Chem 194:163–188

    Article  CAS  Google Scholar 

  3. Tabeling P (2005) Introduction to microfluidics. Oxford University Press, Oxford

    Google Scholar 

  4. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whiteside GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  CAS  Google Scholar 

  5. Sato H, Ito S, Tajima K, Orimoto N, Shoji S (2005) PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow. Sens Actuators A 119:365–371

    Article  Google Scholar 

  6. Kim DS, Lee SW, Kwon TH, Lee SS (2002) Barrier embedded chaotic micromixer. In: Baba Y, Shoji S, Berg A (eds) Proceedings 6th international conference on micro total analysis systems (μTAS’02), Nara, Japan, 3–7 November 2002. Kluwer, The Netherlands, pp 757–759

    Google Scholar 

  7. Larsen UD, Blankenstein G, Branebjerg (1997) Microchip coulter particle counter. In: Proceedings international conference on solid-state sensors and actuators, Transducers’97, Chicago, IL, 16–19 June 1997, pp 1319–1322

    Google Scholar 

  8. Kawai K, Kanai M, Munaka T, Abe H, Murakami A, Shoji S (2008) Parallel and passive distribution to arrayed microwells using self-regulating pinched flow. Sens Mater 20(6):281–288

    CAS  Google Scholar 

  9. Jeong W, Kim J, Kim S, Lee S, Mensing G, Beebe DJ (2004) Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 4:576–580

    Article  CAS  Google Scholar 

  10. Onoe H, Gojo R, Tssuda Y, Kiriya D, Takeuchi S (2010) Core-shell gel wires for the construction of large area heterogeneous structures with biomaterials. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 248–251

    Google Scholar 

  11. Tashiro K, Sekiguchi T, Shoji S, Funatsu T, Masumoto W, Sato H (2000) Design and simulation of particles and biomolecules handling microflow cells with three-dimensional sheath flow. In: Proceedings 4th international conference on micro total analysis systems (μTAS), Enschede, The Netherlands, 14–18 May 2000. Kluwer, The Netherlands, pp 209–212

    Google Scholar 

  12. Sundararajan N, Pio MS, Lee LP, Berlin A (2004) Three-dimensional hydrodynamic focusing in plolydimethylsiloxane (PDMS) microchannels. IEEE JMEMS 13(4):559–567

    Google Scholar 

  13. Mao X, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”-implementing three-dimensional hydrodynamic focusing with a single-layer planer microfluidic device. Lab Chip 7:1260–1262

    Article  CAS  Google Scholar 

  14. Zhuang GS, Jensen TG, Kutter JP (2008) Thee-dimensional hydrodynamic focusing over a wide Reynolds number range using a two-layer microfluidic design. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 1357–1359

    Google Scholar 

  15. Shirasaki Y, Goto M, Sugino H, Arakawa T, Yoon D, Mizuno J, Shoji S, Funatsu T (2010) A microfluidic mammalian cell sorter with thermal gelation polymer solution. In: Proceedings 14th international conference on miniaturized systems for chemistry and life sciences (μTAS’10), Groningen, The Netherlands, 3–7 October 2010, pp 1571–1573

    Google Scholar 

  16. Gambin Y, Simonnet C, VanDelinder V, Deniz A, Groisman A (2010) Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Lab Chip 10:598–609

    Article  CAS  Google Scholar 

  17. Sato H, Sasamoto Y, Sekiguchi T, Homma T, Shoji S (2007) Multiple core-sheath liquid transfer using matrix arrangement of 3D sheath flows. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October pp 1571–1573

    Google Scholar 

  18. Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8:1097–1103

    Article  CAS  Google Scholar 

  19. Seki M, Yamada M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Article  Google Scholar 

  20. Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784

    Article  CAS  Google Scholar 

  21. Choi S, Song S, Choi C, Park J-K (2009) Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal Chem 81:50–55

    Article  CAS  Google Scholar 

  22. Choi S, Song S, Choi C, Park J-K (2009) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81:1964–1968

    Article  CAS  Google Scholar 

  23. Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M (2007) Microfluidic devices for size-dependant separation of live cells. Biomed Microdevices 9:637–645

    Article  Google Scholar 

  24. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239

    Article  CAS  Google Scholar 

  25. Blankenstein G, Scampavia L, Branebjerg J, Larsen UD, Ruzica J, (1996) Flow switch for analyte injection and cell/particle sorting. In: Proceedings 2nd international conference on miniaturized total analysis systems (μTAS’96), Basel, Switzerland, 19–22 November 1996, pp 82–84

    Google Scholar 

  26. Wolff A, Larsen UD, Blankenstein G, Philip J, Telleman P (1998) Rare event cell sorting in a microfluidic system for application in prenatal diagnosis. In: Harrison DJ, Berg A (eds). Proceedings micro total analysis systems workshop (μTAS’98), Banff, Canada, 13–16 October 1998. Kluwer, The Netherlands, pp 77–80

    Google Scholar 

  27. Fisher JS, Kuo TS, Poulos J, Lee AP (2007) Design parameters for 1XN microdroplet switch. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October 2007, pp 1531–1533

    Google Scholar 

  28. Kanai K, Ikeda S, Tanaka J, Go GS, Nakanishi H, Shoji S (2004) The multiple sample injector using improved sheath flow to prevent sample dilution. Sens Actuators A 111:32–36

    Article  Google Scholar 

  29. Ohtsuka S, Kanai M, Hayashi M, Nakanishi H, Shoji S (2004) Development of individual cell sorting system for intercellular reaction analysis. In: Proceedings 8th international conference on miniaturized systems for chemistry and life sciences (μTAS’04), Malmö, Sweden, 26–30 September 2004, vol 1, pp 30–32

    Google Scholar 

  30. Chen CH, Cho SH, Erten A, Lo YH (2008) High-throughput cell sorter with piezoelectric actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 155–157

    Google Scholar 

  31. Klammer I, Buchenauer A, Dura G, Mokwa W, Schnakenberg U, (2008) A novel valve for microfluidic PDMS-based systems. In: Proceedings IEEE 21st international conference on micro electro mechanical systems, Tucson, AZ, 13–17 January 2008, pp 626–629

    Google Scholar 

  32. Lin Y-H, Lee C-H, Lee G-B (2008) A new droplet formation chip utilizing controllable moving-wall structure for double emulsion applications. In: Proceedings IEEE 21st international conference on micro electro mechanical systems, Tucson, AZ, 13–17 January 2008, pp 22–25

    Google Scholar 

  33. Iwai K, Takeuchi S (2009) A dynamic microarray with pneumatic valves for selective trapping and releasing of microbeads. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 371–373

    Google Scholar 

  34. Wakui D, Takahashi S, Sekiguchi T, Shoji S (2010) Multi channel droplet sorting device with horizontal pneumatic actuation using single layer PDMS flexible parallel walls. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 144–147

    Google Scholar 

  35. Takao H, Tanaka N, Sugiura M, Sawada K, Ishida M (2009) Non-linear fluidic integrated circuits realized by pneumatic-field effect transducers with controllable output resistance. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 503–506

    Google Scholar 

  36. Takahashi K, Hattori A, Suzuki I, Ichiki T, Yasuda K (2004) Non-destructive on-chip cell sorting system with real-time microscopic image processing. J Nanobiotechnology 2:5–12

    Article  Google Scholar 

  37. Ahn B, Panchapakesan R, Lee K, Oh KW (2008) Fast, robust and simultaneous sorting with droplet generation by synchronized high switching frequency of electrostatic actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 119–121

    Google Scholar 

  38. Wang L, Flanagan LA, Jeon NL, Monuki E, Lee AP (2007) Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip 7:1114–1120

    Article  CAS  Google Scholar 

  39. Zhang L, Bossche A (2009) A novel device for particle batch separation based on dielectrophoresis. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 2151–2154

    Google Scholar 

  40. Chang S, Cho Y-H, (2007) A continuous multi-size particle separator using negative dielectrophoretic virtual pillars induced by a planar spot electrode array. In: Proceedings IEEE 20th international conference on micro electro mechanical systems, Hyogo, Japan, 21–25 January 2007, pp 19–22

    Google Scholar 

  41. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Foster AH, Kariv I, Marchand J, Bulter WF (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23(1):83–87

    Article  CAS  Google Scholar 

  42. Shirasaki Y, Tanaka J, Makazu H, Tashiro K, Shoji S, Tsukita S, Funatsu T (2006) On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Anal Chem 78(3):695–701

    Article  CAS  Google Scholar 

  43. Arakawa T, Shirasaki Y, Aoki T, Funatsu T, Shoji S (2007) Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel. Sens Actuators A 135:99–105

    Article  Google Scholar 

  44. Sugino H, Ozaki K, Shirasaki Y, Arakawa T, Shoji S, Funatsu T (2009) On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation. Lab Chip 9:1254–1260

    Article  CAS  Google Scholar 

  45. Ozaki K, Sugino H, Arakawa T, Shirasaki Y, Funatsu T, Shoji S, (2009) High performance multiple E. coli cell sorting system using thermosensitive hydrogel and fluorescence spectrum detection. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1856–1858

    Google Scholar 

  46. Ozaki K, Sugino H, Shirasaki Y, Aoki T, Arakawa T, Funatsu T, Shoji S (2010) Microfluidic cell sorter with flow switching triggered by a sol-gel Transition of a therm-resersible gelation polymer. Sens Actuators B 150:449–455

    Article  Google Scholar 

  47. Lin W-Y, Lee G-B (2009) A new micro flow cytometer using optically-induced dielectrophoretic forces for continuous microparticle counting and sorting. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08) San Diego, USA, Korea, 1–5 November 2009, pp 47–50

    Google Scholar 

  48. Lee G-B, Lin Y-H, Lin W-Y, Wang W, Guo T-F, (2009) Optically-induced dielectrophoresis using polymer materials for biomedical applications. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 2135–2138

    Google Scholar 

  49. Arai F, Sakuma S, Yamabishi Y, Onda K (2009) Powerful actuation of magnetized microtoll by focused magnetic field on a disposable microfluidic chip. In: Proceedings IEEE 22nd international conference on micro electro mechanical systems, Sorrento, Italy, 25–29 January 2009, pp 51–54

    Google Scholar 

  50. Yamanishi Y, Feng L, Arai F (2010) On-demand and size-controlled production of emulsion droplet in microfluidic devices. In: Proceedings IEEE 23rd international conference on micro electro mechanical systems, Wanchai, Hong Kong, 24–28 January 2010, pp 1087–1090

    Google Scholar 

  51. Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in microfluidic chips. Lab Chip 4:131–135

    Article  CAS  Google Scholar 

  52. Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221

    Article  CAS  Google Scholar 

  53. Zhong JF, Chen Y, Marcus JS, Scherer A, Quake SR, Taylor CR, Weiner LP (2007) A microfluidic processor for gene expression profiling of single human embryonic stem cells. Lab Chip 8:68–74

    Article  Google Scholar 

  54. Grover WH, Jensen EC, Lvester RHC, Mathies RA (2006) Programmable pneumatic logical circuits for microfluidic device control. In: Proceedings 10th international conference on miniaturized systems for chemistry and life sciences (μTAS’06), Tokyo, Japan, 5–9 November 2006, pp 506–508

    Google Scholar 

  55. Rhee M, Burns MA (2009) Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems. Lab Chip 9:3131–3143

    Article  CAS  Google Scholar 

  56. Gu W, Chen H, Tung YC, Meiners JC, Takayama S (2007) Multiplexed hydraulic valve actuation using ionic liquid filled soft channels and Braille displays. Appl Phys Lett 90(3):033505

    Article  Google Scholar 

  57. Lee DW, Cho Y-H (2009) A quaternary microfluidic multiplexer using dynamic control of pressure valves having different thresholds. In: Proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June 2009, pp 433–436

    Google Scholar 

  58. Kawai K, Kanai M, Shoji S (2007) Efficient addressable fluid control system using pneumatic valve array. In: Proceedings 11th international conference on miniaturized systems for chemistry and life sciences (μTAS’07), Paris, France, 7–11 October 2007, pp 32–34

    Google Scholar 

  59. Kawai K, Shibata Y, Shoji S (2009) 100 Picoliter droplet handling using 256 (28) microvalve array with 18 multiplexed control lines. In: proceedings international conference on solid-state sensors, actuators and microsystems, Transducers’09, Denver, CO, 21–25 June, 2009, pp 802–805

    Google Scholar 

  60. Yamada M, Seki M (2004) Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Anal Chem 76(4):895–899

    Article  CAS  Google Scholar 

  61. Sato T, Kawai K, Kanai M, Shoji S (2009) Development of all fluoroplastic microfluidic device applied as a nanoliter sample injector. Jpn J Appl Phys 48:No.06FJ03

    Google Scholar 

  62. Lin B-C, Su Y-C (2008) On-demand droplet metering and fusion utilizing membrane actuation. In: Proceedings 12th international conference on miniaturized systems for chemistry and life sciences (μTAS’08), San Diego, CA, 12–16 October 2008, pp 86–88

    Google Scholar 

  63. Fujii M, Kawai K, Shoji S (2009) Multi uniform picoliter volume droplets generation and sorting device for digital picoliter dispenser. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1356–1358

    Google Scholar 

  64. Suzuki Y, Kanai M, Kawai K, Nishimoto T, Shoji S (2007) Spatially focused reagent injection system for cell analysis using 3-D sheath flow scanner. In: Proceedings 14th international conference on solid-state sensors, actuators and microsystems, Transducers’07, Lyon, France, 10–14 June 2007, pp 25–28

    Google Scholar 

  65. Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563. doi:10.1021/ac071311w

    Article  Google Scholar 

  66. Fordyce PM, Gerber D, Tran D, Zheng J, Li H (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol 28:970–975

    Article  CAS  Google Scholar 

  67. Lee PJ, Hung PJ, Rao VM, Lee LP (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14

    Article  CAS  Google Scholar 

  68. Shibata Y, Kawai K, Kanai M, Shoji S (2009) Precise volume controlled multi reagents injective microwell array for efficient cell function analysis. In: Proceedings 13th international conference on miniaturized systems for chemistry and life sciences (μTAS’09), Jeju, Korea, 1–5 November 2009, pp 1488–1490

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jun Mizuno, Dr. Tetsushi Sekiguchi at Waseda University, Prof. Takashi Funatsu at the University of Tokyo, Dr. Takahiro Arakawa at Tokyo Dental & Medical University, Yoshitaka Shirasaki at Riken, and Dr. Masaki Kanai at Shimadzu Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Shoji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shoji, S., Kawai, K. (2011). Flow Control Methods and Devices in Micrometer Scale Channels. In: Lin, B. (eds) Microfluidics. Topics in Current Chemistry, vol 304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_146

Download citation

Publish with us

Policies and ethics