Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 296)


Delivery of nucleic acids into cells is one of the central techniques underpinning molecular biology research and is also a critical process for in vivo applications such as gene therapy, vaccination, and drug development. Delivery of plasmid DNA enables expression of recombinant genes, while delivery of siRNA is used to downregulate gene expression. Over the last 40 years, multiple different methods of nucleic acid delivery have been developed. These include viral methods and non-viral methods, which can be further subdivided into mechanical, physical, and chemical methods. Here we describe the principal delivery methods, including their advantages, disadvantages, and suitability for particular applications.


Transfection Efficiency Cationic Lipid Cationic Liposome PAMAM Dendrimers siRNA Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731PubMedCrossRefGoogle Scholar
  2. 2.
    Lotze MT, Kost TA (2002) Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther 9(8):692–699PubMedCrossRefGoogle Scholar
  3. 3.
    Carter PJ, Samulski RJ (2000) Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 6(1):17–27PubMedGoogle Scholar
  4. 4.
    Martin KR, Klein RL, Quigley HA (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28(2):267–275PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58(4):515–534PubMedCrossRefGoogle Scholar
  6. 6.
    Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15PubMedCrossRefGoogle Scholar
  7. 7.
    Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36(3):184–204PubMedCrossRefGoogle Scholar
  8. 8.
    Blechacz B, Russell SJ (2004) Parvovirus vectors: use and optimisation in cancer gene therapy. Expert Rev Mol Med 6(16):1–24, ReviewPubMedCrossRefGoogle Scholar
  9. 9.
    Marconi P, Argnani R, Berto E, Epstein AL, Manservigi R (2008) HSV as a vector in vaccine development and gene therapy. Hum Vaccin 4(2):91–105PubMedCrossRefGoogle Scholar
  10. 10.
    Xu YF, Zhang YQ, Xu XM, Song GX (2006) Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes. Arch Virol 151(11):2133–2148, Epub 2006 Jun 22PubMedCrossRefGoogle Scholar
  11. 11.
    Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of Zebrafish embryos. PLoS ONE 2(9):e862PubMedCrossRefGoogle Scholar
  12. 12.
    Butow RA, Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends Biochem Sci 15(12):465–468PubMedCrossRefGoogle Scholar
  13. 13.
    Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:4146–4160CrossRefGoogle Scholar
  14. 14.
    Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493PubMedCrossRefGoogle Scholar
  15. 15.
    Krajcik R, Jung A, Hirsch A, Neuhuber W, Zolk O (2008) Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochem Biophys Res Commun 369(2):595–602PubMedCrossRefGoogle Scholar
  16. 16.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660PubMedCrossRefGoogle Scholar
  17. 17.
    Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10PubMedCrossRefGoogle Scholar
  18. 18.
    Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Körner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Müller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K (2004) New non-viral method for gene transfer into primary cells. Methods 33(2):151–163PubMedCrossRefGoogle Scholar
  19. 19.
    Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74(6):3015–3022PubMedCrossRefGoogle Scholar
  20. 20.
    Tirlapur UK, König K (2002) Targeted transfection by femtosecond laser. Nature 418(6895):290–291PubMedCrossRefGoogle Scholar
  21. 21.
    Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33(2):136–143PubMedCrossRefGoogle Scholar
  22. 22.
    Mayer LD, Tai LC, Bally MB, Mitilenes GN, Ginsberg RS, Cullis PR (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta 1025(2):143–151PubMedCrossRefGoogle Scholar
  23. 23.
    Gregoriadis G, Saffie R, Hart SL (1996) High yield incorporation of plasmid DNA within liposomes: effect on DNA integrity and transfection efficiency. J Drug Target 3(6):469–475PubMedCrossRefGoogle Scholar
  24. 24.
    Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269(4):2550–2561PubMedGoogle Scholar
  25. 25.
    Lee H, Williams SK, Allison SD, Anchordoquy TJ (2001) Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73(4):837–843PubMedCrossRefGoogle Scholar
  26. 26.
    Hofland HE, Shephard L, Sullivan SM (1996) Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci U S A 93(14):7305–7309PubMedCrossRefGoogle Scholar
  27. 27.
    Audouy S, Molema G, de Leij L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2(6):465–476PubMedCrossRefGoogle Scholar
  28. 28.
    Godbey WT, Mikos AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Release 72(1–3):115–125PubMedCrossRefGoogle Scholar
  29. 29.
    Marshall J, Yew NS, Eastman SJ, Jiang C, Scheule RK, Cheng SH (1999) Cationic lipid-mediated gene delivery to the airways. In: Huang L, Hung M-C, Wagner E (eds) Nonviral vectors for gene therapy. Academic, San Diego, CA, pp 39–68CrossRefGoogle Scholar
  30. 30.
    Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54(5):715–758PubMedCrossRefGoogle Scholar
  31. 31.
    Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17(5):521–525PubMedCrossRefGoogle Scholar
  32. 32.
    Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329(2):345–356PubMedCrossRefGoogle Scholar
  33. 33.
    Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta 1711(1):1–11PubMedCrossRefGoogle Scholar
  34. 34.
    Venugopalan P, Jain S, Sankar S, Singh P, Rawat A, Vyas SP (2002) pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmazie 57(10):659–671PubMedGoogle Scholar
  35. 35.
    Yu RZ, Geary RS, Leeds JM, Watanabe T, Fitchett JR, Matson JE, Mehta R, Hardee GR, Templin MV, Huang K, Newman MS, Quinn Y, Uster P, Zhu G, Working PK, Horner M, Nelson J, Levin AA (1999) Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of Ha-ras encapsulated in stealth liposomes. Pharm Res 16(8):1309–1315PubMedCrossRefGoogle Scholar
  36. 36.
    Legendre JY, Szoka FC Jr (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 9(10):1235–1242PubMedCrossRefGoogle Scholar
  37. 37.
    Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1(5):337–346PubMedGoogle Scholar
  38. 38.
    Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98(22):12754–12759PubMedCrossRefGoogle Scholar
  39. 39.
    Mayhew E, Juliano R (1973) Interaction of polynucleotides with cultured mammalian cells. II. Cell surface charge density and RNA uptake. Exp Cell Res 77(1):409–414PubMedCrossRefGoogle Scholar
  40. 40.
    Holter W, Fordis CM, Howard BH (1989) Efficient gene transfer by sequential treatment of mammalian cells with DEAE-dextran and deoxyribonucleic acid. Exp Cell Res 184(2):546–551PubMedCrossRefGoogle Scholar
  41. 41.
    Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301PubMedCrossRefGoogle Scholar
  42. 42.
    Werth S, Urban-Klein B, Dai L, Höbel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A (2006) A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 112(2):257–270PubMedCrossRefGoogle Scholar
  43. 43.
    Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379PubMedCrossRefGoogle Scholar
  44. 44.
    Dennig J, Duncan E (2002) Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol 90(3–4):339–347PubMedGoogle Scholar
  45. 45.
    Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.QIAGEN GmbHHildenGermany

Personalised recommendations