Skip to main content

Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo

  • Chapter
  • First Online:
Nucleic Acid Transfection

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 296))

Abstract

Delivery of nucleic acids into cells is one of the central techniques underpinning molecular biology research and is also a critical process for in vivo applications such as gene therapy, vaccination, and drug development. Delivery of plasmid DNA enables expression of recombinant genes, while delivery of siRNA is used to downregulate gene expression. Over the last 40 years, multiple different methods of nucleic acid delivery have been developed. These include viral methods and non-viral methods, which can be further subdivided into mechanical, physical, and chemical methods. Here we describe the principal delivery methods, including their advantages, disadvantages, and suitability for particular applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    Article  PubMed  CAS  Google Scholar 

  2. Lotze MT, Kost TA (2002) Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther 9(8):692–699

    Article  PubMed  CAS  Google Scholar 

  3. Carter PJ, Samulski RJ (2000) Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 6(1):17–27

    PubMed  CAS  Google Scholar 

  4. Martin KR, Klein RL, Quigley HA (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28(2):267–275

    Article  PubMed  CAS  Google Scholar 

  5. Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58(4):515–534

    Article  PubMed  CAS  Google Scholar 

  6. Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15

    Article  PubMed  Google Scholar 

  7. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36(3):184–204

    Article  PubMed  CAS  Google Scholar 

  8. Blechacz B, Russell SJ (2004) Parvovirus vectors: use and optimisation in cancer gene therapy. Expert Rev Mol Med 6(16):1–24, Review

    Article  PubMed  Google Scholar 

  9. Marconi P, Argnani R, Berto E, Epstein AL, Manservigi R (2008) HSV as a vector in vaccine development and gene therapy. Hum Vaccin 4(2):91–105

    Article  PubMed  CAS  Google Scholar 

  10. Xu YF, Zhang YQ, Xu XM, Song GX (2006) Papillomavirus virus-like particles as vehicles for the delivery of epitopes or genes. Arch Virol 151(11):2133–2148, Epub 2006 Jun 22

    Article  PubMed  CAS  Google Scholar 

  11. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of Zebrafish embryos. PLoS ONE 2(9):e862

    Article  PubMed  Google Scholar 

  12. Butow RA, Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends Biochem Sci 15(12):465–468

    Article  PubMed  Google Scholar 

  13. Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, Robinson HL (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 90:4146–4160

    Article  Google Scholar 

  14. Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493

    Article  PubMed  CAS  Google Scholar 

  15. Krajcik R, Jung A, Hirsch A, Neuhuber W, Zolk O (2008) Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochem Biophys Res Commun 369(2):595–602

    Article  PubMed  CAS  Google Scholar 

  16. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  PubMed  CAS  Google Scholar 

  17. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  PubMed  Google Scholar 

  18. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Körner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Müller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K (2004) New non-viral method for gene transfer into primary cells. Methods 33(2):151–163

    Article  PubMed  CAS  Google Scholar 

  19. Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74(6):3015–3022

    Article  PubMed  CAS  Google Scholar 

  20. Tirlapur UK, König K (2002) Targeted transfection by femtosecond laser. Nature 418(6895):290–291

    Article  PubMed  CAS  Google Scholar 

  21. Jordan M, Wurm F (2004) Transfection of adherent and suspended cells by calcium phosphate. Methods 33(2):136–143

    Article  PubMed  CAS  Google Scholar 

  22. Mayer LD, Tai LC, Bally MB, Mitilenes GN, Ginsberg RS, Cullis PR (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta 1025(2):143–151

    Article  PubMed  CAS  Google Scholar 

  23. Gregoriadis G, Saffie R, Hart SL (1996) High yield incorporation of plasmid DNA within liposomes: effect on DNA integrity and transfection efficiency. J Drug Target 3(6):469–475

    Article  PubMed  CAS  Google Scholar 

  24. Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269(4):2550–2561

    PubMed  CAS  Google Scholar 

  25. Lee H, Williams SK, Allison SD, Anchordoquy TJ (2001) Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73(4):837–843

    Article  PubMed  CAS  Google Scholar 

  26. Hofland HE, Shephard L, Sullivan SM (1996) Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci U S A 93(14):7305–7309

    Article  PubMed  CAS  Google Scholar 

  27. Audouy S, Molema G, de Leij L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2(6):465–476

    Article  PubMed  CAS  Google Scholar 

  28. Godbey WT, Mikos AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Release 72(1–3):115–125

    Article  PubMed  CAS  Google Scholar 

  29. Marshall J, Yew NS, Eastman SJ, Jiang C, Scheule RK, Cheng SH (1999) Cationic lipid-mediated gene delivery to the airways. In: Huang L, Hung M-C, Wagner E (eds) Nonviral vectors for gene therapy. Academic, San Diego, CA, pp 39–68

    Chapter  Google Scholar 

  30. Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54(5):715–758

    Article  PubMed  CAS  Google Scholar 

  31. Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y (2000) Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 17(5):521–525

    Article  PubMed  CAS  Google Scholar 

  32. Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329(2):345–356

    Article  PubMed  CAS  Google Scholar 

  33. Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta 1711(1):1–11

    Article  PubMed  CAS  Google Scholar 

  34. Venugopalan P, Jain S, Sankar S, Singh P, Rawat A, Vyas SP (2002) pH-sensitive liposomes: mechanism of triggered release to drug and gene delivery prospects. Pharmazie 57(10):659–671

    PubMed  CAS  Google Scholar 

  35. Yu RZ, Geary RS, Leeds JM, Watanabe T, Fitchett JR, Matson JE, Mehta R, Hardee GR, Templin MV, Huang K, Newman MS, Quinn Y, Uster P, Zhu G, Working PK, Horner M, Nelson J, Levin AA (1999) Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of Ha-ras encapsulated in stealth liposomes. Pharm Res 16(8):1309–1315

    Article  PubMed  CAS  Google Scholar 

  36. Legendre JY, Szoka FC Jr (1992) Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 9(10):1235–1242

    Article  PubMed  CAS  Google Scholar 

  37. Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1(5):337–346

    PubMed  CAS  Google Scholar 

  38. Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98(22):12754–12759

    Article  PubMed  CAS  Google Scholar 

  39. Mayhew E, Juliano R (1973) Interaction of polynucleotides with cultured mammalian cells. II. Cell surface charge density and RNA uptake. Exp Cell Res 77(1):409–414

    Article  PubMed  CAS  Google Scholar 

  40. Holter W, Fordis CM, Howard BH (1989) Efficient gene transfer by sequential treatment of mammalian cells with DEAE-dextran and deoxyribonucleic acid. Exp Cell Res 184(2):546–551

    Article  PubMed  CAS  Google Scholar 

  41. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301

    Article  PubMed  CAS  Google Scholar 

  42. Werth S, Urban-Klein B, Dai L, Höbel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A (2006) A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release 112(2):257–270

    Article  PubMed  CAS  Google Scholar 

  43. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379

    Article  PubMed  CAS  Google Scholar 

  44. Dennig J, Duncan E (2002) Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol 90(3–4):339–347

    PubMed  CAS  Google Scholar 

  45. Tang MX, Redemann CT, Szoka FC Jr (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hahn, P., Scanlan, E. (2010). Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo . In: Bielke, W., Erbacher, C. (eds) Nucleic Acid Transfection. Topics in Current Chemistry, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_71

Download citation

Publish with us

Policies and ethics