Cationic Lipids: Molecular Structure/Transfection Activity Relationships and Interactions with Biomembranes

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 296)


Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of ∼14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.


Cationic lipid Lipoplex Nucleic acid Phase transition Transfection 



The present work was supported by NSF grant EEC-0425626 and in part by NIH grant CA119341.


  1. 1.
    Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  2. 2.
    Flotte TR (2007) Gene therapy: the first two decades and the current state-of-the-art. J Cell Physiol 213:301–305PubMedCrossRefGoogle Scholar
  3. 3.
    Giacca M (2007) Virus-mediated gene transfer to induce therapeutic angiogenesis: where do we stand? Int J Nanomedicine 2:527–540PubMedGoogle Scholar
  4. 4.
    Hendrie PC, Russell DW (2005) Gene targeting with viral vectors. Mol Ther 12:9–17PubMedCrossRefGoogle Scholar
  5. 5.
    Felgner PL, Ringold GM (1989) Cationic liposome-mediated transfection. Nature 337:387–388PubMedCrossRefGoogle Scholar
  6. 6.
    Gao X, Huang L (1991) A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem Biophys Res Commun 179:280–285PubMedCrossRefGoogle Scholar
  7. 7.
    Leventis R, Silvius JR (1990) Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta 1023:124–132PubMedCrossRefGoogle Scholar
  8. 8.
    Gaucheron J, Wong T, Wong EF et al (2002) Synthesis and properties of novel tetraalkyl cationic lipids. Bioconjug Chem 13:671–675PubMedCrossRefGoogle Scholar
  9. 9.
    Ghosh YK, Visweswariah SS, Bhattacharya S (2002) Advantage of the ether linkage between the positive charge and the cholesteryl skeleton in cholesterol-based amphiphiles as vectors for gene delivery. Bioconjug Chem 13:378–384PubMedCrossRefGoogle Scholar
  10. 10.
    Jaaskelainen I, Sternberg B, Monkkonen J et al (1998) Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int J Pharm 167:191–203CrossRefGoogle Scholar
  11. 11.
    Lobo BA, Vetro JA, Suich DM et al (2003) Structure/function analysis of peptoid/lipitoid: DNA complexes. J Pharm Sci 92:1905–1918PubMedCrossRefGoogle Scholar
  12. 12.
    Niculescu-Duvaz D, Heyes J, Springer CJ (2003) Structure–activity relationship in cationic lipid mediated gene transfection. Curr Med Chem 10:1233–1261PubMedCrossRefGoogle Scholar
  13. 13.
    Song YK, Liu F, Chu SY et al (1997) Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Human Gene Ther 8:1585–1594CrossRefGoogle Scholar
  14. 14.
    Subramanian M, Holopainen JM, Paukku T et al (2000) Characterisation of three novel cationic lipids as liposomal complexes with DNA. Biochim Biophys Acta-Biomembranes 1466:289–305CrossRefGoogle Scholar
  15. 15.
    Pinnaduwage P, Schmitt L, Huang L (1989) Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim Biophys Acta 985:33–37PubMedCrossRefGoogle Scholar
  16. 16.
    MacDonald RC, Ashley GW, Shida MM et al (1999) Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J 77:2612–2629PubMedCrossRefGoogle Scholar
  17. 17.
    MacDonald RC, Rakhmanova VA, Choi KL et al (1999) O-Ethylphosphatidylcholine: a metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci 88:896–904PubMedCrossRefGoogle Scholar
  18. 18.
    Solodin I, Brown CS, Heath TD (1996) Synthesis of phosphotriester cationic phospholipids. Cationic lipids 2. Synlett 5:457–458CrossRefGoogle Scholar
  19. 19.
    Koynova R, MacDonald RC (2003) Cationic O-ethylphosphatidylcholines and their lipoplexes: phase behavior aspects, structural organization and morphology. Biochim Biophys Acta-Biomembranes 1613:39–48CrossRefGoogle Scholar
  20. 20.
    Koynova R, Wang L, MacDonald RC (2008) Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency. Mol Pharm 5:739–744PubMedCrossRefGoogle Scholar
  21. 21.
    Wang L, Koynova R, Parikh H et al (2006) Transfection activity of binary mixtures of cationic O-substituted phosphatidylcholine derivatives: the hydrophobic core strongly modulates their physical properties and DNA delivery efficacy. Biophys J 91:3692–3706PubMedCrossRefGoogle Scholar
  22. 22.
    Lewis RNAH, Winter I, Kriechbaum M et al (2001) Studies of the structure and organization of cationic lipid bilayer membranes: calorimetric, spectroscopic, and x-ray diffraction studies of linear saturated P-O-ethyl phosphatidylcholines. Biophys J 80:1329–1342PubMedCrossRefGoogle Scholar
  23. 23.
    Winter I, Pabst G, Rappolt M et al (2001) Refined structure of 1, 2-diacyl-P-O-ethylphosphatidylcholine bilayer membranes. Chem Phys Lipids 112:137–150PubMedCrossRefGoogle Scholar
  24. 24.
    Rakhmanova VA, McIntosh TJ, MacDonald RC (2000) Effects of dioleoylphosphatidylethanolamine on the activity and structure of O-alkyl phosphatidylcholine-DNA transfection complexes. Cell Mol Biol Lett 5:51–65Google Scholar
  25. 25.
    Rosenzweig HS, Rakhmanova VA, McIntosh TJ et al (2000) O-Alkyl dioleoylphosphatidylcholinium compounds: the effect of varying alkyl chain length on their physical properties and in vitro DNA transfection activity. Bioconjug Chem 11:306–313PubMedCrossRefGoogle Scholar
  26. 26.
    Koynova R, Tenchov B, Wang L et al (2009) Hydrophobic moiety of cationic lipids strongly modulates their transfection activity. Mol Pharm 6:951–958PubMedCrossRefGoogle Scholar
  27. 27.
    Heyes JA, Niculescu-Duvaz D, Cooper RG et al (2002) Synthesis of novel cationic lipids: effect of structural modification on the efficiency of gene transfer. J Med Chem 45:99–114PubMedCrossRefGoogle Scholar
  28. 28.
    Karmali PP, Chaudhuri A (2007) Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med Res Rev 27:696–722PubMedCrossRefGoogle Scholar
  29. 29.
    Karmali PP, Kumar VV, Chaudhuri A (2004) Design, syntheses and in vitro gene delivery efficacies of novel mono-, di- and trilysinated cationic lipids: a structure-activity investigation. J Med Chem 47:2123–2132PubMedCrossRefGoogle Scholar
  30. 30.
    Floch V, Loisel S, Guenin E et al (2000) Cation substitution in cationic phosphonolipids: a new concept to improve transfection activity and decrease cellular toxicity. J Med Chem 43:4617–4628PubMedCrossRefGoogle Scholar
  31. 31.
    Behr JP, Demeneix B, Loeffler JP et al (1989) Efficient gene-transfer into mammalian primary endocrine-cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA 86:6982–6986PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrari ME, Nguyen CM, Zelphati O et al (1998) Analytical methods for the characterization of cationic lipid nucleic acid complexes. Hum Gene Ther 9:341–351PubMedCrossRefGoogle Scholar
  33. 33.
    de Lima MCP, Neves S, Filipe A et al (2003) Cationic liposomes for gene delivery: from biophysics to biological applications. Curr Med Chem 10:1221–1231CrossRefGoogle Scholar
  34. 34.
    Wheeler CJ, Felgner PL, Tsai YJ et al (1996) A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung. Proc Natl Acad Sci USA 93:11454–11459PubMedCrossRefGoogle Scholar
  35. 35.
    Felgner JH, Kumar R, Sridhar CN et al (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 269:2550–2561PubMedGoogle Scholar
  36. 36.
    Lee ER, Marshall J, Siegel CS et al (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7:1701–1717PubMedCrossRefGoogle Scholar
  37. 37.
    Kearns MD, Donkor AM, Savva M (2008) Structure-transfection activity studies of nove cationic cholesterol-based amphiphiles. Mol Pharm 5:128–139PubMedCrossRefGoogle Scholar
  38. 38.
    Bajaj A, Mishra SK, Kondaiah P et al (2008) Effect of the headgroup variation on the gene transfer properties of cholesterol based cationic lipids possessing ether linkage. Biochim Biophys Acta-Biomembranes 1778:1222–1236CrossRefGoogle Scholar
  39. 39.
    Soltan MK, Ghonaim HM, El Sadek M et al (2009) Design and synthesis of N-4, N-9-disubstituted spermines for non-viral siRNA delivery – structure–activity relationship studies of transfection efficiency versus toxicity. Pharm Res 26:286–295PubMedCrossRefGoogle Scholar
  40. 40.
    Ghosh YK, Visweswariah SS, Bhattacharya S (2000) Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency. FEBS Lett 473:341–344PubMedCrossRefGoogle Scholar
  41. 41.
    Rajesh M, Sen J, Srujan M et al (2007) Dramatic influence of the orientation of linker between hydrophilic and hydrophobic lipid moiety in liposomal gene delivery. J Am Chem Soc 129:11408–11420PubMedCrossRefGoogle Scholar
  42. 42.
    Ghosh YK, Visweswariah SS, Bhattacharya S (2002) Advantage of the ether linkage between the positive charge and the cholesteryl skeleton in cholesterol-based amphiphiles as vectors for gene delivery. Bioconjug Chem 13:378–384PubMedCrossRefGoogle Scholar
  43. 43.
    Obata Y, Saito S, Takeda N et al (2009) Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency. Biochim Biophys Acta-Biomembranes 1788:1148–1158CrossRefGoogle Scholar
  44. 44.
    Horobin RW, Weissig V (2005) A QSAR-modeling perspective on cationic transfection lipids. 1. Predicting efficiency and understanding mechanisms. J Gene Med 7:1023–1034PubMedCrossRefGoogle Scholar
  45. 45.
    Liu D, Qiao D, Li Z et al (2008) Structure–function relationship research of glycerol backbone-based cationic lipids for gene delivery. Chem Biol Drug Des 71:336–344PubMedCrossRefGoogle Scholar
  46. 46.
    Koynova R, Tenchov B (2009) Cationic phospholipids – structure/transfection activity relationships. Soft Matter 5:3187–3200CrossRefGoogle Scholar
  47. 47.
    Tenchov BG, Wang L, Koynova R et al (2008) Modulation of a membrane lipid lamellar–nonlamellar phase transition by cationic lipids: a measure for transfection efficiency. Biochim Biophys Acta-Biomembranes 1778:2405–2412CrossRefGoogle Scholar
  48. 48.
    Das A, Niven R (2001) Use of perfluorocarbon (Fluorinert) to enhance reporter gene expression following intratracheal instillation into the lungs of Balb/c mice: implications for nebulized delivery of plasmids. J Pharm Sci 90:1336–1344PubMedCrossRefGoogle Scholar
  49. 49.
    Faneca H, Cabrita AS, Simoes S et al (2007) Evaluation of the antitumoral effect mediated by IL-12 and HSV-tk genes when delivered by a novel lipid-based system. Biochim Biophys Acta-Biomembranes 1768:1093–1102CrossRefGoogle Scholar
  50. 50.
    Faneca H, Faustino A, de Lima MCP (2008) Synergistic antitumoral effect of vinblastine and HSV-Tk/GCV gene therapy mediated by albumin-associated cationic liposomes. J Control Release 126:175–184PubMedCrossRefGoogle Scholar
  51. 51.
    Faneca H, Simoes S, de Lima MCP (2004) Association of albumin or protamine to lipoplexes: enhancement of transfection and resistance to serum. J Gene Med 6:681–692PubMedCrossRefGoogle Scholar
  52. 52.
    Gorman CM, Aikawa M, Fox B et al (1997) Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Ther 4:983–992PubMedCrossRefGoogle Scholar
  53. 53.
    McDonald RJ, Liggitt HD, Roche L et al (1998) Aerosol delivery of lipid: DNA complexes to lungs of rhesus monkeys. Pharm Res 15:671–679PubMedCrossRefGoogle Scholar
  54. 54.
    Noone PG, Hohneker KW, Zhou ZQ et al (2000) Safety and biological efficacy of a lipid–CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther 1:105–114PubMedCrossRefGoogle Scholar
  55. 55.
    Hyvonen Z, Plotniece A, Riene I et al (2000) Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim Biophys Acta-Biomembranes 1509:451–466CrossRefGoogle Scholar
  56. 56.
    Yingyongnarongkul BE, Radchatawedchakoon W, Krajarng A et al (2009) High transfection efficiency and low toxicity cationic lipids with aminoglycerol-diamine conjugate. Bioorg Med Chem 17:176–188PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu L, Lu Y, Miller DD et al (2008) Structural and formulation factors influencing pyridinium lipid-based gene transfer. Bioconjug Chem 19:2499–2512PubMedCrossRefGoogle Scholar
  58. 58.
    VanDerWoude I, Wagenaar A, Meekel AAP et al (1997) Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc Natl Acad Sci USA 94:1160–1165CrossRefGoogle Scholar
  59. 59.
    Heyes J, Palmer L, Bremner K et al (2005) Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 107:276–287PubMedCrossRefGoogle Scholar
  60. 60.
    Aberle AM, Bennett MJ, Malone RW et al (1996) The counterion influence on cationic lipid-mediated transfection of plasmid DNA. Biochim Biophys Acta-Lipids Lipid Metabolism 1299:281–283CrossRefGoogle Scholar
  61. 61.
    Koynova R, Brankov J, Tenchov B (1997) Modulation of lipid phase behavior by kosmotropic and chaotropic solutes – experiment and thermodynamic theory. Eur Biophys J Biophys Lett 25:261–274CrossRefGoogle Scholar
  62. 62.
    Boukhnikachvili T, AguerreChariol O, Airiau M et al (1997) Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett 409:188–194PubMedCrossRefGoogle Scholar
  63. 63.
    Lasic DD, Strey H, Stuart MCA et al (1997) The structure of DNA–liposome complexes. J Am Chem Soc 119:832–833CrossRefGoogle Scholar
  64. 64.
    Radler JO, Koltover I, Salditt T et al (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814PubMedCrossRefGoogle Scholar
  65. 65.
    Bruinsma R (1998) Electrostatics of DNA cationic lipid complexes: isoelectric instability. Eur Phys J B 4:75–88Google Scholar
  66. 66.
    Hirsch-Lerner D, Barenholz Y (1999) Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochim Biophys Acta-Biomembranes 1461:47–57CrossRefGoogle Scholar
  67. 67.
    Kennedy MT, Pozharski EV, Rakhmanova VA et al (2000) Factors governing the assembly of cationic phospholipid–DNA complexes. Biophys J 78:1620–1633PubMedCrossRefGoogle Scholar
  68. 68.
    Pozharski EV, MacDonald RC (2007) Single lipoplex study of cationic lipoid-DNA, self-assembled complexes. Mol Pharm 4:962–974PubMedCrossRefGoogle Scholar
  69. 69.
    Koynova R, MacDonald RC (2007) Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently. Biochim Biophys Acta-Biomembranes 1768:2373–2382CrossRefGoogle Scholar
  70. 70.
    Zelphati O, Nguyen C, Ferrari M et al (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther 5:1272–1282PubMedCrossRefGoogle Scholar
  71. 71.
    Takeuchi K, Ishihara M, Kawaura C et al (1996) Effect of zeta potential of cationic liposomes containing cationic cholesterol derivatives on gene transfection. FEBS Lett 397:207–209PubMedCrossRefGoogle Scholar
  72. 72.
    Almofti MR, Harashima H, Shinohara Y et al (2003) Lipoplex size determines lipofection efficiency with or without serum. Mol Membr Biol 20:35–43PubMedCrossRefGoogle Scholar
  73. 73.
    Ross PC, Hui SW (1999) Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther 6:651–659PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang JS, Huang L (2003) Cationic liposome–protamine–DNA complexes for gene delivery. Methods Enzymol 373:332–342PubMedCrossRefGoogle Scholar
  75. 75.
    Rejman J, Oberle V, Zuhorn IS et al (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169PubMedCrossRefGoogle Scholar
  76. 76.
    Hoekstra D, Rejman J, Wasungu L et al (2007) Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 35:68–71PubMedCrossRefGoogle Scholar
  77. 77.
    Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 57:755–767PubMedCrossRefGoogle Scholar
  78. 78.
    Prasad TK, Rangaraj N, Rao NM (2005) Quantitative aspects of endocytic activity in lipid-mediated transfections. FEBS Lett 579:2635–2642PubMedCrossRefGoogle Scholar
  79. 79.
    Elouahabi A, Ruysschaert JM (2005) Formation and intracellular trafficking of lipoplexes and polyplexes. Mol Ther 11:336–347PubMedCrossRefGoogle Scholar
  80. 80.
    Tyagi P, Wu PC, Chancellor M et al (2006) Recent advances in intravesical drug/gene delivery. Mol Pharm 3:369–379PubMedCrossRefGoogle Scholar
  81. 81.
    Koynova R, Tarahovsky Y, Wang L et al (2007) Lipoplex formulation of superior efficacy exhibits high surface activity and fusogenicity, and readily releases DNA. Biochim Biophys Acta-Biomembranes 1768:375–386CrossRefGoogle Scholar
  82. 82.
    Salditt T, Koltover I, Radler JO et al (1997) Two-dimensional smectic ordering of linear DNA chains in self-assembled DNA–cationic liposome mixtures. Phys Rev Lett 79:2582–2585CrossRefGoogle Scholar
  83. 83.
    Artzner F, Zantl R, Rapp G et al (1998) Observation of a rectangular columnar phase in condensed lamellar cationic lipid–DNA complexes. Phys Rev Lett 81:5015–5018CrossRefGoogle Scholar
  84. 84.
    Koynova R, MacDonald RC (2004) Columnar DNA superlattices in lamellar o-ethylphosphatidylcholine lipoplexes: mechanism of the gel-liquid crystalline lipid phase transition. Nano Lett 4:1475–1479CrossRefGoogle Scholar
  85. 85.
    Congiu A, Pozzi D, Esposito C et al (2004) Correlation between structure and transfection efficiency: a study of DC-Chol-DOPE/DNA complexes. Coll Surf B Biointerfaces 36:43–48CrossRefGoogle Scholar
  86. 86.
    Koltover I, Salditt T, Radler JO et al (1998) An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science 281:78–81PubMedCrossRefGoogle Scholar
  87. 87.
    Smisterova J, Wagenaar A, Stuart MCA et al (2001) Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J Biol Chem 276:47615–47622PubMedCrossRefGoogle Scholar
  88. 88.
    Francescangeli O, Pisani M, Stanic V et al (2004) Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes. Europhys Lett 67:669–675CrossRefGoogle Scholar
  89. 89.
    Caracciolo G, Caminiti R (2005) Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase? Chem Phys Lett 411:327–332CrossRefGoogle Scholar
  90. 90.
    Caracciolo G, Pozzi D, Caminiti R et al (2003) Structural characterization of a new lipid/DNA complex showing a selective transfection efficiency in ovarian cancer cells. Eur Phys J E 10:331–336PubMedCrossRefGoogle Scholar
  91. 91.
    Lin AJ, Slack NL, Ahmad A et al (2003) Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome–DNA complexes. Biophys J 84:3307–3316PubMedCrossRefGoogle Scholar
  92. 92.
    Ross PC, Hensen ML, Supabphol R et al (1998) Multilamellar cationic liposomes are efficient vectors for in vitro gene transfer in serum. J Liposome Res 8:499–520CrossRefGoogle Scholar
  93. 93.
    Simberg D, Danino D, Talmon Y et al (2003) Phase behavior, DNA ordering and size instability of cationic lipoplexes: relevance to optimal transfection activity. J Liposome Res 13:86–87Google Scholar
  94. 94.
    Legendre JY, Szoka FC (1992) Delivery of plasmid DNA into mammalian-cell lines using Ph-sensitive liposomes – comparison with cationic liposomes. Pharm Res 9:1235–1242PubMedCrossRefGoogle Scholar
  95. 95.
    Zabner J, Fasbender AJ, Moninger T et al (1995) Cellular and molecular barriers to gene-transfer by a cationic lipid. J Biol Chem 270:18997–19007PubMedCrossRefGoogle Scholar
  96. 96.
    Zhou XH, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine – characterization and mechanism of action. Biochim Biophys Acta-Biomembranes 1189:195–203CrossRefGoogle Scholar
  97. 97.
    Ashley GW, Shida MM, Qiu R et al (1996) Phosphatidylcholinium compounds: a new class of cationic phospholipids with transfection activin and unusual physical properties (abstract). Biophys J 70:88-AGoogle Scholar
  98. 98.
    Tarahovsky YS, Koynova R, MacDonald RC (2004) DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys J 87:1054–1064PubMedCrossRefGoogle Scholar
  99. 99.
    Xu YH, Szoka FC (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623PubMedCrossRefGoogle Scholar
  100. 100.
    Zelphati O, Szoka FC (1996) Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci USA 93:11493–11498PubMedCrossRefGoogle Scholar
  101. 101.
    Koynova R, Tenchov B (2009) Phase transitions of lipids. In: Begley TP (ed) Wiley encyclopedia of chemical biology. Wiley, Hoboken, NJ, pp 601–615Google Scholar
  102. 102.
    Seddon JM, Templer RH (1995) Polymorphism of lipid–water systems. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier Science, Amsterdam, pp 97–160Google Scholar
  103. 103.
    Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196PubMedCrossRefGoogle Scholar
  104. 104.
    Koynova R, MacDonald RC (2003) Mixtures of cationic lipid O-ethylphosphatidylcholine with membrane lipids and DNA: phase diagrams. Biophys J 85:2449–2465PubMedCrossRefGoogle Scholar
  105. 105.
    Lewis RNAH, McElhaney RN (2000) Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and P-31-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J 79:1455–1464PubMedCrossRefGoogle Scholar
  106. 106.
    Tarahovsky YS, Arsenault AL, MacDonald RC et al (2000) Electrostatic control of phospholipid polymorphism. Biophys J 79:3193–3200PubMedCrossRefGoogle Scholar
  107. 107.
    Kleinschmidt JH, Tamm LK (2002) Structural transitions in short-chain lipid assemblies studied by P-31-NMR spectroscopy. Biophys J 83:994–1003PubMedCrossRefGoogle Scholar
  108. 108.
    Koynova R, MacDonald RC (2005) Lipid transfer between cationic vesicles and lipid-DNA lipoplexes. Effect of serum. Biochim Biophys Acta-Biomembranes 1714:63–70CrossRefGoogle Scholar
  109. 109.
    Simoes S, Pires P, Duzgunes N et al (1999) Cationic liposomes as gene transfer vectors: barriers to successful application in gene therapy. Curr Opin Mol Ther 1:147–157PubMedGoogle Scholar
  110. 110.
    Sen GL, Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7:633–636PubMedCrossRefGoogle Scholar
  111. 111.
    Lu JJ, Langer R, Chen JZ (2009) A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm 6:763–771PubMedCrossRefGoogle Scholar
  112. 112.
    Koynova R, Wang L, MacDonald RC (2006) An intracellular lamellar – nonlamellar phase transition rationalizes the superior performance of some cationic lipid transfection agents. Proc Natl Acad Sci USA 103:14373–14378PubMedCrossRefGoogle Scholar
  113. 113.
    Lipid Data Bank (2000)
  114. 114.
    Anderson DM, Gruner SM, Leibler S (1988) Geometrical aspects of the frustration in the cubic phases of lyotropic liquid-crystals. Proc Natl Acad Sci USA 85:5364–5368PubMedCrossRefGoogle Scholar
  115. 115.
    Shearman GC, Ces O, Templer RH et al (2006) Inverse lyotropic phases of lipids and membrane curvature. J Phys Condens Matter 18:S1105–S1124PubMedCrossRefGoogle Scholar
  116. 116.
    Templer RH, Seddon JM, Duesing PM et al (1998) Modeling the phase behavior of the inverse hexagonal and inverse bicontinuous cubic phases in 2:1 fatty acid phosphatidylcholine mixtures. J Phys Chem B 102:7262–7271CrossRefGoogle Scholar
  117. 117.
    Siegel DP (2005) Bicontinuous Liquid Crystals. In: Lynch ML, Spicer PT (eds) Bicontinuous liquid crystals. Taylor & Francis Group, CRC Press, Boca Raton, pp 59–98, Chap 4CrossRefGoogle Scholar
  118. 118.
    Siegel DP, Epand RM (1997) The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys J 73:3089–3111PubMedCrossRefGoogle Scholar
  119. 119.
    Yang L, Huang HW (2002) Observation of a membrane fusion intermediate structure. Science 297:1877–1879PubMedCrossRefGoogle Scholar
  120. 120.
    Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome-mediated gene-transfer. Biochim Biophys Acta-Biomembranes 1235:289–295CrossRefGoogle Scholar
  121. 121.
    Zuhorn IS, Oberle V, Visser WH et al (2002) Phase behavior of cationic amphiphiles and their mixtures with helper lipid influences lipoplex shape, DNA translocation, and transfection efficiency. Biophys J 83:2096–2108PubMedCrossRefGoogle Scholar
  122. 122.
    Fletcher S, Ahmad A, Price WS et al (2008) Biophysical properties of CDAN/DOPE-analogue lipoplexes account for enhanced gene delivery. Chembiochem 9:455–463PubMedCrossRefGoogle Scholar
  123. 123.
    Hong KL, Zheng WW, Baker A et al (1997) Stabilization of cationic liposome–plasmid DNA complexes by polyamines and poly(ethylene glycol)-phospholipid conjugates for efficient in vivo gene delivery. FEBS Lett 400:233–237PubMedCrossRefGoogle Scholar
  124. 124.
    Liu Y, Mounkes LC, Liggitt HD et al (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173PubMedCrossRefGoogle Scholar
  125. 125.
    Smith JG, Wedeking T, Vernachio JH et al (1998) Characterization and in vivo testing of a heterogeneous cationic lipid–DNA formulation. Pharm Res 15:1356–1363PubMedCrossRefGoogle Scholar
  126. 126.
    Sternberg B, Hong KL, Zheng WW et al (1998) Ultrastructural characterization of cationic liposome–DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta-Biomembranes 1375:23–35CrossRefGoogle Scholar
  127. 127.
    Wang JK, Guo X, Xu YH et al (1998) Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J Med Chem 41:2207–2215PubMedCrossRefGoogle Scholar
  128. 128.
    Regelin AE, Fankhaenel S, Gurtesch L et al (2000) Biophysical and lipofection studies of DOTAP analogs. Biochim Biophys Acta-Biomembranes 1464:151–164CrossRefGoogle Scholar
  129. 129.
    Jiao J (2008) Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 60:1663–1673PubMedCrossRefGoogle Scholar
  130. 130.
    Wang L, MacDonald RC (2004) New strategy for transfection: mixtures of medium-chain and long-chain cationic lipids synergistically enhance transfection. Gene Ther 11:1358–1362PubMedCrossRefGoogle Scholar
  131. 131.
    Koynova R, Wang L, Tarahovsky Y et al (2005) Lipid phase control of DNA delivery. Bioconjug Chem 16:1335–1339PubMedCrossRefGoogle Scholar
  132. 132.
    Koynova R, Wang L, MacDonald RC (2007) Synergy in lipofection by cationic lipid mixtures: superior activity at the gel–liquid crystalline phase transition. J Phys Chem B 111:7786–7795PubMedCrossRefGoogle Scholar
  133. 133.
    Wagner E, Culmsee C, Boeckle S (2005) Targeting of polyplexes: toward synthetic virus vector systems. Adv Genet 53:333–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Ohio State University College of PharmacyColumbusUSA
  2. 2.Northwestern UniversityEvanstonUSA
  3. 3.Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations