Skip to main content

Recent Theoretical and Experimental Advances in the Electronic Circular Dichroisms of Planar Chiral Cyclophanes

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

Abstract

The chiroptical properties, such as electronic and vibrational circular dichroism and optical rotation, of planar chiral cyclophanes have attracted much attention in recent years. Although the chemistry of cyclophanes has been extensively explored for more than 60 years, the studies on chiral cyclophanes are rather limited. Experimentally, the use of chiral stationary phases in HPLC becomes more popular and facilitates the enantiomer separation of chiral cyclophanes of interest. Almost all chiral cyclophanes can be readily separated, in analytical and preparative scales, most typically on a Daicel OD type column, which is based on cellulose tris(3,5-dimethylphenylcarbamate). The CD spectra of chiral cyclophanes are unique in their fairly large, significantly coupled Cotton effects observed in all the 1 B b, 1 L a, and 1 L b band regions. Theoretically, the time-dependent density functional theory, or TD-DFT, method becomes a cost-efficient, yet accurate, theoretical method to reproduce the electronic circular dichroisms and the absorption spectra of a variety of cyclophanes. The direct comparison of the experimental CD spectra with the theoretical ones readily leads to the unambiguous assignment of the absolute configuration of cyclophanes. In addition, the analysis of configuration interaction and molecular orbitals allows detailed interpretation of the electronic transitions and Cotton effects in the UV and CD spectra. Through the study of the CD spectra of chiral cyclophanes as model systems, the effects of intra- and intermolecular interactions on the chiroptical properties of molecules can be explored, and the results thus obtained are valuable in comprehensively elucidating the structure-chiroptical property relationship. In this review the recent progress in experimental and theoretical investigations of the electronic CD spectra of chiral cyclophanes is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berova N, Bari LD, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36:914–931

    Article  CAS  Google Scholar 

  2. Cram DJ, Allinger NL (1955) Macro rings XII. Stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc 77:6289–6294

    Article  CAS  Google Scholar 

  3. Nugent MJ, Weigang OE Jr (1969) [2.2]Paracyclophane system optical activity. II. Circular dichroism of ring-substituted paracyclophanes. J Am Chem Soc 91:4556–4558

    Article  CAS  Google Scholar 

  4. Falk H, Rbich-Rohrwig P, Schlögl K (1970) Absolute Konfiguration Unt Circulardichroismus von Aktiven [2.2]Paracyclophan-derivaten. Tetrahedron 26:511–527

    Article  CAS  Google Scholar 

  5. Gibson SE, Knight JD (2003) [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem 1:1256–1269

    Article  CAS  Google Scholar 

  6. Rozenberg V, Sergeeva E, Hopf H (2004) Cyclophanes as templates in stereoselective synthesis. In: Gleiter R, Hopf H (eds) Modern cyclophane chemistry. Wiley-VCH, Weinheim, pp 435–462

    Google Scholar 

  7. Aly AA, Brown AB (2009) Asymmetric and fused heterocycles based on [2.2]paracyclophane. Tetrahedron 65:8055–8089

    Article  CAS  Google Scholar 

  8. Grimme S, Bahlmann A (2004) Electronic circular dichroism of cyclophanes. In: Gleiter R, Hopf H (eds) Modern cyclophane chemistry. Wiley-VCH, Weinheim, pp 311–336

    Google Scholar 

  9. Vögtle F, Pawlitzki G (2002) Cyclophanes: from planar chirality and helicity to cyclochirality. In: Takemura H (ed) Cyclophane chemistry for the 21st century. Research Signpost, Kerala, pp 55–90

    Google Scholar 

  10. Grimme S, Harren J, Sobanski A, Vögtle F (1998) Structure/chiroptics relationships of planar chiral and helical molecules. Eur J Org Chem 1491–1509

    Google Scholar 

  11. Mukhopadhyay P, Wipf P, Beratan DN (2009) Optical signatures of molecular dissymmetry: combining theory with experiments to address stereochemical puzzles. Acc Chem Res 42:809–819

    Article  CAS  Google Scholar 

  12. Stephens PJ, Devlin FJ, Pan J-J (2008) The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20:643–663

    Article  CAS  Google Scholar 

  13. Freedman TB, Cao X, Dukor RK, Nafie LA (2003) Absolute configuration determination of chiral molecules in the solution state using vibrational circular dichroism. Chirality 15:743–758

    Article  CAS  Google Scholar 

  14. Furo T, Mori T, Origane Y, Wada T, Izumi H, Inoue Y (2006) Absolute configuration determination of donor-acceptor [2.2]paracyclophanes by comparison of theoretical and experimental vibrational circular dichroism spectra. Chirality 18:205–211

    Article  CAS  Google Scholar 

  15. Abbate S, Castiglioni E, Gangemi F, Gangemi R, Longhi G, Ruzziconi R, Spizzichino S (2007) Harmonic and anharmonic features of IR and NIR absorption and VCD spectra of chiral 4-X-[2.2]paracyclophanes. J Phys Chem A 111:7031–7040

    Article  CAS  Google Scholar 

  16. Allinger NL, Sprague JT, Liljefors T (1974) Conformational analysis. CIV. Structures, energies, and electronic absorption spectra of the [n]paracyclophanes. J Am Chem Soc 96:5100–5104

    Article  CAS  Google Scholar 

  17. Tochtermann W, Vagt W, Snatzke G (1985) Synthese mittlerer und groaer Ringe, X. (+)- und (–)-[6]Paracyclophan-8-carbonsaure aus (+)- und (–)-3,6-Hexanooxepin-4-carbonsaure. Chem Ber 118:1996–2010

    Article  CAS  Google Scholar 

  18. Tochtermann W, Olsson G, Mannschreck A, Stühler G, Snatzke G (1990) Synthese mittlerer und groβer Ringe, XXVII. Chromatographische Enantiomerentrennung von 3,6-Heptanophthalid – ein Beitrag zur Frage der absoluten Konfiguration von [n]Paracyclophancarbonsäuren. Chem Ber 123:1437–1439

    Article  CAS  Google Scholar 

  19. Grimme S, Pischel I, Laufenberg S, Vögtle F (1998) Synthesis, structure, and chiroptical properties of the first 4-oxa[7]paracyclophane. Chirality 10:147–153

    CAS  Google Scholar 

  20. Nehira T, Soutome T, Harada N (2000) Circular dichroism and absolute stereochemistry of [8]paracyclophane-10-carbonitrile and related compounds. Enantiomer 5:139–144

    CAS  Google Scholar 

  21. Eberhardt H, Schlögl K (1972) Darstellung, chiroptische Eigenschaften und absolute Konfiguration von Derivaten des [10]Paracyclophans. Liebigs Ann Chem 760:157–170

    Article  CAS  Google Scholar 

  22. Ishida Y, Iwasa E, Matsuoka Y, Miyauchi H, Saigo K (2009) An enantiopure cyclophane-type imidazole with no central but planar chirality. Chem Commun 3401–3403

    Google Scholar 

  23. Kanomata N, Ochiai Y (2001) Stereocontrol of molecular jump-rope: crystallization-induced asymmetric transformation of planar-chiral cyclophanes. Tetrahedron Lett 42:1045–1048

    Article  CAS  Google Scholar 

  24. Yamamoto K, Nakazaki M (1974) The absolute configuration of [8][8], [8][10]paracyclophanes and related paracyclophane compounds. Chem Lett 1051–1054

    Google Scholar 

  25. Pischel I, Nieger M, Archut A, Vögtle F (1996) Chiral dithia[n]paracyclophanes – synthesis, crystal structure, and chiroptical properties. Tetrahedron 52:10043–10052

    Article  CAS  Google Scholar 

  26. Grimme S, Pischel I, Vögtle F, Niegers M (1995) Experimental and theoretical study of dithia[n]metacyclophanes: syntheses, chiroptical properties, and conformational analysis. J Am Chem Soc 117:157–162

    Article  CAS  Google Scholar 

  27. Rademacher P (2004) UV/Vis spectra of cyclophanes. In: Gleiter R, Hopf H (eds) Modern cyclophane chemistry. Wiley-VCH, Weinheim, pp 275–310

    Google Scholar 

  28. Gleiter R (1969) Consequences of σ-π-interaction in [2.2]-paracyclophane. Tetrahedron Lett 10:4453–4456

    Article  Google Scholar 

  29. Rosini C, Ruzziconi R, Superchi S, Fringuelli F, Piermatti O (1998) Circular dichroism spectra (350–185 nm) of a new series of 4-substituted [2.2]paracyclophanes: a quantitative analysis within the DeVoe polarizability model. Tetrahedron Assymetry 9:55–62

    Article  CAS  Google Scholar 

  30. Abbate S, Lebon F, Gangemi R, Longhi G, Spizzichino S, Ruzziconi R (2009) Electronic and vibrational circular dichroism spectra of chiral 4-X-[2.2]paracyclophanes with X containing fluorine atoms. J Phys Chem A 113:14851–14859

    Article  CAS  Google Scholar 

  31. Wörsdörfer U, Vögtle F, Nieger M, Waletzke M, Grimme S, Glorius F, Pfaltz A (1999) A new planar chiral bipyridine ligand. Synthesis 597–602

    Google Scholar 

  32. Weigang OE Jr, Nugent MJ (1969) [2.2]Paracyclophane system optical activity. I. Theory. J Am Chem Soc 91:4555–4556

    Article  CAS  Google Scholar 

  33. Mori T, Inoue Y, Grimme S (2007) Quantum chemical study on the circular dichroism spectra and specific rotation of donor-acceptor cyclophanes. J Phys Chem A 111:7995–8006

    Article  CAS  Google Scholar 

  34. Staab HA (1989) New aspects of organic charge-transfer compounds: syntheses, structures and solid-state properties. In: Yoshida Z, Shiba T, Oshiro Y (eds) New aspects of organic chemistry I. VCH, Weinheim, pp 227–236

    Google Scholar 

  35. Furo T, Mori T, Wada T, Inoue Y (2005) Absolute configuration of Chiral [2.2]paracyclophanes with intramolecular charge-transfer interaction. Failure of the exciton chirality method and use of the sector rule applied to the cotton effect of the CT transition. J Am Chem Soc 127:7995–8006 and 1638

    Google Scholar 

  36. Warnke I, Ay S, Bräse S, Furche F (2009) Chiral cooperativity and solvent-induced tautomerism effects in electronic circular dichroism spectra of [2.2]paracyclophane ketimines. J Phys Chem A 113:6987–6993

    Article  CAS  Google Scholar 

  37. Langer E, Lehner H (1973) Circulardiehroismus und Elektronenanregungsspektren chiraler [2, 2]Metacyclophane. Monatsh Chem 104:644–653

    Article  CAS  Google Scholar 

  38. Grimme S, Peyerimhoff SD, Bartram S, Vögtle F, Breest A, Hormes J (1993) Experimental and theoretical study of the circular dichroism spectra of oxa- and thia-[2.2]metacyclophane. Chem Phys Lett 213:32–40

    Article  CAS  Google Scholar 

  39. Muller D, Nieger M, Vögtle F (1994) The first [2.2]cyclophane with free N-H in the bridge. J Chem Soc Chem Commun 1361–1362

    Google Scholar 

  40. Wortmann-Saleh D, Grimme S, Engels B, Müller D, Vögtle F (1995) A study of the N-inversion barrier and the circular dichroism spectra of 1-thia-10-aza[2.2]metacyclophane. J Chem Soc Perkin Trans 2 1185–1189

    Google Scholar 

  41. Vögtle F, Ostrowicki A, Begcmann B, Jansen M, Nieger M, Niecke E (1990) Chirale dreilagige und kondensierte [2.2]Cyclophane. Synthese, Struktur, Chiroptik. Chem Ber 123:169–176

    Article  Google Scholar 

  42. Schulz J, Bartram S, Nieger M, Vögtle F (1992) Tricarbonylchrom-Komplexe von chiralen [2.2]Metacyclophanen: Darstellung, Struktur und chiroptische Eigenschaften. Chem Ber 125:2553–2569

    Article  CAS  Google Scholar 

  43. Grimme S, Mennicke W, Vögtle F, Nieger M (1999) Experimental and theoretical studies of a chiral azulenophane: synthesis, structure and circular dichroism spectra of 14,17-dimethyl[2](1,3)azuleno[2]paracyclophane. J Chem Soc Perkin Trans 2:521–528

    Google Scholar 

  44. Goerigk L, Grimme S (2009) Calculation of electronic circular dichroism spectra with time-dependent double-hybrid density functional theory. J Phys Chem A 113:767–776

    Article  CAS  Google Scholar 

  45. Niederalt C, Grimme S, Peyerimhoff SD, Sobanski A, Vögtle A, Lutz M, Spek AL, Eis MJ, Wolf WH, Bickelhaupt F (1999) Chiroptical properties of 12,15-dichloro[3.0]orthometacyclophane – correlations between molecular structure and circular dichroism spectra of a biphenylophane. Tetrahedron Asymmetry 10:2153–2164

    Article  CAS  Google Scholar 

  46. Mori T, Inoue Y, Grimme S (2007) Experimental and theoretical study of the CD spectra and conformational properties of axially chiral 2,2′-, 3,3′-, and 4,4′-biphenol ethers. J Phys Chem A 111:4222–4234

    Article  CAS  Google Scholar 

  47. Haenel MW, Staab HA (1973) Transanuiare Wechselwirkungen bei [2.2]Phanen, III. [2,2](2,6)Naphthalinophan und [2.2](2,6)Naphthalinophan-1,11-dien. Chem Ber 106:2203–2216

    Article  CAS  Google Scholar 

  48. Haenel MW (1978) Transanulare Wechselwirkungen bei [2.2]Phanen, XI. Chirales und achirales [2,2](1,5)Naphthalinophan. Chem Ber 111:1789–1797

    Article  CAS  Google Scholar 

  49. Laufenberg S, Feuerbacher N, Pischel S, Borsch O, Nieger M, Vögtle F (1997) New biphenylenophanes and biphenylophanes – 1,8-dimethylbiphenylene by continuous vacuum pyrolysis. Liebigs Ann 1901–1906

    Google Scholar 

  50. Nakazaki M, Yamamoto K, Maeda M (1981) Preparation of (–)-(M)-[2.2]paracyclophano-hexahelicene from (–)-(M)-1,4-dimethylhexahelicenea and the absolute configuration of 4-substituted [2.2]paracyclophanes. J Org Chem 46:1985–1987

    Article  CAS  Google Scholar 

  51. Gabutti S, Schaffner S, Neuburger M, Fischer M, Schäfer G, Mayor M (2009) Planar chiral asymmetric naphthalenediimide cyclophanes: synthesis, characterization and tunable FRET properties. Org Biomol Chem 7:3222–3229

    Article  CAS  Google Scholar 

  52. Misumi S, Otsubo T (1978) Chemistry of multilayered cyclophanes. Acc Chem Res 11:251–256

    Article  CAS  Google Scholar 

  53. Otsubo T, Mizogami S, Otsubo I, Tozuka Z, Sakagami A, Sakata Y, Misumi S (1973) Layered compounds XV. Synthesis and properties of multilayered cyclophanes. Bull Chem Soc Jpn 46:3519–3530

    Article  CAS  Google Scholar 

  54. Nakazaki M, Yamamoto K, Tanaka S, Kametani H (1977) Syntheses of the optically active multilayered [2.2]paracyclophanes with known absolute configurations. J Org Chem 42:287–291

    Article  CAS  Google Scholar 

  55. Muranaka A, Shibahara M, Watanabe M, Matsumoto T, Shinmyozu T, Kobayashi N (2008) Optical resolution, absolute configuration, and chiroptical properties of three-layered [3.3]paracyclophane. J Org Chem 73:9125–9128

    Article  CAS  Google Scholar 

  56. Harren J, Sobanski A, Nieger M, Yamamoto C, Okamoto Y, Vögtle F (1998) A triple layered helical chiral cyclophane – one-pot synthesis, enantiomer separation and chiroptical properties. Tetrahedron Asymmetry 9:1369–1375

    Article  CAS  Google Scholar 

  57. Tochtermann W, Kuckling D, Meints C, Kraus J, Bringmann G (2003) Bridged bioxepines and bi[10]paracyclophanes – synthesis and absolute configuration of a bi[10]paracyclophane with two chiral planes and one chiral axis. Tetrahedron 59:7791–7801

    Article  CAS  Google Scholar 

  58. Kanomata N, Mishima G, Onozato J (2009) Synchronized stereocontrol of planar chirality by crystallization-induced asymmetric transformation. Tetrahedron Lett 50:409–412

    Article  CAS  Google Scholar 

  59. Kanomata N, Suzuki J, Kubota H, Nishimura K, Enomoto T (2009) Synthesis of planar-chiral bridged bipyridines and terpyridines by metal-mediated coupling reactions of pyridinophanes. Tetrahedron Lett 50:2740–2743

    Article  CAS  Google Scholar 

  60. Ricci G, Ruzziconi R, Giorgio E (2005) Atropisomeric (R, R)-2,2′-bi([2]paracyclo[2](5,8) quinolinophane) and (R, R)-1,1′-bi([2]paracyclo[2](5,8)isoquinolinophane): synthesis, structural analysis, and chiroptical properties. J Org Chem 70:1011–1018

    Article  CAS  Google Scholar 

  61. Gentili PL, Bussotti L, Ruzziconi R, Spizzichino S, Foggi P (2009) Study of the photobehavior of a newly synthesized chiroptical molecule: (E)-(Rp,Rp)-1,2-Bis{4-methyl-[2]paracyclo[2](5,8)quinolinophan-2-yl}ethane. J Phys Chem A 113:14650–14656

    Article  CAS  Google Scholar 

  62. Fiesel R, Hubel J, Apel U, Enkelmann V, Hentschke R, Scherf U, Cabrera K (1997) Novel chiral poly(para-phenylene) derivatives containing cyclophane-type moieties. Macromol Chem Phys 198:2623–2650

    Article  CAS  Google Scholar 

  63. Issberner J, Böhme M, Grimme S, Neiger M, Paulus W, Vögtle F (1996) Dendrimers bearing planar chiral terminal groups – synthesis and chiroptical properties. Tetrahedron Asymmetry 7:2223–2232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.M. thanks the Alexander von Humboldt-Stiftung for the fellowship. We thank Prof. Stefan Grimme at Universität Münster for his support at the very beginning of the calculations of CD spectra and fruitful discussion on the theoretical aspects. T.M. offers his thanks for the financial supports of this work by a Grant-in-Aid for Scientific Research (No. 21750044) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Mitsubishi Chemical Corporation Fund, and the Sumitomo Foundation. Y.I. offers his thanks for the support of this work by a Grant-in-Aid for Scientific Research (A) from JSPS (No. 21245011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, T., Inoue, Y. (2010). Recent Theoretical and Experimental Advances in the Electronic Circular Dichroisms of Planar Chiral Cyclophanes. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_59

Download citation

Publish with us

Policies and ethics