Skip to main content

Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods

  • Chapter
  • First Online:
Carbohydrates in Sustainable Development I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 294))

Abstract

This review provides an overview of the current status of the chemistry and biology of di-d-fructose dianhydrides (DFAs) with a focus on their potential as functional foods. The history of this family of cyclic ketodisaccharides has expanded for almost 100 years and offers a paradigmatic example of artificial synthetic molecules that were identified as natural products later on and finally encountered in our own table. Issued from fundamental investigations on the reactivity of carbohydrates in strongly acidic media, DFAs remained laboratory curiosities for decades. Early reports on their isolation from plants raised doubts, until the formation of some DFA representatives by the action of microorganisms on fructans was reported in the middle 1980s. Since then, research on DFAs has run in parallel in the areas of microbiology and carbohydrate chemistry. Evidence of the potential of these compounds as functional food was accumulated from both sides, with the development of biotechnological processes for mass production of selected candidates and of chemical methodologies to prepare DFA-enriched products from sucrose or inulin. In 1994 a decisive discovery in the field took place in the laboratory of Jacques Defaye in Grenoble, France: the presence of DFAs in a commercial sucrose caramel was evidenced in a quite significant 18% mass proportion! The development of an efficient analytical protocol for DFAs and the stereoselective synthesis of individual standards allowed one to demonstrate that DFAs and their glycosylated derivatives (glycosyl-DFAs) are universally formed during caramelization reactions. They are not potential food products; they have actually always been in our daily food. Most important, they seem to exert beneficial effects: they are acariogenic, low-caloric, and promote the growth of beneficial microflora in the gut.

Most recent evidence indicates that DFAs can even protect the intestinal tract against agressive agents favor the assimilation of antioxidants, and act as a drug-like food for the treatment of colon ailments such as inflammatory bowel disease (Crohn disease). The development of efficient methodologies for the preparation of DFA-enriched caramels, compatible with the food and agricultural industry regulations, may lead to new natural functional foods and nutraceuticals based on DFAs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diplock AT, Aggett PJ, Ashwell M, Bornet F, Fern EB, Robertfroid MB (1999) Br J Nutr 81 (4 Suppl 1):S1

    Google Scholar 

  2. Gibson GR, Roberfroid MB (1995) Br J Nutr 125:1401–1412

    CAS  Google Scholar 

  3. Gibson GR, Probert HM, van Loo J, Rastall RA, Roberfroid M (2004) Nutr Res Rev 17:259–275

    CAS  Google Scholar 

  4. Pszczola DE (1992) Food Technol 46:77–79

    Google Scholar 

  5. Lomax AR, Calder PC (2009) Br J Nutr 101:633–658

    CAS  Google Scholar 

  6. Hugenholtz J, Smid EJ (2002) Curr Opin Biotechnol 13:497–507

    CAS  Google Scholar 

  7. Fooks LJ, Fuller R, Gibson GR (1999) Int Dairy J9:53–61

    Google Scholar 

  8. Delzene NM (2003) Proc Nutr Soc 62:177–182

    Google Scholar 

  9. Bounik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B, Brouns F, Bornet F (2004) J Nutr 80:1658–1664

    Google Scholar 

  10. Zentec J, Marquart B, Pietrzak T (2002) J Nutr 132:S1682–S1684

    Google Scholar 

  11. Olano-Martín E, Williams MR, Gibson GR, Rastall RA (2003) FEMS Microbiol Lett 218:101–105

    Google Scholar 

  12. Morgan AJ, Mul AJ, Beldman G, Voragen AGJ (1992) AGRO Food Industry High Technol Nov/Dec 3:35–38

    Google Scholar 

  13. Campbell JM, Fahy GC, Wolf BW (1997) J Nutr 127:130–136

    CAS  Google Scholar 

  14. Macfarlane GT, Steed H, Macfarlane S (2008) J Appl Microbiol 104:305–344

    CAS  Google Scholar 

  15. Gattuso G, Nepogodiev SA, Stoddart JF (1998) Chem Rev 98:1919–1958

    CAS  Google Scholar 

  16. McDonald EJ (1946) Adv Carbohydr Chem 2:53–277

    Google Scholar 

  17. Manley-Harris M, Richards GN (1997) Adv Carbohydr Chem Biochem 52:207–239

    Google Scholar 

  18. García-Moreno MI, Benito JM, Ortiz Mellet C, García Fernández JM (2008) Molecules 13:1640–1670

    Google Scholar 

  19. Defaye J, García Fernández JM (1994) Carbohydr Res 256:C1–C4

    CAS  Google Scholar 

  20. This H, Rutledge D (2009) Anal Bional Chem 394:659–661

    CAS  Google Scholar 

  21. This H (2009) Acc Chem Res 42:575–583

    CAS  Google Scholar 

  22. McNaught AD (1996) Pure Appl Chem 68:1919

    CAS  Google Scholar 

  23. Shlubach HH, Knoop H (1993) Justus Liebigs Ann Chem 504:19–30

    Google Scholar 

  24. Strepkov SM (1958) Zh Obshch Khim 28:3143–3147

    CAS  Google Scholar 

  25. Uchiyama T (1983) Agric Biol Chem 47(2):437–439

    CAS  Google Scholar 

  26. Li H-Y, Hagiwara H, Zhu W, Yokoyama C, Harada N (1997) Carbohydr Res 299:301–305

    CAS  Google Scholar 

  27. Uchiyama T, Niwa S, Tanaka K (1973) Biochim Biophys 315:412–420

    Google Scholar 

  28. Tanaka K, Uchiyama T, Ito A (1972) Biochim Biophys 284:248–256

    CAS  Google Scholar 

  29. Kawamura M, Uchiyama T (2007) Chemistry and production of di-d-fructose dianhydrides. In: Norio S, Noureddine B, Shuichi O (eds) Recent advances in fructooligosaccharides research. Research Signpost, Kerala, India, pp 273–296

    Google Scholar 

  30. Uchiyama T (1975) Biochim Biophys Acta 397:153–163

    CAS  Google Scholar 

  31. Tanaka K, Kawaguchi H, Ohno K, Shohji K (1981) J Biochem 90:1545–1548

    CAS  Google Scholar 

  32. Tanaka K, Uchiyama T, Yamamuchi K, Suzuki Y, Hashiguchi S (1982) Carbohydr Res 99:197–204

    CAS  Google Scholar 

  33. Tanaka K, Karigane T, Yamaguchi F, Nishikawa S, Yoshida N (1983) J Biochem 94:1569–1578

    CAS  Google Scholar 

  34. Defaye J, Gadelle A, Pedersen C (1985) Carbohydr Res 136:53–65

    CAS  Google Scholar 

  35. Chu YD, Shiau LD, Berglund KA (1989) J Crystal Growth 97:689–696

    CAS  Google Scholar 

  36. Wolfrom ML, Blair MG (1948) J Am Chem Soc 70:2406–2409

    CAS  Google Scholar 

  37. Nguyen SK, Sophonputtanaphoca S, Kim E, Penner MH (2009) Appl Biochem Biotechnol 158:352–361

    CAS  Google Scholar 

  38. Benito JM, Ortiz Mellet C, García Fernández JM (2005) Identificación y cuantificacción de azúcares resultantes de la dimerización de la sacarosa y de la d-fructosa (dianhídridos de fructosa) formados en la raíz de la remolacha o durante su procesado industrial. In: Echevarría C, Morillo-Valverde R (eds) Aspectos fisiológicos de la remolacha azucarera de siembra otoñal, 1st edn. Junta de Andalucía, Seville, Spain

    Google Scholar 

  39. García Fernández JM, Gadelle A, Defaye J (1994) Carbohydr Res 265:249–269

    Google Scholar 

  40. Defaye J, García Fernández JM (1994) Carbohydr Res 251:17–31

    CAS  Google Scholar 

  41. García Fernández JM, Defaye J (1992) Carbohydr Res 237:223–247

    Google Scholar 

  42. Defaye J, García Fernández JM (1994) Carbohydr Res 251:1–15

    CAS  Google Scholar 

  43. García Fernández JM, Defaye J (1992) Tetrahedron Lett 33(51):7861–7864

    Google Scholar 

  44. García Fernández JM, Ortiz Mellet C, Defaye J (1998) J Org Chem 63:3572–3580

    Google Scholar 

  45. Defaye J, Gadelle A, Pedersen C (1988) Carbohydr Res 174:323–329

    CAS  Google Scholar 

  46. García Fernández JM, Schnelle R-R, Defaye J (1995) Tetrahedron Asymmetry 6:307–312

    Google Scholar 

  47. Gerber-Lemaire S, Vogel P (2009) Carbohydr Chem 35:13–32

    CAS  Google Scholar 

  48. Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD (2005) J Am Chem Soc 127:528

    CAS  Google Scholar 

  49. Benito JM, Gómez-García M, Ortiz Mellet C, García Fernández JM, Defaye J (2001) Org Lett 3:549–552

    CAS  Google Scholar 

  50. Benito JM, Rubio EM, Gómez-García M, Ortiz Mellet C, García Fernández JM (2004) Tetrahedron 60:5899–5906

    CAS  Google Scholar 

  51. Balbuena P, Rubio EM, Ortiz Mellet C, García Fernández JM (2006) Chem Commun 2610–2612

    Google Scholar 

  52. Rubio EM, Ortiz Mellet C, García Fernández JM (2003) Org Lett 5(6):873–876

    CAS  Google Scholar 

  53. Rubio EM, García Moreno MI, Balbuena P, Lahoz FJ, Alvarez E, Ortiz Mellet C, García Fernández JM (2006) J Org Chem 71:2257–2266

    CAS  Google Scholar 

  54. Rubio EM, García Moreno MI, Balbuena P, Ortiz Mellet C, García Fernández JM (2005) Org Lett 7(4):729–731

    CAS  Google Scholar 

  55. Louis F, García Moreno MI, Balbuena P, Ortiz Mellet C, García Fernández JM (2008) Tetrahedron 64:2792–2800

    CAS  Google Scholar 

  56. Saito K, Tomita F (2000) Biosci Biotechnol Biochem 64:1321–1327

    CAS  Google Scholar 

  57. Seki K, Haraguchi K, Kishimoto S, Kobayashi S, Kainuma K (1988) Starch-Stärke 40:440–442

    CAS  Google Scholar 

  58. Seki K, Haraguchi K, Kishimoto S, Kobayashi S, Kainuma K (1989) Agric Biol Chem 53:2089–2090

    CAS  Google Scholar 

  59. Kushibe S, Sashida R, Morimoto Y, Ohkishi H (1993) Biosci Biotechnol Biochem 57:2054–2058

    CAS  Google Scholar 

  60. Haraguchi K, Yoshida M, Ohtsubo K (2003) Biotechnol Lett 25:1049–1053

    CAS  Google Scholar 

  61. Haraguchi K, Yoshida M, Yamanaka T, Ohtsubo K (2003) Carbohydr Polym 53:501–505

    CAS  Google Scholar 

  62. Yokota A, Hirayama S, Enemoto K, Miura Y, Takao S, Tomita F (1991) J Ferment Bioeng 72:258–261

    CAS  Google Scholar 

  63. Yokota A, Enemoto K, Tomita F (1991) J Ferment Bioeng 72:262–265

    CAS  Google Scholar 

  64. Kikuchi H, Inoue M, Saito H, Sakurai H, Aritsuka T, Tomita F, Yokota A (2009) J Biosci Bioeng 107(3):262–265

    CAS  Google Scholar 

  65. Haraguchi K, Yoshida M, Ohtsubo K (2005) Carbohydr Polym 59:411–416

    CAS  Google Scholar 

  66. Haraguchi K, Yoshida M, Ohtsubo K (2006) Carbohydr Polym 66:75–80

    CAS  Google Scholar 

  67. Cha J, Park NH, Yang SJ, Lee TH (2001) J Biotechnol 91:49–61

    CAS  Google Scholar 

  68. Jang K-H, Ryu E-J, Park B-S, Song K-B, Kang SA, Kim CH, Uhm T-B, Park Y-I, Rhee S-K (2003) J Agric Food Chem 51:2635–2636

    Google Scholar 

  69. Jang K-H, Jang E-K, Kim SH, Kim I-H, Kang SA, Koh I, Park Y-I, Kim Y-J, Ha -D, Kim CH (2006) J Microbiol Biotechnol 16:102–108

    CAS  Google Scholar 

  70. Jang E-K, Jang K-H, Koh I, Kim I-H, Kim SH, Kang SA, Kim CH, Ha S-D, Rhee S-K (2002) J Microbiol Biotechnol 12:603–609

    CAS  Google Scholar 

  71. Takesue N, Sone T, Tanaka M, Tomita F, Asano K (2007) Enzyme Microb Technol 41:673–676

    CAS  Google Scholar 

  72. Takesue N, Sone T, Tanak M, Tomita F, Asano K (2009) J Biosci Bioeng 107(6):623–629

    CAS  Google Scholar 

  73. Tomasik P, Palasinski M, Wiejak S (1989) Adv Carbohydr Chem Biochem 47:203–278

    CAS  Google Scholar 

  74. Queneau Y, Jarosz S, Lewandowski B, Fitremann J (2007) Adv Carbohydr Chem Biochem 61:217–292

    CAS  Google Scholar 

  75. Defaye J, García Fernández JM (1995) Zuckerindustrie 120:700–704

    CAS  Google Scholar 

  76. Defaye J, García Fernández JM (2000) Actual Chim Novembre:24–27

    Google Scholar 

  77. Oosterveld A, Voragen AGJ, Schols HA (2003) Carbohydr Polym 54:183–192

    CAS  Google Scholar 

  78. Montilla A, Ruíz-Matute AI, Sanz ML, Martínez-Castro I, del Castillo MD (2006) Food Res Int 39:801–806

    CAS  Google Scholar 

  79. Waleckx E, Gschaedler A, Colonna-Ceccaldi B, Monsan P (2008) Food Chem 108:40–48

    CAS  Google Scholar 

  80. Speck JC Jr (1958) Adv Carbohydr Chem 13:63–103

    CAS  Google Scholar 

  81. Kroh LW, Jalyschko W, Häseler J (1996) Starch/Stärke 48:426–433

    CAS  Google Scholar 

  82. Jiang B, Liu Y, Bhandari B, Zhou W (2008) J Agric Food Chem 56:5138–5147

    CAS  Google Scholar 

  83. Simkovis I, Surina I, Vrican M (2003) J Anal Appl Pyrolysis 70:493–504

    Google Scholar 

  84. Antal MJ, Mok WSL, Richard GN (1990) Carbohydr Res 199:91–109

    CAS  Google Scholar 

  85. Ratsimba V, García Fernández JM, Defaye J, Nigay H, Voilley A (1999) J Chromatogr A 884:283–293

    Google Scholar 

  86. Ruíz-Matute AI, Soria AC, Martínez-Castro I, Sanz ML (2007) J Agric Food Chem 55:7264–7269

    Google Scholar 

  87. Manley-Harris M, Richards GN (1994) Zuckerindustrie 114:924–928

    Google Scholar 

  88. Manley-Harris M, Richards GN (1994) Carbohydr Res 254:195–202

    CAS  Google Scholar 

  89. Manley-Harris M, Richards GN (1996) Carbohydr Res 287:183–202

    CAS  Google Scholar 

  90. Christian TJ, Manley-Harris M, Field RJ, Parker BA (2000) J Agric Food Chem 48:1823–1837

    CAS  Google Scholar 

  91. Tanaka M, Nakajima Y, Nishio K, Hashimoto H (1993) J Carbohydr Chem 12:49–61

    CAS  Google Scholar 

  92. Suárez-Pereira E, Rubio EM, Pilard S, Ortiz Mellet C, García Fernández JM (2010) J Agric Food Chem 58:1777–1787

    Google Scholar 

  93. Rechner AR, Wagner E, Van Buren L, Van De Put F, Wiseman S, Rice-Evans CA (2002) Free Radical Res 36:1127–1135

    CAS  Google Scholar 

  94. Saito K, Hira T, Suzuki T, Hara H, Yokota A, Tomita F (1999) Biosci Biotechnol Biochem 63:655–661

    CAS  Google Scholar 

  95. Minamida K, Sujaya IN, Tamura A, Shigematsu N, Sone T, Yokota A, Asano K, Benno Y, Tomita F (2004) J Biosci Bioeng 98:244–250

    CAS  Google Scholar 

  96. Minamida K, Shiga K, Sujaya IN, Sone T, Yokota A, Hara H, Asano K, Tomita F (2005) J Biosci Bioeng 99:230–236

    CAS  Google Scholar 

  97. Minamida K, Asakawa C, Sujaya IN, Kaneko M, Abe A, Sone T, Hara H, Asano K, Tomita F (2006) J Biosci Bioeng 101:149–156

    CAS  Google Scholar 

  98. Minamida K, Kaneko M, Ohashi M, Sujaya IN, Sone T, Wada M, Yokota A, Hara H, Asano K, Tomita F (2005) J Biosci Bioeng 99:548–554

    CAS  Google Scholar 

  99. Hara H, Kondo K (2005) Biosci Biotechnol Biochem 69:839–841

    CAS  Google Scholar 

  100. Mineo H, Amano M, Chiji H, Shigematsu N, Tomita F, Hara H (2004) Dig Dis Sci 49:122–132

    CAS  Google Scholar 

  101. Afsana K, Shiga K, Ishizuka S, Hara H (2003) J Nutr 133:553–3560

    Google Scholar 

  102. Shiga K, Hara H, Okano G, Ito M, Minami A, Tomita F (2003) J Nutr 133:4207–4211

    CAS  Google Scholar 

  103. Mineo H, Hara H, Shigematsu N, Okuhara Y, Tomita F (2002) J Nutr 132:3394–3399

    CAS  Google Scholar 

  104. Suzuki T, Hara H (2006) Life Sci 79:401–410

    CAS  Google Scholar 

  105. Matsumoto M, Matsukawa N, Chiji H, Hara H (2007) J Agric Food Chem 55:4202–4208

    CAS  Google Scholar 

  106. Matsuwaka N, Matsumoto M, Chiji H, Hara H (2009) J Agric Food Chem 57:1498–1505

    Google Scholar 

  107. Kashimura J, Nakajima Y, Benno Y, Endo K, Mitsuoka T (1989) Bifidobacteria Microflora 8:45–50

    Google Scholar 

  108. Orban JI, Patterson JA, Surron AL, Richards GN (1997) Poultry Sci 76:482–490

    CAS  Google Scholar 

  109. Rubio Castillo EM, Gómez García M, Ortiz Mellet C, García Fernández JM, Zarzuelo Zurita A, Gálvez Peralta JJ, Duval R (2007) Novel caramels with a high prebiotic oligosaccharide content, ES Patent WO2008107506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Ortiz Mellet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Mellet, C.O., Fernández, J.M.G. (2010). Difructose Dianhydrides (DFAs) and DFA-Enriched Products as Functional Foods. In: Rauter, A., Vogel, P., Queneau, Y. (eds) Carbohydrates in Sustainable Development I. Topics in Current Chemistry, vol 294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_50

Download citation

Publish with us

Policies and ethics