Synthesis and Applications of Ionic Liquids Derived from Natural Sugars

Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 295)

Abstract

Aiming to develop environmentally compatible chemical syntheses, the replacement of traditional organic solvents with ionic liquids (ILs) has attracted considerable attention. ILs are special molten salts with melting points below 100°C that are typically constituted of organic cations (imidazolium, pyridinium, sulfonium, phosphonium, etc.) and inorganic anions. Due to their ionic nature, they are endowed with high chemical and thermal stability, good solvent properties, and non-measurable vapor pressure. Although the recovery of unaltered ILs and recycling partly compensate their rather high cost, it is important to develop new synthetic approaches to less expensive and environmentally sustainable ILs based on renewable raw materials. In fact, most of these alternative solvents are still prepared starting from fossil feedstocks. Until now, only a limited number of ILs have been prepared from renewable sources. Surprisingly, the most available and inexpensive raw material, i.e., carbohydrates, has been hardly exploited in the synthesis of ILs. In 2003 imidazolium-based ILs were prepared from d-fructose and used as solvents in Mizoroki–Heck and Diels–Alder reactions. Later on, the first chiral ILs derived from sugars were prepared from methyl d-glucopyranoside. In the same year, a family of new chiral ILs, obtained from commercial isosorbide (dianhydro-d-glucitol), was described. A closely related approach was followed by other researchers to synthesize mono- and bis-ammonium ILs from isomannide (dianhydro-d-mannitol). Finally, a few ILs bearing a pentofuranose unit as the chiral moiety were prepared using sugar phosphates as glycosyl donors and 1-methylimidazole as the acceptor.

Keywords

Asymmetric synthesis Chiral ionic liquids Ion pairing Local structure Nuclear Overhauser effect Task-specific ionic liquids 

References

  1. 1.
    Rogers RD, Seddon KR (eds) (2002) Ionic liquids: industrial application to green chemistry. ACS Publication, Oxford University PressGoogle Scholar
  2. 2.
    Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Watanabe M, Terada N (2006) Chem Commun 544Google Scholar
  3. 3.
    Mazille F, Fei Z, Kuang D, Zhao D, Zakeeruddin SM, GrNtzel M, Dyson PJ (2006) Inorg Chem 45:1585CrossRefGoogle Scholar
  4. 4.
    Du Z, Yu YL, Wang JH (2007) Chem Eur J 13:2130CrossRefGoogle Scholar
  5. 5.
    Seddon KR (1999) In: The International George Papatheodorum Symposium, Patras, GreeceGoogle Scholar
  6. 6.
    Wasserscheid P, Welton T (2007) Ionic liquids in synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275CrossRefGoogle Scholar
  8. 8.
    Wagner M (2005) Chimica Oggi 23:32Google Scholar
  9. 9.
    Garcia MT, Gathergood N, Scammells PJ (2005) Green Chem 7:9CrossRefGoogle Scholar
  10. 10.
    Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Mommi G, Intorre L (2006) Green Chem 8:239CrossRefGoogle Scholar
  11. 11.
    Ranke J, Stelte S, Stormann R, Arning J, Jastorff B (2007) Chem Rev 107:2183CrossRefGoogle Scholar
  12. 12.
    Yashida Y, Baba O, Larriba C, Saito G (2007) J Phys Chem B 111:12204CrossRefGoogle Scholar
  13. 13.
    Lee SG (2006) Chem Commun 1049Google Scholar
  14. 14.
    Crowhurst L, Mawdsley PR, Perez Arlandis JM, Salter PA, Welton T (2003) Phys Chem Chem Phys 5:2790CrossRefGoogle Scholar
  15. 15.
    Fort DA, Remsing RC, Swatloski RP, Moyna RP, Roger RD (2007) Green Chem 9:63CrossRefGoogle Scholar
  16. 16.
    van Rantwijk F, Sheldon RA (2007) Chem Rev 107:2757CrossRefGoogle Scholar
  17. 17.
    Marra A, Vecchi A, Chiappe C, Melai B, Dondoni A (2008) J Org Chem 73:2458CrossRefGoogle Scholar
  18. 18.
    Vecchi A, Melai B, Marra A, Chiappe C, Dondoni A (2008) J Org Chem 73:6437CrossRefGoogle Scholar
  19. 19.
    Del Popolo MG, Lynden-Bell RM, Kohanoff J (2005) J Phys Chem B 109:5895CrossRefGoogle Scholar
  20. 20.
    Resende Prado CE, Del Popolo MG, Youngs TGA, Kohanoff J, Lynden-Bell RM (2006) Mol Phys 104:2477CrossRefGoogle Scholar
  21. 21.
    Bagno A, D'Amico F, Saielli G (2006) J Phys Chem B 110:23004CrossRefGoogle Scholar
  22. 22.
    Bruzzone S, Malvaldi M, Chiappe C (2007) Phys Chem Chem Phys 9:5576Google Scholar
  23. 23.
    Bruzzone S, Malvaldi M, Chiappe C (2008) J Chem Phys 129:074509CrossRefGoogle Scholar
  24. 24.
    Canongia Lopes JNA, Pádua AAH (2006) J Phys Chem B 110:3030CrossRefGoogle Scholar
  25. 25.
    Hardacre C, Holbrey JD, Nieuwenhuyzen M, Youngs TGA (2007) Acc Chem Res 40:1146CrossRefGoogle Scholar
  26. 26.
    Bankmann D, Giernoth R (2007) Prog Nucl Magn Reson Spectrosc 51:63CrossRefGoogle Scholar
  27. 27.
    Giernoth R (2009) In: Koel M (ed) Ionic liquids in chemical analysis. CRC Press, Boca Raton, pp 355–370Google Scholar
  28. 28.
    Mele A (2005) In: Rogers RD, Seddon KR (eds) Ionic liquids IIIA: fundamentals, progress, challenges and opportunities, ACS Symp Ser, vol 901. American Chemical Society, Washington, pp 2–17Google Scholar
  29. 29.
    Castiglione F, Moreno M, Raos G, Famulari A, Mele A, Appetecchi GB, Passerini S (2009) J Phys Chem B 113:10750CrossRefGoogle Scholar
  30. 30.
    Brans T, Cabrita EJ, Berger S (2005) Prog Nucl Magn Reson Spectrosc 46:159CrossRefGoogle Scholar
  31. 31.
    Pregosin PS (2006) Prog Nucl Magn Reson Spectrosc 49:261CrossRefGoogle Scholar
  32. 32.
    Johnson CS Jr (1999) Prog Nucl Magn Reson Spectrosc 34:203CrossRefGoogle Scholar
  33. 33.
    Rollet AL, Porion P, Vaultier M, Billard I, Deschamps M, Bessada C, Jouvensal L (2007) J Phys Chem B 111:11888CrossRefGoogle Scholar
  34. 34.
    Annat G, MacFarlane DR, Forsyth M (2007) J Phys Chem B 111:9018CrossRefGoogle Scholar
  35. 35.
    Menjoge A, Dixon J, Brennecke JF, Maginn EJ, Vasenkov S (2009) J Phys Chem B 113:6353CrossRefGoogle Scholar
  36. 36.
    Mantz RA, Trulove PC, Carlin RT, Osteryoung RA (1995) Inorg Chem 34:3846CrossRefGoogle Scholar
  37. 37.
    Mele A, Tran CD, De Paoli Lacerda SH (2003) Angew Chem Int Ed 42:4364CrossRefGoogle Scholar
  38. 38.
    Mele A, Romanò G, Giannone M, Ragg E, Fronza G, Raos G, Marcon V (2006) Angew Chem Int Ed 45:1123CrossRefGoogle Scholar
  39. 39.
    Li N, Zhang S, Zheng L, Wu J, Li X, Yu L (2008) J Phys Chem B 112:12453CrossRefGoogle Scholar
  40. 40.
    Gao Y, Li N, Zhang S, Zheng L, Bai X, Yu L (2009) J Phys Chem B 113:123CrossRefGoogle Scholar
  41. 41.
    Iojoiu C, Judenstein P, Sanchez JY (2007) Electrochim Acta 53:1395CrossRefGoogle Scholar
  42. 42.
    Judenstein P, Iojoiu C, Sanchez JY, Ancian B (2008) J Phys Chem B 112:3680CrossRefGoogle Scholar
  43. 43.
    Moreno M, Castiglione F, Mele A, Pasqui C, Raos G (2008) J Phys Chem B 112:7826CrossRefGoogle Scholar
  44. 44.
    Gutel T, Santini CC, Padua AAH, Fernet B, Chauvin Y, Canongia Lopes JN, Bayard F, Costa Gomes FM, Pensado AS (2009) J Phys Chem B 113:170CrossRefGoogle Scholar
  45. 45.
    Bagno A, D'Amico F, Saielli G (2007) ChemPhysChem 8:873CrossRefGoogle Scholar
  46. 46.
    Acevedo O, Jorgensen WL, Evanseck J (2007) J Chem Theory Comput 3:132CrossRefGoogle Scholar
  47. 47.
    Malvaldi M, Bruzzone S, Chiappe C, Gusarov S, Kovalenko A (2009) J Phys Chem B 113:3536CrossRefGoogle Scholar
  48. 48.
    Pernak J, Sobaszkiewich K, Mirska L (2003) Green Chem 5:52CrossRefGoogle Scholar
  49. 49.
    Latala A, Stepnowski P, Nedzi M, Mrozik W (2005) Aquat Toxicol 73:91CrossRefGoogle Scholar
  50. 50.
    Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Green Chem 8:82CrossRefGoogle Scholar
  51. 51.
    Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jarstoff B (2007) Green Chem 9:1198CrossRefGoogle Scholar
  52. 52.
    Cho CW, Pham TPT, Jeon YC, Yun YS (2008) Green Chem 10:67CrossRefGoogle Scholar
  53. 53.
    Kulacki KJ, Lamberti GA (2008) Green Chem 10:104CrossRefGoogle Scholar
  54. 54.
    Pretti C, Chiappe C, Baldetti I, Brunini S, Monni G, Intorre L (2009) Ecotoxicol Environ Saf 72:1170CrossRefGoogle Scholar
  55. 55.
    Seddon KR, Earle MJ, McCormac PB (1999) Green Chem 1:23CrossRefGoogle Scholar
  56. 56.
    Gausepohl R, Buskens P, Kleinen J, Bruckmann A, Lehmann CW, Klankermayer J, Leitner W (2006) Angew Chem Int Ed 45:3689CrossRefGoogle Scholar
  57. 57.
    Plaquevent JC, Levillain J, Guillen F, Malhiac C, Gaumont AC (2008) Chem Rev 108:5035CrossRefGoogle Scholar
  58. 58.
    Abbott AP, Capper G, Davis DL, Rasheed RK, Tambyrajah V (2002) Green Chem 4:200CrossRefGoogle Scholar
  59. 59.
    Wasserscheid P, Boesmann A, Bolm C (2002) Chem Commun 200Google Scholar
  60. 60.
    Vo-Thanh G, Pegot B, Loupy A (2004) Eur J Org Chem 1112Google Scholar
  61. 61.
    Wang Z, Wang Q, Zhang Y, Bao W (2005) Tetrahedron Lett 46:4657CrossRefGoogle Scholar
  62. 62.
    Ma HY, Wan XY, Chen XF, Zhou QF (2003) Chinese J Polym Sci 21:265Google Scholar
  63. 63.
    Pernak J, Feder-Kubis J (2005) Chem Eur J 11:4441CrossRefGoogle Scholar
  64. 64.
    Tosoni M, Laschat S, Baro A (2004) Helv Chim Acta 87:2742CrossRefGoogle Scholar
  65. 65.
    Handy ST, Okello M, Dickenson G (2003) Org Lett 5:2513CrossRefGoogle Scholar
  66. 66.
    Trotter J, Darby W (1955) Organic Syntheses, Collect Vol III. Wiley, New York, p 460Google Scholar
  67. 67.
    Handy ST, Okello M (2003) Tetrahedron Lett 44:8399CrossRefGoogle Scholar
  68. 68.
    Poletti L, Chiappe C, Lay L, Pieraccini D, Polito L, Russo G (2007) Green Chem 9:337CrossRefGoogle Scholar
  69. 69.
    Nguyen Van Buu O, Vo-Thanh G (2007) Lett Org Chem 4:158CrossRefGoogle Scholar
  70. 70.
    Loupy A, Monteux D (1996) Tetrahedron Lett 37:7023CrossRefGoogle Scholar
  71. 71.
    Carcedo C, Dervisi A, Fallis IA, Ooi L, Malik KMA (2004) Chem Commun 6:1236CrossRefGoogle Scholar
  72. 72.
    Ballcells J, Colonna S, Fornasier R (1976) Synthesis 266Google Scholar
  73. 73.
    Colonna S, Fornasier R (1978) J Chem Soc Perkin Trans 1:371CrossRefGoogle Scholar
  74. 74.
    Pégot B, Vo-Thanh G, Gori D, Loupy A (2004) Tetrahedron Lett 45:6425CrossRefGoogle Scholar
  75. 75.
    Kumar V, Pei C, Olsen CE, Schäffer SJC, Parmar VS, Malhotra SV (2008) Tetrahedron Asymm 19:664CrossRefGoogle Scholar
  76. 76.
    Malhotra SV, Wang Y (2006) Tetrahedron Asymm 17:1032CrossRefGoogle Scholar
  77. 77.
    Luo S, Mi X, Zhang L, Liu S, Xu H, Cheng JP (2006) Angew Chem Int Ed 45:3093CrossRefGoogle Scholar
  78. 78.
    Kumar V, Olsen CE, Schaeffer SJC, Parmar VS, Malhotra SV (2007) Org Lett 9:3905CrossRefGoogle Scholar
  79. 79.
    Plaza PGJ, Bhongade BA, Singh G (2008) Synlett 2973 (Erratum: (2009) Synlett 332)Google Scholar
  80. 80.
    Lichtenthaler FW, Peters S (2004) C R Chimie 7:65CrossRefGoogle Scholar
  81. 81.
    Lichtenthaler FW (2006) The key sugars of biomass: availability, present non-food uses and potential future development lines. In: Kamm B, Gruber PR, Kamm M (eds) Biorefinery: industrial precesses and products, vol 2. Wiley-VCH, Weinheim, pp 3–59Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.Dipartimento di ChimicaUniversità di FerraraFerraraItaly
  3. 3.Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”Politecnico di MilanoMilanoItaly

Personalised recommendations