Skip to main content

An Orbital Phase Theory

  • Chapter
  • First Online:
Orbitals in Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 289))

Abstract

Cyclic orbital interactions are contained in non-cyclic conjugation as well as cyclic conjugation. For effective interactions, the orbitals are required to meet simultaneously the phase continuity conditions: (1) out of phase relation between electron-donating orbitals; (2) in phase relation between electron-accepting orbitals and between electron-donating and -accepting orbitals. The orbital phase theory is applicable to diverse chemical phenomena of non-cyclic conjugate systems, e.g., relative stabilities of non-cyclic isomers, and selectivities of the reactions through non-cyclic transition structures. The orbital phase theory also includes the rules for cyclic systems, i.e., the Wooward–Hoffmann rule for stereoselection of organic reactions and the Hueckel 4n + 2π electron rule for aromatic molecules. Derivation and applications of the orbital phase theory are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson R (1932) Outline of an electrochemical (electronic) theory of the course of organic reactions. The Institute of Chemistry of Great Britain and Ireland, London

    Google Scholar 

  2. Ingold CK (1934) Chem Rev 15:225

    CAS  Google Scholar 

  3. Lennard-Jones JE (1929) Trans Faraday Soc 25:668

    CAS  Google Scholar 

  4. Fukui K (1964) In: Loewdin P-O, Pullman B (eds) Molecular orbitals in chemistry, physics, and biology. Academic Press, London, p 513

    Google Scholar 

  5. Fukui K (1971) Acc Chem Res 4:57

    CAS  Google Scholar 

  6. Fukui K (1975) Theory of orientation and stereoselection. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Woodwad RB, Hoffmann R (1969) Angew Chem Int Ed Engl 8:781

    Google Scholar 

  8. Hoffmann R, Woodwad RB (1970) The conservation of orbital symmetry. Academic, New York

    Google Scholar 

  9. Hoffmann R, Woodward RB (1965) J Am Chem Soc 87:4388

    CAS  Google Scholar 

  10. Hueckel E (1931) Z Phys 70:204

    Google Scholar 

  11. Zimmerman HE (1971) Acc Chem Res 4:272

    CAS  Google Scholar 

  12. van der Hart WJ, Mulder JJC, Oosteroff LJ (1972) J Am Chem Soc 94:5724

    CAS  Google Scholar 

  13. Fukui K, Inagaki S (1975) J Am Chem Soc 97:4445

    CAS  Google Scholar 

  14. Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:4693

    CAS  Google Scholar 

  15. Inagaki S, Kawata H, Hirabayashi Y (1982) Bull Chem Soc Jpn 55:3724

    CAS  Google Scholar 

  16. Klein J, Medlik A (1973) J Chem Soc Chem Comm 275

    Google Scholar 

  17. Mills NS, Shapiro J, Hollingworth M (1981) 103:1263

    Google Scholar 

  18. Gund P (1972) J Chem Educ 49:100

    CAS  Google Scholar 

  19. Iwase K, Inagaki S (1993) Chem Lett 22:1619

    Google Scholar 

  20. Iwase K, Inagaki S (1996) Bull Chem Soc Jpn 69:2781

    CAS  Google Scholar 

  21. Osamura Y, Borden WT, Morokuma K (1984) J Am Chem Soc 106:5112

    CAS  Google Scholar 

  22. Coolidge MB, Yamashita K, Morokuma K, Borden WT (1990) J Am Chem Soc 112:1751

    CAS  Google Scholar 

  23. Ichimura AS, Lahti PM, Matlin AR (1990) J Am Chem Soc 112:2868

    CAS  Google Scholar 

  24. Hirano T, Kumagai T, Miyashi T, Akiyama K, Ikegami Y (1991) J Org Chem 56:1907

    CAS  Google Scholar 

  25. Inagaki S, Hirabayashi Y (1977) J Am Chem Soc 99:7418

    CAS  Google Scholar 

  26. Inagaki S, Iwase K, Goto N (1986) J Org Chem 51:362

    CAS  Google Scholar 

  27. Agranat I, Skancke A (1985) J Am Chem Soc 107:867

    CAS  Google Scholar 

  28. Skancke A (1994) J Phys Chem 98:5234

    CAS  Google Scholar 

  29. Inagaki S (1984) Bull Chem Soc Jpn 57:3599

    CAS  Google Scholar 

  30. Epiotis ND (1973) J Am Chem Soc 95:5624

    CAS  Google Scholar 

  31. Inagaki S, Ohashi S (1999) Theor Chem Acc 102:65

    CAS  Google Scholar 

  32. Ohashi S, Inagaki S (2001) Tetrahedron 57:5361

    CAS  Google Scholar 

  33. March J (1992) Advanced organic chemistry. Wiley, New York

    Google Scholar 

  34. Pedley JB, Naylor BD, Kirby SD (1986) Thermochemical data of organic compounds, 2nd edn. Chapman & Hill, London

    Google Scholar 

  35. Lide DR, Kehiaian HV (1994) Handbook of thermophysical and thermochemical data. CRC Press, Boca Raton

    Google Scholar 

  36. Ito K (1953) J Am Chem Soc 75:2430

    CAS  Google Scholar 

  37. Pitzer PS, Catalano E (1956) J Am Chem Soc 78:4844

    CAS  Google Scholar 

  38. Bartell LS (1962) Tetrahedron 17:177

    CAS  Google Scholar 

  39. Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:1001

    CAS  Google Scholar 

  40. Laidig KE (1991) J Phys Chem 95:7709

    CAS  Google Scholar 

  41. Ma J, Inagaki S (2001) J Am Chem Soc 123:1193

    CAS  Google Scholar 

  42. Gronert S (2006) J Org Chem 71:1209

    CAS  Google Scholar 

  43. Wodrich MD, Schleyer PvR (2006) Org Lett 8:2135

    CAS  Google Scholar 

  44. Zavitsas AA, Matsunaga N, Rogers DW (2008) J Phys Chem A 112:5734

    CAS  Google Scholar 

  45. Robinson GC (1967) J Org Chem 32:1963

    CAS  Google Scholar 

  46. Arnett EM, Moe KD (1991) J Am Chem Soc 113:7068

    CAS  Google Scholar 

  47. Harvey JN (2001) Organometallics 20:4887

    CAS  Google Scholar 

  48. Iwase K, Inagaki S (1996) Bull Chem Soc Jpn 69:2781

    CAS  Google Scholar 

  49. Ma J, Ikeda H, Inagaki S (2001) Bull Chem Soc Jpn 74:273

    CAS  Google Scholar 

  50. Skancke A, Hrovat DA, Borden WT (1998) J Am Chem Soc 120:7079

    CAS  Google Scholar 

  51. Ma J, Ding Y-H, Hattori K, Inagaki S (2004) J Org Chem 69:4245

    CAS  Google Scholar 

  52. Wang Y, Ma J, Inagaki S (2004) J Phys Org Chem 20:649

    Google Scholar 

  53. Scheschkewitz D, Amii H, Gornitzka H, Schoeller WW, Bourissou D, Bertrand G (2002) Science 295:1880

    CAS  Google Scholar 

  54. Wang Y, Ma J, Inagaki S (2005) Tetrahedron Lett 46:5567

    CAS  Google Scholar 

  55. Abe M, Kawanami S, Ishihara C, Tagegami A (2004) J Org Chem 69:7250

    CAS  Google Scholar 

  56. Abe M, Adam W, Borden WT, Hattori M, Hrovat A, Nojima M, Nozaki K, Wirz J (2004) J Am Chem Soc 126:574

    CAS  Google Scholar 

  57. Abe M, Kawanami S, Ishihara C, Nojima M (2004) J Org Chem 69:5622

    CAS  Google Scholar 

  58. Abe M, Kawanami S, Masuyama A, Hayashi T (2006) J Org Chem 71:6607

    CAS  Google Scholar 

  59. Abe M, Hattori M, Takegami A, Masuyama A, Hayashi T, Seki S, Tagawa S (2006) J Am Chem Soc 128:8008

    CAS  Google Scholar 

  60. Abe M, Kube E, Nozaki K, Matsuo T, Hayashi T (2006) Angew Chem Int E 45:7828

    CAS  Google Scholar 

  61. Kasai PH, Jones PM (1984) J Am Chem Soc 106:8018

    CAS  Google Scholar 

  62. Chenier JHB, Hampson CA, Howard JA, Mile B, Sutcliffe R (1986) J Phys Chem 90:1524

    CAS  Google Scholar 

  63. Balaji V, Sunil KK, Jordan KD (1987) Chem Phys Lett 136:309

    CAS  Google Scholar 

  64. Grev RS, Schaefer HF III (1989) J Am Chem Soc 111:5687

    CAS  Google Scholar 

  65. Sakai S, Inagaki S (1990) J Am Chem Soc 112:7961

    CAS  Google Scholar 

  66. Iwase K, Sakai S, Inagaki S (1994) Chem Lett 23:1601

    Google Scholar 

  67. Watanabe H, Aoki M, Iwata S (1993) Bull Chem Soc Jpn 66:3245

    CAS  Google Scholar 

  68. Inagaki S, Iwase K (1984) Nouv J Chim 8:73

    CAS  Google Scholar 

  69. Chapman OL, McIntosh CL, Pacansky J (1973) J Am Chem Soc 95:614

    CAS  Google Scholar 

  70. Tyerman WJR, Kato M, Kebarle P, Masamune S, Strausz OP, Gunning HE (1967) Chem Commun 497

    Google Scholar 

  71. Hedaya E, Miller RD, McNeil DW, D’Angelo PF, Schissel P (1969) J Am Chem Soc 91:1875

    CAS  Google Scholar 

  72. Maier G, Pfriem S, Schaefer U, Matusch R (1978) Angew Chem 90:552

    CAS  Google Scholar 

  73. Kimling H, Krebs A (1972) Angew Chem 84:952

    Google Scholar 

  74. Hess BA, Schaad LJ (1971) J Am Chem Soc 93:305

    CAS  Google Scholar 

  75. Huntsman WD, Wristers HJ (1963) J Am Chem Soc 85:3308

    CAS  Google Scholar 

  76. Migirdicyan E (1968) C R Acad Sci Ser C 266:756

    CAS  Google Scholar 

  77. Flynn CR, Michl J (1973) J Am Chem Soc 95:5802

    CAS  Google Scholar 

  78. Flynn CR, Michl J (1974) J Am Chem Soc 96:3280

    CAS  Google Scholar 

  79. Migirdicyan E, Baudet J (1975) J Am Chem Soc 97:7400

    CAS  Google Scholar 

  80. Auspos LA, Hall LAR, Hubbard JK, Kirk W Jr, Schaefgen JR, Speck SB (1955) J Polymer Sci 15:9

    CAS  Google Scholar 

  81. Norris RK, Sternhell S (1972) Aust J Chem 25:2621

    CAS  Google Scholar 

  82. Moore RE, Scheuer PJ (1966) J Org Chem 31:3272

    CAS  Google Scholar 

  83. Inagaki S, Hirabayashi Y (1982) Inorg Chem 21:1798

    CAS  Google Scholar 

  84. Finch A, Leach JB, Morris JH (1969) Organomet Chem Rev A 4:1

    CAS  Google Scholar 

  85. Haiduc I (1970) The chemistry of inorganic ring systems. Wiley, New York, Part 1

    Google Scholar 

  86. Pan J, Kampf JW, Ashe AJ III (2007) Org Lett 9:679

    CAS  Google Scholar 

  87. Ashe AJ III, Fang X, Fang X, Kampf JW (2001) Organometallics 20:5413

    CAS  Google Scholar 

  88. Abbey ER, Zakharov LV, Liu S-Y (2008) J Am Chem Soc 130:7250

    CAS  Google Scholar 

  89. Pine SH (1987) Organic chemistry, 5th edn. McGraw-Hill, New York, Chap 7

    Google Scholar 

  90. Morrison RT, Boyd RN (1992) Organic chemistry, 6th edn. Prentice Hall International, London, Chap 11

    Google Scholar 

  91. Kirby AJ (1996) Stereoelectronic effect. Oxford University Press, Oxford, Chap 6

    Google Scholar 

  92. Cherest M, Felkin H, Prudent N (1968) Tetrahedron Lett 2199

    Google Scholar 

  93. Anh TD, Eisenstein O (1977) Nouv J Chim 1:61

    Google Scholar 

  94. Inagaki S, Ikeda H (1999) J Org Chem 63:7820

    Google Scholar 

  95. Ikeda H, Naruse Y, Inagaki S (1999) Chem Lett 28:363

    Google Scholar 

  96. Ikeda H, Ushioda N, Inagaki S (2001) Chem Lett 30:166

    Google Scholar 

  97. Ikeda H, Kato T, Inagaki S (2001) Chem Lett 30:270

    Google Scholar 

  98. Naruse Y, Hayashi Y, Inagaki S (2003) Tetrahedron Lett 44:8509

    CAS  Google Scholar 

  99. Yasui M, Naruse Y, Inagaki S (2004) J Org Chem 69:7246

    CAS  Google Scholar 

  100. Naruse Y, Suzuki T, Inagaki S (2005) Tetrahedron Lett 46:6937

    CAS  Google Scholar 

  101. Naruse Y, Fukasawa S, Ota S, Deki A, Inagaki S (2007) Tetrahedron Lett 48:817

    CAS  Google Scholar 

  102. Naruse Y, Inagaki S (2007) Chem Lett 36:820

    CAS  Google Scholar 

  103. Iwase K, Inagaki S (1996) Bull Chem Soc Jpn 69:2781

    CAS  Google Scholar 

  104. Inagaki S, Yamamoto T, Ohashi S (1997) Chem Lett 26:977

    Google Scholar 

  105. Ikeda H, Inagaki S (2001) J Phys Chem A 4710:71

    Google Scholar 

  106. Shimizu N, Shibata F, Imazu S, Tsuno Y (1987) Chem Lett 16:1071

    Google Scholar 

  107. Murakami M, Miyamoto Y, Ito Y (2001) Angew Chem Int Ed 40:189

    CAS  Google Scholar 

  108. Murakami M, Miyamoto Y, Ito Y (2001) J Am Chem Soc 123:6441

    CAS  Google Scholar 

  109. Murakami M, Hasegawa M, Igawa H (2004) J Org Chem 69:587

    CAS  Google Scholar 

  110. Murakami M, Usui I, Hasegawa M, Matsuda T (2005) J Am Chem Soc 127:1366

    CAS  Google Scholar 

  111. Shindo M, Matsumoto K, Mori S, Shishido K (2002) J Am Chem Soc 124:6840

    CAS  Google Scholar 

  112. Mori S, Shindo M (2004) Org Lett 6:3945

    CAS  Google Scholar 

  113. Kirmse W, Rondan NG, Houk KN (1984) J Am Chem Soc 106:7989

    CAS  Google Scholar 

  114. Rondan NG, Houk KN (1985) J Am Chem Soc 107:2099

    CAS  Google Scholar 

  115. Rudolf K, Spellmeyer DC, Houk KN (1987) J Org Chem 52:3708

    CAS  Google Scholar 

  116. Buda AB, Wang Y, Houk KN (1989) J Org Chem 54:2264

    CAS  Google Scholar 

  117. Jefford CW, Bernardinelli G, Wang Y, Spellmeyer DC, Buda A, Houk KN (1992) J Am Chem Soc 114:1157

    CAS  Google Scholar 

  118. Nakamura K, Houk KN (1995) J Org Chem 60:686

    CAS  Google Scholar 

  119. Lee PS, Zhang X, Houk KN (2003) J Am Chem Soc 125:5072

    CAS  Google Scholar 

  120. Mori S, Shindo M (2004) Org Lett 6:3945

    CAS  Google Scholar 

  121. Inagaki S, Goto N, Yoshikawa K (1991) J Am Chem Soc 113:7144

    CAS  Google Scholar 

  122. Inagaki S, Yoshikawa K, Hayano Y (1993) J Am Chem Soc 115:3706

    CAS  Google Scholar 

  123. Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954

    CAS  Google Scholar 

  124. Inagaki S, Kakefu T, Yamamoto T, Wasada H (1996) J Phys Chem 100:9615

    CAS  Google Scholar 

  125. Inagaki S, Yamamoto T, Ohashi S (1997) Chem Lett 26:977

    Google Scholar 

  126. Takeuchi K, Uemura D, Inagaki S (2005) J Phys Chem A 109:8632

    CAS  Google Scholar 

  127. Takeuchi K, Horiguchi A, Inagaki S (2005) Tetrahedron 61:2601

    CAS  Google Scholar 

  128. Scheshcekewitz D (2005) Angew Chem Int Ed 44:2954

    Google Scholar 

  129. Inagaki S, Takeuchi T (2005) Chem Lett 34:750

    CAS  Google Scholar 

  130. Goller A, Heydt H, Clark T (1996) J Org Chem 61:5840

    Google Scholar 

  131. Tsutsui S, Sakamoto K, Kabuto C, Kira M (1998) Organometallics 17:3819

    CAS  Google Scholar 

  132. Iwamoto T, Tamura M, Kabuto C, Kira M (2000) Science 290:504

    CAS  Google Scholar 

  133. Göller A, Clark T (2000) J Mol Model 6:133

    Google Scholar 

  134. Naruse Y, Ma J, Inagaki S (2001) Tetrahedron Lett 42:6553

    CAS  Google Scholar 

  135. Naruse Y, Ma J, Takeuchi K, Nohara T, Inagaki S (2006) Tetrahedron 62:4491

    CAS  Google Scholar 

  136. Cox JD, Plicher G (1970) Thermochemistry of organic and organometallic compounds. Academic Press, London

    Google Scholar 

  137. Lee VY, Takanashi K, Nakamoto M, Sekiguchi A (2004) Russ Chem Bull 53:1102

    CAS  Google Scholar 

  138. Sase S, Kano N, Kawashima T (2006) J Org Chem 71:5448

    CAS  Google Scholar 

  139. Kira M, Iwamoto T, Kabuto C (1996) J Am Chem Soc 118:10303

    CAS  Google Scholar 

  140. Wiberg N, Auer H, Noth H, Knizek J, Polborn K (1998) Angew Chem Int Ed 37:2869

    CAS  Google Scholar 

  141. Ichinohe M, Matsuno T, Sekiguchi A (1999) Angew Chem Int Ed 38:2194

    CAS  Google Scholar 

  142. Fukawa T, Lee VY, Nakamoto M, Sekiguchi A (2004) J Am Chem Soc 126:11758

    CAS  Google Scholar 

  143. Yamamoto T, Kaneno D, Tomoda S (2008) Bull Chem Soc Jpn 81:1415

    Google Scholar 

  144. Yamamoto T, Kaneno D, Tomoda S (2008) J Org Chem 73:5429

    CAS  Google Scholar 

  145. Yoshitake Y, Eto M, Harano K (1998) Tetrahedron Lett 39:2761

    CAS  Google Scholar 

  146. Yoshitake Y, Eto M, Harano K (1999) Chem Pharm Bull 47:601

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Hisashi Yamamoto of the University of Chicago for his reading of the manuscript and his encouragement, Messrs. Hiroki Murai and Hiroki Shimakawa for their assistance in preparing the manuscript, and Ms. Jane Clarkin for the English suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Inagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inagaki, S. (2009). An Orbital Phase Theory. In: Inagaki, S. (eds) Orbitals in Chemistry. Topics in Current Chemistry, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2008_40

Download citation

Publish with us

Policies and ethics