Advertisement

Orbital Phase Environments and Stereoselectivities

  • Tomohiko Ohwada
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 289)

Abstract

Facial selections are reviewed to propose a new theory, orbital phase environment, for stereoselectivities of organic reactions. The orbital phase environment is a generalized idea of the secondary orbital interaction between the non-reacting centers and the unsymmetrization of the orbitals at the reacting centers arising from in-phase and out-of-phase overlapping with those at the neighboring non-reacting sites. In this context, the nucleophilic addition preferentially occurs on the face of the carbonyl functionality opposite to the better electron-donating orbital at the β position. In a similar manner to the carbonyl cases, the preferred reaction faces of olefins in electrophilic addition reactions are opposite to the better electron-donating orbitals at the β positions. The orbital phase environments in Diels-Alder reactions are also reviewed.

Keywords

Facial selection Orbital phase Secondary orbital interaction Orbital unsymmetrization Ketones Olefins Diels-Alder dienophiles Diels-Alder dienes Michael acceptor Amine nitrogen atom 

References

  1. 1.
    Inagaki S, Fukui K (1974) Tetrahedron Lett 15:509–514CrossRefGoogle Scholar
  2. 2.
    Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:4054–4061CrossRefGoogle Scholar
  3. 3.
    3. Ohwada T (1999) Chem Rev 99:1337–1376CrossRefGoogle Scholar
  4. 4.
    4. Ohwada T, Shudo K (1994) Yuki Gosei Kagaku Kyokaishi 52:596–607Google Scholar
  5. 5.
    5. García J, Mayorai JA, Salvatella L (2000) Acc Chem Soc 33:658–664CrossRefGoogle Scholar
  6. 6.
    6. Kobuke Y, Fueno T, Durukawa (1970) J Am Chem Soc 92:6548–6553CrossRefGoogle Scholar
  7. 7.
    7. Ishihara K, Kondo S, Kurihara H, Yamamoto H, Ohashi S, Inagaki S (1997) J Org Chem 62:3026–3027CrossRefGoogle Scholar
  8. 8.
    8. Corey EJ, Lee TW (1997) Tetrahedron Lett 38:5755–5758CrossRefGoogle Scholar
  9. 9.
    9. Ishihara K, Fushimi M (2008) J Am Chem Soc 130:7532–7533CrossRefGoogle Scholar
  10. 10.
    Suzuki Y, Kaneno D, Miura M, Tomoda S (2008) Tetrahedron Lett 49:4223–4226CrossRefGoogle Scholar
  11. 11.
    Carr JA, Snowden TS (2008) Tetrahedron 64:2897–2905CrossRefGoogle Scholar
  12. 12.
    Moraleda D, Ollivier C, Santelli M (2006) Tetrahedron Lett 47:5471–5474CrossRefGoogle Scholar
  13. 13.
    Kreiselmeier G, Frey W, Fohlisch B (2006) Tetrahedron 62:6029–6035CrossRefGoogle Scholar
  14. 14.
    Kobler C, Bohrer A, Effenberger F (2004) Tetrahedron 60:10397–10410CrossRefGoogle Scholar
  15. 15.
    Lindsay HA, Salisbury CL, Cordes W, McIntosh MC (2001) Organic Lett 3:4007–4010CrossRefGoogle Scholar
  16. 16.
    Luibrand RT, Taigounov IR, Taigounov AA (2001) J Org Chem 66:7254–7262CrossRefGoogle Scholar
  17. 17.
    Rosenberg RE, Abel RL, Drake MD, Fox DJ, Ignatz AK, Kwiat DM, Schaal KM, Virkler PR (2001) J Org Chem 66:1694–1700CrossRefGoogle Scholar
  18. 18.
    Chao I, Shih JH, Wu HJ (2000) J Org Chem 65:7523–7533CrossRefGoogle Scholar
  19. 19.
    Frackenpohl J, Hoffmann HMR (2000) J Org Chem 65:3982–3996CrossRefGoogle Scholar
  20. 20.
    Salvatella L, Ruiz-Lopez MF (1999) J Org Chem 121:10772–10780Google Scholar
  21. 21.
    Laube T (1999) J Org Chem 64:8177–8182CrossRefGoogle Scholar
  22. 22.
    Tanaka K, Tanaka M, Suemune H (2005) Tetrahedron Lett 46:6053–6056CrossRefGoogle Scholar
  23. 23.
    Chu JH, Li WS, Chao I, Chung WS (2004) Tetrahedron 60:9493–9501CrossRefGoogle Scholar
  24. 24.
    Lu CD, Chen ZY, Liu H, Hu WH, Mi AQ, Doyle MP (2004) J Org Chem 69:4856–4859CrossRefGoogle Scholar
  25. 25.
    Mayo P, Tam W (2002) Tetrahedron 58:9513–9525CrossRefGoogle Scholar
  26. 26.
    Mayo P, Tam W (2002) Tetrahedron 58:9527–9540CrossRefGoogle Scholar
  27. 27.
    Mayo P, Orlova G, Goddard JD, Tam W (2001) J Org Chem 66:5182–5191CrossRefGoogle Scholar
  28. 28.
    Mayo P, Tam W (2001) Tetrahedron 57:5943–5952CrossRefGoogle Scholar
  29. 29.
    Kobayashi T, Miki K, Nikaeen B, Ohta A (2001) J Chem Soc Perkin Trans 1:1372–1385CrossRefGoogle Scholar
  30. 30.
    Jordan RW, Tam W (2000) Organic Lett 2:3031–3034CrossRefGoogle Scholar
  31. 31.
    Mayo P, Poirier M, Rainey J, Tam W (1999) Tetrahedron Lett 40:7727–7730CrossRefGoogle Scholar
  32. 32.
    Ishida M, Itakura M, Tashiro H (2008) Tetrahedron Lett 49:1804–1807CrossRefGoogle Scholar
  33. 33.
    Lahiri S, Yadav S, Banerjee S, Patil MP, Sunoj RB (2008) J Org Chem 73:435–444CrossRefGoogle Scholar
  34. 34.
    Liu P, Jordan RW, Kibbee SP, Goddard JD, Tam W (2006) J Org Chem 71:3793–3803CrossRefGoogle Scholar
  35. 35.
    Lahiri S, Yadav S, Chanda M, Chakraborty I, Chowdhury K, Mukherjee M, Choudhury AR, Row TNG (2005) Tetrahedron Lett 46:8133–8136CrossRefGoogle Scholar
  36. 36.
    Ohkata K, Tamura Y, Shetuni BB, Takagi R, Miyanaga W, Kojima S, Paquette LA (2004) J Am Chem Soc 126:16783–16792CrossRefGoogle Scholar
  37. 37.
    Paquette LA, Shetuni BB, Gallucci JC (2003) Org Lett 5:2639–2642CrossRefGoogle Scholar
  38. 38.
    Mehta G, Le Droumaguet C, Islam K, Anoop A, Jemmis ED (2003) Tetrahedron Lett 44:3109–3113CrossRefGoogle Scholar
  39. 39.
    Ishida M, Hirasawa S, Inagaki S (2003) Tetrahedron Lett 44:2187–2190CrossRefGoogle Scholar
  40. 40.
    Pye CC, Xidos JD, Burnell DJ, Poirier RA (2003) Can J Chem 81:14–30CrossRefGoogle Scholar
  41. 41.
    Martinez R, Jimenez-Vazquez HA, Delgado F, Tamariz (2003) J Tetrahedron 59:481–492CrossRefGoogle Scholar
  42. 42.
    Ujaque G, Lee PS, Houk KN, Hentemann MF, Danishefsky S (2002) J Chem Eur J 8:3423–3430CrossRefGoogle Scholar
  43. 43.
    Hou HF, Peddinti RK, Liao CC (2002) Organic Lett 4:2477–2480CrossRefGoogle Scholar
  44. 44.
    Ishida M, Sakamoto M, Hattori H, Shimizu M, Inagaki S (2001) Tetrahedron Lett 42:3471–3474CrossRefGoogle Scholar
  45. 45.
    Ishida M, Kobayashi H, Tomohiro S, Inagaki S (2000) J Chem Soc Perkin Trans 2 1625–1630Google Scholar
  46. 46.
    Carreno MC, Garcia-Cerrada S, Urbano A, Di Vitta C (2000) J Org Chem 65:4355–4363CrossRefGoogle Scholar
  47. 47.
    Tanimoto H, Saito R, Chida N (2008) Tetrahedron Lett 49:358–362CrossRefGoogle Scholar
  48. 48.
    Kulkarni SS, Liu YH, Hung SC (2005) J Org Chem 70:2808–2811CrossRefGoogle Scholar
  49. 49.
    Alabugin IV, Manoharan M (2004) J Org Chem 69:9011–9024CrossRefGoogle Scholar
  50. 50.
    Eliel EL, Senda Y (1970) Tetrahedron 26:2411CrossRefGoogle Scholar
  51. 51.
    Rei M-H (1979) J Org Chem 44:2760CrossRefGoogle Scholar
  52. 52.
    Wigfield DC, Phelps DJ (1976) J Org Chem 41:2396CrossRefGoogle Scholar
  53. 53.
    Hennion GF, O’Shea FX (1958) J Am Chem Soc 80:614CrossRefGoogle Scholar
  54. 54.
    Frenking G, Köhler KF, Reetz MT (1991) Angew Chem Int Ed 30:1146–1149CrossRefGoogle Scholar
  55. 55.
    Senju T, Tomoda S (1997) Chem Lett 26:431–432CrossRefGoogle Scholar
  56. 56.
    Tomoda S, Senju T (1997) Tetrahedron 53:9057–9066CrossRefGoogle Scholar
  57. 57.
    Tomoda S (1999) Chem Rev 99:1243–1264CrossRefGoogle Scholar
  58. 58.
    Klein J (1973) Tetrahedron Lett 44:4307–4310CrossRefGoogle Scholar
  59. 59.
    Fukui K (1975) Theory of orientation and stereoselection. Springer, Berlin Heidelberg New YorkGoogle Scholar
  60. 60.
    Cieplak AS (1981) J Am Chem Soc 103:4540–4552CrossRefGoogle Scholar
  61. 61.
    Laube T, Hollenstein S (1992) J Am Chem Soc 114:8812–8817CrossRefGoogle Scholar
  62. 62.
    Giddings MR, Hudec J (1981) Can J Chem 59:459–467CrossRefGoogle Scholar
  63. 63.
    Cheung CK, Tseng LT, Lin M-H, Srivastava S, le Noble WJ (1986) J Am Chem Soc 108:1598–1605CrossRefGoogle Scholar
  64. 64.
    Lin M-H, Boyd MK, le Noble WJ (1989) J Am Chem Soc 111:8746–8748CrossRefGoogle Scholar
  65. 65.
    Lau J, Gonikberg EM, Hung J-T, le Noble WJ (1995) J Am Chem Soc 117:11421–11425CrossRefGoogle Scholar
  66. 66.
    Kaselj M, le Noble W (1996) J Org Chem 61:4157–4160CrossRefGoogle Scholar
  67. 67.
    Halterman RL, McEvoy MA (1990) J Am Chem Soc 112:6690–6695CrossRefGoogle Scholar
  68. 68.
    Gassman PG, Schaffhaausen JG, Raynolds PW (1982) J Am Chem Soc 104:6408–6411CrossRefGoogle Scholar
  69. 69.
    Gassman PG, Schaffhausen JG, Starkey FD, Raynolds PW (1982) J Am Chem Soc 104:6411–6414CrossRefGoogle Scholar
  70. 70.
    Paddon-Row MN, Wu Y-D, Houk KN (1992) J Am Chem Soc 114:10638–10639CrossRefGoogle Scholar
  71. 71.
    Priyakumar UD, Sastry GN, Mehta GN (2004) Tetrahedron 60:3465–3472CrossRefGoogle Scholar
  72. 72.
    72. Ganguly B, Chandrasekhar J, Khan JFA, Mehta G (1993) J Org Chem 58:1734–1739CrossRefGoogle Scholar
  73. 73.
    73. Mehta G, Khan FA (1990) J Am Chem Soc 112:6140–6142CrossRefGoogle Scholar
  74. 74.
    74. Mehta G, Praveen M (1992) Tetrahedron Lett 33:1759–1762CrossRefGoogle Scholar
  75. 75.
    75. Ganguly B, Chandrasekhar J, Khan FA, Mehta G (1993) J Org Chem 58:1734–1739CrossRefGoogle Scholar
  76. 76.
    76. Mehta G, Khan FA (1992) Tetrahedron Lett 33:3065–3068CrossRefGoogle Scholar
  77. 77.
    77. Mehta G, Khan FA, Gadre SR, Shirsat RN, Ganguly B, Chandrasekhar J (1994) Angew Chem Int Ed 33:1390–1392CrossRefGoogle Scholar
  78. 78.
    Mehta G, Khan FA, Ganguly B, Chandrasekhar J (1992) J Chem Soc Chem Commun 1711–1712Google Scholar
  79. 79.
    79. Pudzianowski AT, Barrish JC, Spergel SH (1992) Tetrahedron Lett 33:293–296CrossRefGoogle Scholar
  80. 80.
    80. Brown HC, Muzzio J (1966) J Am Chem Soc 88:2811–2822CrossRefGoogle Scholar
  81. 81.
    81. Okada K, Tomita S, Oda M (1986) Tetrahedron Lett 27:2645–2648CrossRefGoogle Scholar
  82. 82.
    82. Okada K, Tomita S, Oda M (1989) Bull Chem Soc Jpn 62:459–468CrossRefGoogle Scholar
  83. 83.
    83. Bürgi HB, Dunitz JD, Shefter E (1973) J Am Chem Soc 95:5065–5067CrossRefGoogle Scholar
  84. 84.
    84. Bürgi HB, Dunitz JD, Lehn JM, Wipff G (1974) Tetrahedron 30:1563–1572CrossRefGoogle Scholar
  85. 85.
    85. Bürgi HB, Lehn JM, Wipff G (1974) J Am Chem Soc 96:1956–1957CrossRefGoogle Scholar
  86. 86.
    86. Bürgi H-B (1975) Angew Chem Int Ed 14:460–473CrossRefGoogle Scholar
  87. 87.
    87. Cieplak AS (1999) Chem Rev 99:1265–1336CrossRefGoogle Scholar
  88. 88.
    88. Ohwada T (1993) Tetrahedron 49:7649–7656CrossRefGoogle Scholar
  89. 89.
    89. Dedieu A, Veillard A (1972) J Am Chem Soc 94:6730CrossRefGoogle Scholar
  90. 90.
    90. Anh NT, Minot C (1980) J Am Chem Soc 102:103CrossRefGoogle Scholar
  91. 91.
    91. Schleyer PVR (1967) J Am Chem Soc 89:701CrossRefGoogle Scholar
  92. 92.
    92. Spanget-Larsen J, Gleiter R (1982) Tetrahedron Lett 23:2435–2438CrossRefGoogle Scholar
  93. 93.
    93. Spanget-Larsen J, Gleiter R (1983) Tetrahedron 39:3345–3350CrossRefGoogle Scholar
  94. 94.
    94. Ito S, Kakehi A (1982) Bull Chem Soc Jpn 55:1869–1873CrossRefGoogle Scholar
  95. 95.
    95. Mazzocchi PH, Stahly B, Dodd J, Rondan NG, Domelsmith LN, Roseboom MD, Caramella P, Houk KN (1980) J Am Chem Soc 102:6482–6490CrossRefGoogle Scholar
  96. 96.
    96. Ohwada T, Shudo K (1991) Chem Pharm Bull 39:2176–2178Google Scholar
  97. 97.
    97. Ohwada T (1992) J Am Chem Soc 114:8818–8827CrossRefGoogle Scholar
  98. 98.
    98. Simmons HE, Fukunaga T (1967) J Am Chem Soc 89:5208–5215CrossRefGoogle Scholar
  99. 99.
    99. Semmelhack MF, Foos JS, Katz S (1973) J Am Chem Soc 95:7325–7336CrossRefGoogle Scholar
  100. 100.
    Tajiri A, Nakajima T (1971) Tetrahedron 27:6089–6099CrossRefGoogle Scholar
  101. 101.
    Bischof P, Gleiter R, Haider R (1978) J Am Chem Soc 100:1036–1042CrossRefGoogle Scholar
  102. 102.
    Gordon MD, Fukunaga T, Simmons HE (1976) J Am Chem Soc 98:8401–8407CrossRefGoogle Scholar
  103. 103.
    Ohwada T, Okamoto I, Haga N, Shudo K (1994) J Org Chem 59:3975–3984CrossRefGoogle Scholar
  104. 104.
    Haga N, Ohwada T, Okamoto I, Shudo K (1992) Chem Pharm Bull 40:3349–3351Google Scholar
  105. 105.
    Hoffmann R, Mollère PD, Heilbronner E (1973) J Am Chem Soc 95:4860–4862CrossRefGoogle Scholar
  106. 106.
    Klein J (1974) Tetrahedron 30:3349–3353CrossRefGoogle Scholar
  107. 107.
    Senda Y, Kamiyama S, Imaizumi S (1978) J Chem Soc Perkin Trans 1 530CrossRefGoogle Scholar
  108. 108.
    Johnson CR, Tait BD, Cieplak AS (1987) J Am Chem Soc 109:5875–5876CrossRefGoogle Scholar
  109. 109.
    Cieplak AS, Tait BD, Johnson CR (1989) J Am Chem Soc 111:8447–8462CrossRefGoogle Scholar
  110. 110.
    Carlson RG, Behn NS (1987) J Org Chem 32:1363CrossRefGoogle Scholar
  111. 111.
    Patrick DW, Truesdale LK, Biller SA, Sharpless KB (1978) J Org Chem 43:2628CrossRefGoogle Scholar
  112. 112.
    Lessard J, Saunders JK, Viet MTP (1982) Tetrahedron Lett 23:2059–2062CrossRefGoogle Scholar
  113. 113.
    Srivastava S, le Noble WJ (1987) J Am Chem Soc 109:5874–5875CrossRefGoogle Scholar
  114. 114.
    Halterman R, McEvoy MA (1992) J Am Chem Soc 114:980–985CrossRefGoogle Scholar
  115. 115.
    Mehta G, Khan FA (1991) J Chem Soc Chem Commun 18–19Google Scholar
  116. 116.
    Mehta G, Gunasekaran G, Gadre SR, Shirsat RN, Ganguly B, Chandrasekhar J (1994) J Org Chem 59:1953–1955CrossRefGoogle Scholar
  117. 117.
    Jones G, Vogel P (1993) J Chem Soc Chem Commun 769–771Google Scholar
  118. 118.
    Ohwada T, Uchiyama M, Tsuji M, Okamoto I, Shudo K (1996) Chem Pharm Bull 44:296–306Google Scholar
  119. 119.
    Imamura A (1968) Mol Phys 15:225–238CrossRefGoogle Scholar
  120. 120.
    Imamura A, Hirano T (1975) J Am Chem Soc 97:4192–4198CrossRefGoogle Scholar
  121. 121.
    Hoffmann R (1971) Acc Chem Res 4:1–9CrossRefGoogle Scholar
  122. 122.
    Houk KN, Rondan NG, Brown FK, Jorgensen WL, Madura JD, Spellmeyer DC (1983) J Am Chem Soc 105:5980–5988CrossRefGoogle Scholar
  123. 123.
    Paquette LA, Klinger F, Hertel LW (1981) J Org Chem 46:4403–4413CrossRefGoogle Scholar
  124. 124.
    Tsuji M, Ohwada T, Shudo K (1997) Tetrahedron Lett 38:6693–6696CrossRefGoogle Scholar
  125. 125.
    Hoffmann RW, Hauel N, Landmann B (1983) Chem Ber 116:389–403CrossRefGoogle Scholar
  126. 126.
    Hoffmann RW, Hauel N (1979) Tetrahedron Lett 20:4959–4962CrossRefGoogle Scholar
  127. 127.
    Schueler PE, Rhodes YE (1974) J Org Chem 39:2063–2069CrossRefGoogle Scholar
  128. 128.
    Maasa W, Birkhahn M, Landmann B, Hoffmann RW (1983) Chem Ber 116:404–408CrossRefGoogle Scholar
  129. 129.
    Becherer J, Hoffmann RW (1978) Tetrahedron 34:1193–1197CrossRefGoogle Scholar
  130. 130.
    Hoffmann R, Davidson RB (1971) J Am Chem Soc 93:5699–5705CrossRefGoogle Scholar
  131. 131.
    Hoffmann RW, Kurz HR, Becherer J, Reetz MT (1978) Chem Ber 111:1264–1274CrossRefGoogle Scholar
  132. 132.
    Srinivasan R, Ors JA, Brown KH, White LS, Rossi AR (1980) J Am Chem Soc 102:5297–5302CrossRefGoogle Scholar
  133. 133.
    Rhodes YE, Scheler PE, DiFate VG (1970) Tetrahedron Lett 11:2073–2076CrossRefGoogle Scholar
  134. 134.
    Günther H, Herrig W, Seel H, Tobias S (1980) J Org Chem 45:4329–4333CrossRefGoogle Scholar
  135. 135.
    Haywood-Farmer JS, Pincock RE (1969) J Am Chem Soc 91:3020–3028CrossRefGoogle Scholar
  136. 136.
    Martin HD, Heller C, Haider R, Hoffmann RW, Becherer J, Kurz HR (1977) Chem Ber 110:3010CrossRefGoogle Scholar
  137. 137.
    Bischof P, Heilbronner E, Prinzbach H, Martin HD (1971) Helv Chim Acta 54:1072–1080CrossRefGoogle Scholar
  138. 138.
    Bruckmann P, Klessinger M (1972) Angew Chem Int Ed 11:524–525CrossRefGoogle Scholar
  139. 139.
    Hoffmann RW, Schüttler R, Schäfer W, Schweig A (1972) Angew Chem Int Ed 11:512–513CrossRefGoogle Scholar
  140. 140.
    Christl M (1975) Chem Ber 108:2781–2791CrossRefGoogle Scholar
  141. 141.
    Christl M, Herbert R (1979) Chem Ber 112:2022–2027CrossRefGoogle Scholar
  142. 142.
    Wiberg KW, Bader RFW, Lau CHH (1987) J Am Chem Soc 109:1001–1012CrossRefGoogle Scholar
  143. 143.
    Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385–3386CrossRefGoogle Scholar
  144. 144.
    Houk KN, Liu J, DeMello NC, Condroski KR (1997) J Am Chem Soc 119:10147–10152CrossRefGoogle Scholar
  145. 145.
    Ohwada T, Tsuji M, Okamoto I, Shudo K (1996) Tetrahedron Lett 37:2609–2612CrossRefGoogle Scholar
  146. 146.
    Edman JR, Simmons HE (1968) J Org Chem 33:3808–3816CrossRefGoogle Scholar
  147. 147.
    Bartlett PD, Blakeney AJ, Kimura M, Waatson WH (1980) J Am Chem Soc 102:1383–1390CrossRefGoogle Scholar
  148. 148.
    Mehta G, Padma S, Pattabhi V, Pramanik A, Chandrasekhar J (1990) J Am Chem Soc 112:2942–2949CrossRefGoogle Scholar
  149. 149.
    Mehta G, Padma S, Karra SR (1989) J Org Chem 54:1342–1346CrossRefGoogle Scholar
  150. 150.
    Carreño MC (1995) Chem Rev 95:1717–1760CrossRefGoogle Scholar
  151. 151.
    Okamoto I, Ohwada T, Shudo K (1996) J Org Chem 61:3155–3166CrossRefGoogle Scholar
  152. 152.
    Paddon-Row MN, Patney HK, Warrener RN (1979) J Org Chem 44:3908–3917CrossRefGoogle Scholar
  153. 153.
    Hoffmann R, Woodward RB (1965) J Am Chem Soc 87:4388–4389CrossRefGoogle Scholar
  154. 154.
    Ishida M, Kobayashi H, Tomohiro S, Wasada H, Inagaki S (1998) Chem Lett 27:41–42CrossRefGoogle Scholar
  155. 155.
    Xidos JD, Poirier RA, Pye CC, Burnell DJ (1998) J Org Chem 63:105–112CrossRefGoogle Scholar
  156. 156.
    Xidos JD, Poirier RA, Burnell DJ (2000) Tetrahedron Lett 41:995–998CrossRefGoogle Scholar
  157. 157.
    Yadav V, Senthil G, Babu KG, Parvez M, Reid JL (2002) J Org Chem 67:1109–1117CrossRefGoogle Scholar
  158. 158.
    Morrison CF, Vaters JP, Miller DO, Burnell DJ (2006) Org Biomol Chem 4:1160–1165CrossRefGoogle Scholar
  159. 159.
    Ogbomo S, Burnell DJ (2006) Org Biomol Chem 4:3838–3848CrossRefGoogle Scholar
  160. 160.
    Mehta G, Uma R (2000) Acc Chem Res 33:278–286CrossRefGoogle Scholar
  161. 161.
    Pfaendler HRHT, Haselbach E (1974) Helv Chim Acta 57:383–394CrossRefGoogle Scholar
  162. 162.
    Haselbach E, Rossi M (1976) Helv Chim Acta 59:278–290CrossRefGoogle Scholar
  163. 163.
    Halterman R, McCarthy BA, McEvoy MA (1992) J Org Chem 57:5585–5589CrossRefGoogle Scholar
  164. 164.
    Tsuji M, Ohwada T, Shudo K (1998) Tetrahedron Lett 39:403–406CrossRefGoogle Scholar
  165. 165.
    Igarashi H, Sakamoto S, Yamaguchi K, Ohwada T (2001) Tetrahedron Lett 42:5257–5260CrossRefGoogle Scholar
  166. 166.
    Gleiter R, Paquette LA (1983) Acc Chem Res 16:328–334CrossRefGoogle Scholar
  167. 167.
    Böhm MC, Eiter RG (1980) Tetrahedron 36:3209–3217CrossRefGoogle Scholar
  168. 168.
    Gleiter R, Ginsburg D (1979) Pure Appl Chem 51:1301–1315CrossRefGoogle Scholar
  169. 169.
    Okamoto I, Ohwada T, Shudo K (1997) Tetrahedron Lett 38:425–428CrossRefGoogle Scholar
  170. 170.
    Baldwin JE (1976) J Chem Soc Chem Commun 738–741Google Scholar
  171. 171.
    Okamoto I, Ohwada T, unpublished resultGoogle Scholar
  172. 172.
    Ohwada T, Miura M, Tanaka H, Sakamoto S, Yamaguchi K, Ikeda H, Inagaki S (2001) J Am Chem Soc 123:10164–10172CrossRefGoogle Scholar
  173. 173.
    Yanagimoto T, Toyoda T, Matsuki N, Makino Y, Uchiyama S, Ohwada T (2007) J Am Chem Soc 129:736–737CrossRefGoogle Scholar
  174. 174.
    Mengel A, Reiser O (1999) Chem Rev 99:1191–1224CrossRefGoogle Scholar
  175. 175.
    Dannenberg J (1999) J Chem Rev 99:1225–1242CrossRefGoogle Scholar
  176. 176.
    Gung BW (1999) Chem Rev 99:1377–1386CrossRefGoogle Scholar
  177. 177.
    Kaselj M, Chung W-S, le Noble WJ (1999) Chem Rev 99:1387–1414CrossRefGoogle Scholar
  178. 178.
    Adcock W, Trout NA (1999) Chem Rev 99:1415–1436CrossRefGoogle Scholar
  179. 179.
    Mehta G, Chandrasekhar (1999) J Chem Rev 99:1437–1468CrossRefGoogle Scholar
  180. 180.
    Wipf P, Jung J-K (1999) Chem Rev 99:1469–1480CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan

Personalised recommendations