Advertisement

Orbital Phase Design of Diradicals

  • Jing Ma
  • Satoshi Inagaki
  • Yong Wang
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 289)

Abstract

Over the last three decades the rational design of diradicals has been a challenging issue because of their special features and activities in organic reactions and biological processes. The orbital phase theory has been developed for understanding the properties of diradicals and designing new candidates for synthesis. The orbital phase is an important factor in promoting the cyclic orbital interaction. When all of the conditions: (1) the electron-donating orbitals are out of phase; (2) the accepting orbitals are in phase; and (3) the donating and accepting orbitals are in phase, are simultaneously satisfied, the system is stabilized by the effective delocalization and polarization. Otherwise, the system is less stable. According to the orbital phase continuity requirement, we can predict the spin preference of π-conjugated diradicals and relative stabilities of constitutional isomers. Effects of the intramolecular interaction of bonds and unpaired electrons on the spin preference, thermodynamic and kinetic stabilities of the singlet and triplet states of localized 1,3-diradicals were also investigated by orbital phase theory. Taking advantage of the ring strains, several monocyclic and bicyclic systems were designed with appreciable singlet preference and kinetic stabilities. Substitution effects on the ground state spin and relative stabilities of diradicals were rationalized by orbital interactions without loss of generality. Orbital phase predictions were supported by available experimental observations and sophisticated calculation results. In comparison with other topological models, the orbital phase theory has some advantages. Orbital phase theory can provide a general model for both π-conjugated and localized diradicals. The relative stabilities and spin preference of all kinds of diradicals can be uniformly rationalized by the orbital phase property. The orbital phase theory is applied to the conformations of diradicals and the geometry-dependent behaviors. The insights gained from the orbital phase theory are useful in a rational design of stable 1,3-diradicals.

Keywords

Diradical Kinetic stability Orbital phase theory Spin preference 

Abbreviations

4MR

Four-membered ring

5MR

Five-membered ring

A

Electron-accepting group

D

Electron-donating group

DMCBD

Dimethylenecyclobutadiene

HOMO

Highest occupied molecular orbital

LUMO

Lowest unoccupied molecular orbital

NBMO

Nonbonding molecular orbital

OXA

Oxyallyl

S

Singlet state

SOMO

Singly occupied molecular orbital

S–T gap

Energy gap between the lowest singlet and triplet states

T

Triplet state

TM

Trimethylene

TME

Tetramethyleneethane

TMM

Trimethylenemethane

Notes

Acknowledgements

The authors thank Prof. Hisashi Yamamoto of the University of Chicago for his reading of the manuscript and his encouragements. The authors express their gratitude to Ms. Jane Clarkin for the English revision. J. Ma acknowledges her financial support received from the National Natural Science Foundation of China (Grant No. 20433020 and 20573050), the Ministry of Education (NCET-05-0442), and the Fok Ying Tong Education Foundation (No. 111013).

References

  1. 1.
    Fukui K (1971) Acc Chem Res 4:57CrossRefGoogle Scholar
  2. 2.
    Fukui K, Fujimoto H (eds) (1997) Frontier orbitals and reaction paths: Selected papers of Kenichi Fukui. World Scientific, SingaporeGoogle Scholar
  3. 3.
    Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New YorkGoogle Scholar
  4. 4.
    Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Academic Press, LondonGoogle Scholar
  5. 5.
    Woodward RB, Hoffmann R (1969) Angew Chem Int Ed 8:781CrossRefGoogle Scholar
  6. 6.
    Wheland GW (1955) Resonance in organic chemistry. Wiley, New YorkGoogle Scholar
  7. 7.
    Berson JA (1994) Science 266:1338CrossRefGoogle Scholar
  8. 8.
    Wentrup C (2002) Science 295:1846CrossRefGoogle Scholar
  9. 9.
    Rajca A (1994) Chem Rev 94:871CrossRefGoogle Scholar
  10. 10.
    Rajca A (1993) Acc Chem Res 94:871Google Scholar
  11. 11.
    Borden WT (ed) (1982) Diradicals. Wiley, New YorkGoogle Scholar
  12. 12.
    Dougherty D (1991) Acc Chem Res 24:88CrossRefGoogle Scholar
  13. 13.
    Little RD (1996) Chem Rev 96:93CrossRefGoogle Scholar
  14. 14.
    Adam M, Grabowski S, Wilson RM (1990) Acc Chem Res 23:165CrossRefGoogle Scholar
  15. 15.
    Fukui K, Inagaki S (1975) J Am Chem Soc 97:4445CrossRefGoogle Scholar
  16. 16.
    Inagaki S, Fujimoto H, Fukui K (1976) J Am Chem Soc 98:4693CrossRefGoogle Scholar
  17. 17.
    Inagaki S, Kawata H, Hirabayashi Y (1982) Bull Chem Soc Jpn 55:3724CrossRefGoogle Scholar
  18. 18.
    Inagaki S, Iwase K (1984) Nouv J Chim 8:73Google Scholar
  19. 19.
    Ma J, Inagaki S (2000) J Phys Chem A 104:8989CrossRefGoogle Scholar
  20. 20.
    Naruse Y, Ma J, Inagaki S (2001) Tetrahedron Lett 42:6553CrossRefGoogle Scholar
  21. 21.
    Ma J, Hozaki A, Inagaki S (2002) Inorg Chem 41:1876CrossRefGoogle Scholar
  22. 22.
    Ma J, Hozaki A, Inagaki S (2002) Phosphorus, sulfur and silicon 177:1705CrossRefGoogle Scholar
  23. 23.
    Inagaki S, Iwase K, Kawata H (1984) Bull Chem Soc Jpn 57:3599CrossRefGoogle Scholar
  24. 24.
    Inagaki S, Iwase K, Kawata H (1985) Bull Chem Soc Jpn 58:601CrossRefGoogle Scholar
  25. 25.
    Sakai S, Inagaki S (1990) J Am Chem Soc 112:7961CrossRefGoogle Scholar
  26. 2.
    Iwase K, Sakai S, Inagaki S (1994) Chem Lett 23:1601CrossRefGoogle Scholar
  27. 27.
    Inagaki S, Ohashi S (1999) Theor Chem Acc 102:65Google Scholar
  28. 28.
    Ma J, Inagaki S (2001) J Am Chem Soc 123:1193CrossRefGoogle Scholar
  29. 29.
    Iwase K, Inagaki S (1996) Bull Chem Soc Jpn 69:2781CrossRefGoogle Scholar
  30. 30.
    Ma J, Ikeda H, Inagaki S (2001) Bull Chem Soc Jpn 74:273CrossRefGoogle Scholar
  31. 31.
    Ma J, Ding Y, Hattori K, Inagaki S (2004) J Org Chem 69:4245CrossRefGoogle Scholar
  32. 32.
    Wang Y, Ma J, Inagaki S (2005) Tetrahedron Lett 46:5567CrossRefGoogle Scholar
  33. 33.
    Wang Y, Ma J, Inagaki S (2007) J Phys Org Chem 20:649CrossRefGoogle Scholar
  34. 34.
    Dewar MJS, Healy EF (1987) Chem Phys Lett 141:521CrossRefGoogle Scholar
  35. 35.
    Grutzmacher H, Breher F (2002) Angew Chem Int Ed 41:4006CrossRefGoogle Scholar
  36. 36.
    Hrovat DA, Murcko MA, Lahti PM, Borden WT (1998) J Chem Soc Perkin Trans 2:1037Google Scholar
  37. 37.
    Döhnert D, Koutecký J (1980) J Am Chem Soc 102:1789CrossRefGoogle Scholar
  38. 38.
    Dixon DA, Dunning TH Jr, Eades RA, Kleier DA (1981) J Am Chem Soc 103:2878CrossRefGoogle Scholar
  39. 39.
    Aoyagi M, Osamura Y, Iwata S (1985) J Chem Phys 83:1140CrossRefGoogle Scholar
  40. 40.
    Inagaki S, Iwase K, Kawata H (1985) Bull Chem Soc Jpn 58:601CrossRefGoogle Scholar
  41. 41.
    Chou PK, Gao L, Tichy SE, Painter SL, Blackstock SC, Kenttämaa HI (2000) J Phys Chem A 104:5530CrossRefGoogle Scholar
  42. 42.
    Berson JA, Bushby RJ, McBride JM, Tremelling M (1971) J Am Chem Soc 93:1544CrossRefGoogle Scholar
  43. 43.
    Berson JA (1978) Acc Chem Res 11:446CrossRefGoogle Scholar
  44. 44.
    Platz MS, McBride JM, Little RD, Harrison JJ, Shaw A, Potter SE, Berson JA (1976) J Am Chem Soc 98:5725CrossRefGoogle Scholar
  45. 45.
    Abe M, Kawanami S, Masuyama A, Hayashi T (2006) J Org Chem 71:6607CrossRefGoogle Scholar
  46. 46.
    Abe M, Kawanami S, Ishihara C, Tagegami A (2004) J Org Chem 69:7250CrossRefGoogle Scholar
  47. 47.
    Adam W, Finzel R (1992) J Am Chem Soc 114:4563CrossRefGoogle Scholar
  48. 48.
    Datta SN, Mukherjee P, Jha PP (2003) J Phys Chem A 107:5049CrossRefGoogle Scholar
  49. 49.
    Prasad BLV, Radhakrishnan TP (1992) J Phys Chem 96:9232CrossRefGoogle Scholar
  50. 50.
    Radhakrishnan TP (1991) Chem Phys Lett 181:455CrossRefGoogle Scholar
  51. 51.
    Lahti PM, Rossi AR, Berson JA (1985) J Am Soc Chem 107:2273CrossRefGoogle Scholar
  52. 52.
    Dowd P (1970) J Am Chem Soc 92:1066CrossRefGoogle Scholar
  53. 53.
    Dowd P, Chang W, Paik YH (1986) J Am Chem Soc 108:7416CrossRefGoogle Scholar
  54. 54.
    Roth WR, Kowalczik U, Maier G, Reisenauer HP, Sustmann R, Muller W (1987) Angew Chem Int Ed 26:1285CrossRefGoogle Scholar
  55. 55.
    Clifford EP, Wenthold PG, Lineberger WC, Ellison GB, Wang CX, Grabowski JJ, Vila F, Jordan KD (1998) J Chem Soc Perkin Trans 2:1015Google Scholar
  56. 56.
    Rodriguez E, Reguero M, Caballol R (2000) J Phys Chem A 104:6253CrossRefGoogle Scholar
  57. 57.
    Nachtigall P, Jordan KD (1992) J Am Chem Soc 114:4743CrossRefGoogle Scholar
  58. 58.
    Nachtigall P, Jordan KD (1993) J Am Chem Soc 115:270CrossRefGoogle Scholar
  59. 59.
    Filatov M, Shaik S (1999) J Phys Chem A 103:8885CrossRefGoogle Scholar
  60. 60.
    Matsuda K, Iwamura H (1997) J Am Chem Soc 119:7412CrossRefGoogle Scholar
  61. 61.
    Matsuda K, Iwamura H (1998) J Chem Soc Perkin Trans 2: 1023Google Scholar
  62. 62.
    Dowd P, Chang W, Paik YH (1987) J Am Chem Soc 109:5284CrossRefGoogle Scholar
  63. 63.
    Roth VWR, Erker G (1973) Angew Chem 85:510CrossRefGoogle Scholar
  64. 64.
    Du P, Hrovat DA, Borden WT (1989) J Am Chem Soc 111:3773CrossRefGoogle Scholar
  65. 65.
    Coulson CA, Longuet-Higgins HC (1947) Proc R Soc A 191:39CrossRefGoogle Scholar
  66. 66.
    Coulson CA, Longuet-Higgins HC (1947) Proc R Soc A 192:16CrossRefGoogle Scholar
  67. 67.
    Coulson CA, Longuet-Higgins HC (1947) Proc R Soc A 193:447CrossRefGoogle Scholar
  68. 68.
    Tyutyulkov N, Polansky OE (1987) Chem Phys Lett 139:281CrossRefGoogle Scholar
  69. 69.
    Karabunarliev S, Tyutyulkov N (1989) Theor Chim Acta 76:65CrossRefGoogle Scholar
  70. 70.
    Tyutyulkov N, Karabunarliev S, Ivanov C (1989) Mol Cryst Liquid Cryst 176:139CrossRefGoogle Scholar
  71. 71.
    Davidson ER, Borden WT (1977) J Am Chem Soc 99:4587CrossRefGoogle Scholar
  72. 72.
    Ovchinnikov A (1978) Theor Chim Acta 47:297CrossRefGoogle Scholar
  73. 73.
    Li S, Ma J, Jiang Y (1996) J Phys Chem 100:4775CrossRefGoogle Scholar
  74. 74.
    Li S, Ma J, Jiang Y (1997) J Phys Chem A 101:5567CrossRefGoogle Scholar
  75. 75.
    Maynau D, Said M, Malrieu JP (1983) J Am Chem Soc 105:5244CrossRefGoogle Scholar
  76. 76.
    Klein DJ, Nelin CJ, Alexander SA, Masten FA (1982) J Chem Phys 77:3101CrossRefGoogle Scholar
  77. 77.
    Alexander SA, Klein DJ (1988) J Am Chem Soc 110:3401CrossRefGoogle Scholar
  78. 78.
    Davidson ER, Borden WT, Smith J (1978) J Am Chem Soc 100:3299CrossRefGoogle Scholar
  79. 79.
    Pranata J, Dougherty DA (1987) J Am Chem Soc 109:1621CrossRefGoogle Scholar
  80. 80.
    Zhang DY, Borden WT (2002) J Org Chem 67:3989CrossRefGoogle Scholar
  81. 81.
    Buchwalter SL, Closs GL (1975) J Am Chem Soc 97:3857CrossRefGoogle Scholar
  82. 82.
    Buchwalter SL, Closs GL (1979) J Am Chem Soc 101:4688CrossRefGoogle Scholar
  83. 83.
    Jain R, Sponsler MB, Coms FD, Dougherty DA (1988) J Am Chem Soc 110:1356CrossRefGoogle Scholar
  84. 84.
    Pedersen S, Herek JL, Zewail AH (1994) Science 266:1359CrossRefGoogle Scholar
  85. 85.
    Zewail AH (2000) Angew Chem Int Ed 39:2586CrossRefGoogle Scholar
  86. 86.
    Adam W, Harrer HM, Kita FW, Nau M (1997) Pure Appl Chem 69:91CrossRefGoogle Scholar
  87. 87.
    Adam W, Harrer HM, Heidenfelder T, Kammel T, Kita F, Nau WM, Sahin C (1996) J Chem Soc Pekin Trans 2: 2085CrossRefGoogle Scholar
  88. 88.
    Adam W, Günther E, Hössel P, Platsch H, Wilson RM (1987) Tetrahedron Lett 28:4407CrossRefGoogle Scholar
  89. 89.
    Kita F, Adam W, Jordan P, Nau WM, Sahin C (1999) J Am Chem Soc 121:9265CrossRefGoogle Scholar
  90. 90.
    Abe M, Adam W (1998) J Chem Soc Perkin Trans 2:1063Google Scholar
  91. 91.
    Abe M, Adam W, Nau WM (1998) J Am Chem Soc 120:11304CrossRefGoogle Scholar
  92. 92.
    Adam W, Borden WT, Burda C, Foster H, Heidenfelder T, Heubes MD, Hrovat A, Kita F, Lewis SB, Scheutzow D, Wirz J (1998) J Am Chem Soc 120:593CrossRefGoogle Scholar
  93. 93.
    Abe M, Adam W, Borden WT, Hara M, Hattori M, Majima T, Nojima M, Tachibana K, Tojo S (2002) J Am Chem Soc 124:6540CrossRefGoogle Scholar
  94. 94.
    Abe M, Adam W, Borden WT, Hattori M, Hrovat A, Nojima M, Nozaki K, Wirz J (2004) J Am Chem Soc 126:574CrossRefGoogle Scholar
  95. 95.
    Abe M, Hattori M, Takegami A, Masuyama A, Hayashi T, Seki S, Tagawa S (2006) J Am Chem Soc 128:8008CrossRefGoogle Scholar
  96. 96.
    Abe M, Adam W, Heidenfelder TW, Nau M, Zhang X (2000) J Am Chem Soc 122:2019CrossRefGoogle Scholar
  97. 97.
    Adam W, Baumgarten M, Maas W (2000) J Am Chem Soc 122:6735CrossRefGoogle Scholar
  98. 98.
    Scheschewitz D, Amii H, Gornitzka H, Schoeller WW, Bourissou D, Bertrand G (2002) Science 295:1880CrossRefGoogle Scholar
  99. 99.
    Grützmacher H, Breher F (2002) Angew Chem Int Ed 41:4006CrossRefGoogle Scholar
  100. 100.
    Niecke E, Fuchs A, Nieger M, Schoeller WW (1995) Angew Chem Int Ed 34:555CrossRefGoogle Scholar
  101. 101.
    Schmidt O, Fuchs A, Gudat D, Nieger M, Hoffbauer W, Niecke E, Schoeller WW (1998) Angew Chem Int Ed 37:949CrossRefGoogle Scholar
  102. 102.
    Niecke E, Fuchs A, Nieger M (1999) Angew Chem Int Ed 38:3028CrossRefGoogle Scholar
  103. 103.
    Sebastian M, Nieger M, Szieberth D, Nyulászi L, Niecke E (2004) Angew Chem Int Ed 43:637CrossRefGoogle Scholar
  104. 104.
    Gandon V, Bourg J-B, Tham FS, Schoeller WW, Bertrand G (2008) Angew Chem Int Ed 47:155CrossRefGoogle Scholar
  105. 105.
    Iwamoto T, Yin D, Kabuto C, Kira M (2001) J Am Chem Soc 123:12730CrossRefGoogle Scholar
  106. 106.
    Hoffmann R (1968) J Am Chem Soc 90:1475CrossRefGoogle Scholar
  107. 107.
    Hoffmann R, Swaminathan S, Odell BG, Gleiter R (1970) J Am Chem Soc 92:7091CrossRefGoogle Scholar
  108. 108.
    Getty SJ, Davidson ER, Borden WT (1992) J Am Chem Soc 114:2085CrossRefGoogle Scholar
  109. 109.
    Getty SJ, Hrovat DA, Xu JD, Barker SA, Borden WT (1994) J Chem Soc Faraday Trans 90:1689CrossRefGoogle Scholar
  110. 110.
    Skancke A, Hrovat DA, Borden WT (1998) J Am Chem Soc 120:7079CrossRefGoogle Scholar
  111. 111.
    Zhang DY, Hrovat DA, Abe M, Borden WT (2003) J Am Chem Soc 125:12823CrossRefGoogle Scholar
  112. 112.
    Baldwin JE, Yamaguchi Y, Schaefer HF III (1994) J Phys Chem 98:7513CrossRefGoogle Scholar
  113. 113.
    Krogh-Jespersen K, Cremer D, Dill JD, Pople JA, Schleyer PVR (1981) 103:2589Google Scholar
  114. 114.
    Budzelaar PHM, Kraka E, Cremer D, Schleyer PVR (1986) J Am Chem Soc 108:561CrossRefGoogle Scholar
  115. 115.
    Schoeller WW, Begemann C, Niecke E, Gudat D (2001) J Phys Chem A 105:10731CrossRefGoogle Scholar
  116. 116.
    Jung Y, Head-Gordon M (2003) J Phys Chem A 107:7475CrossRefGoogle Scholar
  117. 117.
    Jung Y, Head-Gordon M (2003) Chem Phys Chem 4:522Google Scholar
  118. 118.
    Radhakrishnan TP (1993) Chem Phys Lett 207:15CrossRefGoogle Scholar
  119. 119.
    Li S, Ma J, Jiang Y (1997) J Phys Chem A 101:5587CrossRefGoogle Scholar
  120. 120.
    Clark AE, Davidson ER (2002) J Phys Chem A 106:6890CrossRefGoogle Scholar
  121. 121.
    Statroverov VN, Davidson ER (2000) J Am Chem Soc 122:186CrossRefGoogle Scholar
  122. 122.
    Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954CrossRefGoogle Scholar
  123. 123.
    Inagaki S, Kakefu T, Yamamoto T, Wasada H (1996) J Phys Chem 100:9615CrossRefGoogle Scholar
  124. 124.
    Ishikawa M, Sugisawa H, Kumada M, Higuchi T, Matsui K, Hirotsu K, Iyoda J (1983) Organometallics 2:174CrossRefGoogle Scholar
  125. 125.
    Masamune S, Murakami S, Tobita H, Williams DJ (1983) J Am Chem Soc 105:7776CrossRefGoogle Scholar
  126. 126.
    Yokelson HB, Millevolte AJ, Haller KJ, West R (1987) J Chem Soc Chem Commun:1605Google Scholar
  127. 127.
    Tan RP, Gillette GR, Powell DR, West R (1991) Organometallics 10:546CrossRefGoogle Scholar
  128. 128.
    Abe M, Kawanami S, Ishihara C, Nojima M (2004) J Org Chem 69:5622CrossRefGoogle Scholar
  129. 129.
    Abe M, Kube E, Nozaki K, Matsuo T, Hayashi T (2006) Angew Chem Int Ed 45:7828CrossRefGoogle Scholar
  130. 130.
    Jain R, Snyder GJ, Dougherty DA (1984) J Am Chem Soc 106:7294CrossRefGoogle Scholar
  131. 131.
    Boatz JA, Gordon MS (1989) J Phys Chem 93:2888CrossRefGoogle Scholar
  132. 132.
    Nguyen KA, Gordon MS, Boatz JA (1994) J Am Chem Soc 116:9241CrossRefGoogle Scholar
  133. 133.
    Scheschkewitz D, Amii H, Gornitzka H, Schoeller WW, Bourissou D, Bertrand G (2004) Angew Chem Int Ed 43:585CrossRefGoogle Scholar
  134. 134.
    Seierstad M, Kinsinger CR, Cramer CJ (2002) Angew Chem Int Ed 41:3894CrossRefGoogle Scholar
  135. 135.
    Dowd P (1966) J Am Chem Soc 88:2587CrossRefGoogle Scholar
  136. 136.
    Dowd P, Gold A, Sachdev K (1966) J Am Chem Soc 90:2715CrossRefGoogle Scholar
  137. 137.
    Dowd P, Sachdev K (1967) J Am Chem Soc 89:715CrossRefGoogle Scholar
  138. 138.
    Baseman RJ, Pratt DW, Chow M, Dowd P (1976) J Am Chem Soc 98:5726CrossRefGoogle Scholar
  139. 139.
    Dowd P (1972) Acc Chem Res 5:242CrossRefGoogle Scholar
  140. 140.
    Wenthold PG, Hu J, Squires RR, Lineberger WC (1996) J Am Soc Chem 118:475CrossRefGoogle Scholar
  141. 141.
    Wenthold PG, Hu J, Squires RR, Lineberger WC (1999) J Am Soc Mass Spectrom 10:800CrossRefGoogle Scholar
  142. 142.
    Cramer CJ, Smith BA (1996) J Phys Chem 100:9664CrossRefGoogle Scholar
  143. 143.
    Nachtigall P, Dowd P, Jordan KD (1992) J Am Chem Soc 114:4747CrossRefGoogle Scholar
  144. 144.
    Dowd P, Paik YH (1986) J Am Chem Soc 108:2788CrossRefGoogle Scholar
  145. 145.
    Snyder GJ, Dougherty DA (1985) J Am Chem Soc 107:1774CrossRefGoogle Scholar
  146. 146.
    Snyder GJ, Dougherty DA (1986) J Am Chem Soc 108:299CrossRefGoogle Scholar
  147. 147.
    Snyder GJ, Dougherty DA (1989) J Am Chem Soc 111:3927CrossRefGoogle Scholar
  148. 148.
    Snyder GJ, Dougherty DA (1989) J Am Chem Soc 111:3942CrossRefGoogle Scholar
  149. 149.
    Wenthold PG, Kim JB, Lineberger WC (1997) J Am Chem Soc 119:1354CrossRefGoogle Scholar
  150. 150.
    Neuhaus P, Grote D, Sander W (2008) J Am Chem Soc 130:2993CrossRefGoogle Scholar
  151. 151.
    Wang T, Krylov AI (2005) J Chem Phys 123:104304CrossRefGoogle Scholar
  152. 152.
    Zhang G, Li S, Jiang Y (2003) J Phys Chem A 107:5573CrossRefGoogle Scholar
  153. 153.
    Coolidge MB,Yamashita K, Morokuma K, Borden WT (1990) J Am Chem Soc 112:1751CrossRefGoogle Scholar
  154. 154.
    Gleiter R, Hoffmann R (1969) Angew Chem Int Ed 8:214CrossRefGoogle Scholar
  155. 155.
    Rakesh J, Lisa MW, Dennis AD (1988) J Am Chem Soc 110:552CrossRefGoogle Scholar
  156. 156.
    Adam W, Reinhard G, Platsch H, Wirz J (1990) J Am Chem Soc 112:4570CrossRefGoogle Scholar
  157. 157.
    Adam W, Grabowski S, Platsch H, Hannemann K, Wirz J, Wilson RM (1989) J Am Chem Soc 111:751CrossRefGoogle Scholar
  158. 158.
    Adam W, Platsch H, Wirz J (1989) J Am Chem Soc 111:6896CrossRefGoogle Scholar
  159. 159.
    Coms FD, Dougherty DA (1988) Tetrahedron Lett 29:3753CrossRefGoogle Scholar
  160. 160.
    Coms FD, Dougherty DA (1989) J Am Chem Soc 111:6894CrossRefGoogle Scholar
  161. 161.
    Sugiyama H, Ito S, Yoshifuji M (2003) Angew Chem Int Ed 42:3802CrossRefGoogle Scholar
  162. 162.
    Cui C, Brynda M, Olmstead MM, Power PP (2004) J Am Chem Soc 126:6510CrossRefGoogle Scholar
  163. 163.
    Amii H, Vranicar L, Gornitzka H, Bourissou D, Bertrand G (2004) J Am Chem Soc 126:1344CrossRefGoogle Scholar
  164. 164.
    Rodriguez A, Tham FS, Schoeller WW, Bertrand G (2004) Angew Chem Int Ed 43:4876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of ChemistryGifu UniversityGifuJapan

Personalised recommendations