Advertisement

Two-Dimensional Nanotemplates as Surface Cues for the Controlled Assembly of Organic Molecules

  • Fabio Cicoira
  • Clara Santato
  • Federico RoseiEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 285)

Abstract

Controlled two-dimensional assembly of organic molecules can be successfully realized by meansof surface nanotemplates that provide surface cues for assembly upon adsorption. Examples of suchtemplates are nanostructured surfaces and organic porous networks. In this review, we discuss theformation and use of such templates for controlled molecular assembly. The formation of the organicporous network is typically based on non-covalent interactions, e.g., hydrogen bonds, dipole–dipoleinteractions, metal-organic coordination bonds together with substrate-mediated molecular interactions.The pores of the network can act as hosts for specific organic molecules. The chemical structureof the molecular building blocks of the porous network has a primary effect on the shape, size,and chemical reactivity of the cavities. Long-range mesoscale reconstructions can also be employedas surface nanotemplates based on the selective adsorption of atomic or molecular species at specificsurface sites. Scanning tunneling microscopy is the key tool to study the formation of the nanotemplatesas well as the effect of the template in the growth of the ordered organic structures. The reportedstudies contribute to build the rationale in the design and fabrication of two-dimensional organicnetworks. The topic covered in this review represents an important challenge in nanotechnology sincethese findings might have a wide range of applications, e.g., in electronics, sensing, and bio-recognition.

Bottom-up approach Nanostructured surface Nanotemplate Organic porous network Self-assembly Surface cues  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth JV, Costantini G, Kern K (2005) Nature 437:29 Google Scholar
  2. 2.
    Rosei F (2004) J Phys Condens Matter 16:S1373 Google Scholar
  3. 3.
    Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312 Google Scholar
  4. 4.
    Pohl K, Bartelt MC, De La Figuera J, Bartelt NC, Hrbek J, Hwang RQ (1999) Nature 397:238 Google Scholar
  5. 5.
    Weaver JH, Antonov VN (2004) Surf Sci 557:1 Google Scholar
  6. 6.
    Whitesides GM, Grybowski B (2002) Science 295:2418 Google Scholar
  7. 7.
    Lehn JM; Desiraju GR (1995) Angew Chem Int Ed 34:2311 Google Scholar
  8. 8.
    Williams JH (1993) Acc Chem Res 26:593 Google Scholar
  9. 9.
    Desiraju GR (1989) Crystal Engineering: The Design of Organic Solids. Elsevier, Amsterdam Google Scholar
  10. 10.
    Nath KG, Ivasenko O, McLeod JM, Miwa JA, Wuest JD, Nanci A, Perepichka DF, Rosei F (2007) J Phys Chem C 111:16996 Google Scholar
  11. 11.
    Eichhorst-Gerner K, Stabel A, Moessner G, Declerq D, Valiyaveettil S, Enkelmann V, Müllen K, Rabe JP (1996) Angew Chem Int Ed 35:1492 Google Scholar
  12. 12.
    Mena-Osteritz E, Bäuerle P (2001) Adv Mater 13:243 Google Scholar
  13. 13.
    Grave C, Lentz D, Schäfer A, Samorí P, Rabe JP, Franke P, Schlüter AD (2005) J Am Chem Soc 125:6907 Google Scholar
  14. 14.
    Stabel A, Heinz R, Rabe JP, Wegner G, De Schryver FC, Corens D, Dehaen W, Süling C (1995) J Phys Chem 99:8690 Google Scholar
  15. 15.
    Brune H, Giovannini M, Bromann K, Kern K (1998) Nature 397:238 Google Scholar
  16. 16.
    Cicoira F, Rosei F (2006) Surf Sci 600:1 Google Scholar
  17. 17.
    Sgarlata A, Szkutnik PD, Balzarotti A, Motta N, Rosei F (2003) Appl Phys Lett 83:4002 Google Scholar
  18. 18.
    Men FK, Liu F, Wang PJ, Chen CH, Cheng DL, Lin JL, Himpsel FJ (2002) Phys Rev Lett 88:096105 Google Scholar
  19. 19.
    Gambardella P, Rusponi S, Veronese M, Dhesi SS, Cabria I, Zeller R, Dederichs PH, Dallmeyer A, Grazioli C, Kern K, Carbone C, Brune H (2003) Science 300:1130 Google Scholar
  20. 20.
    Gambardella P, Dallmeyer A, Maiti K, Malagoli MC, Eberhardt W, Kern K, Carbone C (2002) Nature 416:301 Google Scholar
  21. 21.
    Barth JV (2000) Surf Sci Rep 40:75 Google Scholar
  22. 22.
    Barth JV (2007) Annu Rev Phys Chem 58:375 Google Scholar
  23. 23.
    Rosei F, Schunack M, Naitoh Y, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2003) Prog Surf Sci 71:95 Google Scholar
  24. 24.
    Otero F, Rosei F, Besenbacher F (2006) Annu Rev Phys Chem 57:497 Google Scholar
  25. 25.
    De Feyter S, De Schryver F (2005) Top Curr Chem 258:205 Google Scholar
  26. 26.
    De Feyter S, De Schryver F (2005) J Phys Chem B 109:4290 Google Scholar
  27. 27.
    De Feyter S, De Schryver F (2003) Chem Soc Rev 32:139 Google Scholar
  28. 28.
    Ernst KH (2006) Top Curr Chem 265:209 Google Scholar
  29. 29.
    Elemans JAAW, van Hameren R, Nole RMJ, Rowan A (2006) Adv Mater 18:1251 Google Scholar
  30. 30.
    Bohringer M, Schneider WD (2000) Surf Rev Lett 7:661 Google Scholar
  31. 31.
    Schunack M, Linderoth TR, Rosei F, Laegsgaard E, Stensgaard I, Besenbacher F (2002) Phys Rev Lett 88:156102 Google Scholar
  32. 32.
    Lopinski GP, Wayner DDM, Wolkow RA (2000) Nature 406:48 Google Scholar
  33. 33.
    Miwa JA, Eves BJ, Rosei F, Lopinski GP (2005) J Phys Chem B 109:20055 Google Scholar
  34. 34.
    Ruben M, Lehn JM, Müller P (2006) Chem Soc Rev 35:1056 Google Scholar
  35. 35.
    Hipps KW, Scudiero L, Barlow DE, Cooke JR MP (2002) J Am Chem Soc 124:2126 Google Scholar
  36. 36.
    Scudiero L, Hipps KW, Barlow DE (2003) J Phys Chem B 107:2903 Google Scholar
  37. 37.
    Pokrifchak M, Turner T, Pilgrom I, Johnston M, Hipps KW (2007) J Phys Chem C 111:7735 Google Scholar
  38. 38.
    Gyargas BJ, Wiggins B, Zosel M, Hipps KW (2005) Langmuir 21:919 Google Scholar
  39. 39.
    Ogunrinde A, Hipps KW, Scudiero L (2006) Langmuir 22:5697 Google Scholar
  40. 40.
    Katsonis N, Marchenko A, Fichou D (2003) J Am Chem Soc 125:13682 Google Scholar
  41. 41.
    Piot L, Marchenko A, Wu J, Müllen K, Fichou D (2005) J Am Chem Soc 125:13682 Google Scholar
  42. 42.
    Jiang P, Nion A, Marchenko A, Piot L, Fichou D (2006) J Am Chem Soc 128:12390 Google Scholar
  43. 43.
    Yokoyama T, Yokoyama S, Kamikado T, Okuno Y, Mashiko S (2001) Nature 413:619 Google Scholar
  44. 44.
    Chen W, Loh KP, Xu H, Wee ATS (2004) Appl Phys Lett 84:281 Google Scholar
  45. 45.
    Chen W, Loh KP, Xu H, Wee ATS (2004) Langmuir 20:10779 Google Scholar
  46. 46.
    Chen W, Xu H, Liu L, Gao X, Qi D, Peng G, Tan SC, Feng Y, Loh KP, Wee ATS (2005) Surf Sci 596:176 Google Scholar
  47. 47.
    Chen W, Zhang HL, Xu H, Tok ES, Loh KP, Wee ATS (2006) J Phys Chem 110:21873 Google Scholar
  48. 48.
    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Science 303:217 Google Scholar
  49. 49.
    Griessl S, Lackinger M, Edelwirth M, Hietschold M, Heckl WM (2002) Single Mol 3:25 Google Scholar
  50. 50.
    Dmitriev A, Lin N, Weckesser J, Barth JV, Kern K (2002) J Phys Chem B 106:6907 Google Scholar
  51. 51.
    Griessl S, Lackinger M, Jamitsky F, Markert T, Hietschold M, Heckl WM (2004) J Phys Chem B 108:11556 Google Scholar
  52. 52.
    Lackinger M, Griessl S, Heckl WM, Hietschold M, Flynn GW (2005) Langmuir 21:4984 Google Scholar
  53. 53.
    Su GJ, Zhang HM, Wan LJ, Bai CL, Wandlowski T (2004) J Phys Chem B 108:1931 Google Scholar
  54. 54.
    Ishikawa Y, Ohira A, Sakata M, Hirayama C, Kunitake M (2002) Chem Commun 2652 Google Scholar
  55. 55.
    Lu J, Zeng QD, Wang C, Zheng QI, Wan L, Bai C (2002) J Mater Chem 12:2856 Google Scholar
  56. 56.
    Payer D, Comisso A, Dmitriev A, Strunskus T, Lin N, Woll C, De Vita A, Barth JV, Kern K (2007) Chem Eur J 13:3900 Google Scholar
  57. 57.
    Griessl SJH, Lackinger M, Jamitzki F, Markert T, Hietschold M, Heckl WM (2004) Langmuir 20:9403 Google Scholar
  58. 58.
    Walzer K, Sternberg M, Hietschold M (1998) Surf Sci 415:376 Google Scholar
  59. 59.
    Lackinger M, Griessl S, Markert T, Jamitzky F, Heckl WM (2004) J Phys Chem B 108:13652 Google Scholar
  60. 60.
    Kampschulte L, Lackinger M, Maier AK, Kishore RSK, Griessl S, Schmittel M, Heckl WM (2006) J Phys Chem B 110:10829 Google Scholar
  61. 61.
    Ruben M, Payer D, Landa A, Comisso A, Gattinoni C, Lin N, Collin JP, Sauvage JP, De Vita A, Kern K (2006) J Am Chem Soc 128:15644 Google Scholar
  62. 62.
    Nath KG, Ivasenko A, Miwa JA, Dang H, Wuest JD, Nanci A, Perepichka DF, Rosei F (2006) J Am Chem Soc 128:4212 Google Scholar
  63. 63.
    Hibino M, Sumi A, Tsuchiya H, Hatta I (1998) Phys Chem B 102:4544 Google Scholar
  64. 64.
    Wintgens D, Yablon DG, Flynn GW (2003) J Phys Chem B 107:173 Google Scholar
  65. 65.
    Wei Y, Kannappan K, Flynn GW, Zimmt MB (2004) J Am Chem Soc 126:5318 Google Scholar
  66. 66.
    Ye Y, Sun W, Wang Y, Shao X, Xu X, Cheng F, Li J, Wu K (2007) J Phys Chem C 111:10138 Google Scholar
  67. 67.
    McLeod JM, Ivasenko O, Perepichka DF, Rosei F (2007) Nanotechnology 18:424031 Google Scholar
  68. 68.
    Kampschulte L, Griessl S, Heckl WM, Lackinger M (2005) J Phys Chem B 109:14074 Google Scholar
  69. 69.
    Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Nature 424:1029 Google Scholar
  70. 70.
    Theobald JA, Oxtoby NS, Champness NR, Beton PH, Dennis TJS (2005) Langmuir 21:2038 Google Scholar
  71. 71.
    Perdigao LMA, Perkins EW, Ma J, Staniec PA, Rogers BL, Champness NR, Beton PH (2006) J Phys Chem B 110:12539 Google Scholar
  72. 72.
    Perdigao LMA, Champness NR, Beton PH (2006) Chem Commun 538 Google Scholar
  73. 73.
    Staniec PA, Perdigao LMA, Rogers BL, Champness NR, Beton PH (2007) J Phys Chem B 111:886 Google Scholar
  74. 74.
    Xu W, Dong M, Gersen H, Rauls E, Vasquez-Campos S, Crego-Calama M, Reinhouldt DN, Stensgaard I, Laegsgaard E, Linderoth TR, Besenbacher F (2007) Small 3:854 Google Scholar
  75. 75.
    Ma J, Rogers BL, Humphry MJ, Ring DJ, Goretzki G, Champness NR, Beton PH (2006) J Phys Chem B 110:12207 Google Scholar
  76. 76.
    Gong JR, Yan H, Yan QH, Xu LP BO ZS, Wal LJ (2006) J Am Chem Soc 128:12384 Google Scholar
  77. 77.
    Gong JR, Zhao JL, Lei SB, Wan LJ, Bo ZS (2003) Langmuir 19:10130 Google Scholar
  78. 78.
    Pawin G, Wong KL, Kwon KY, Bartels L (2006) Science 313:961 Google Scholar
  79. 79.
    Wong KL, Pawin G, Kwon KY, Lin X, Jiao T, Solanki U, Fawcett RHJ, Bartels L, Stolbov S, Rahman TS (2007) Science 315:1391 Google Scholar
  80. 80.
    Stöhr M, Wahl M, Galka CH, Riehm T, Jung TA, Gade LH (2005) Angew Chem Int Ed 117:7560 Google Scholar
  81. 81.
    Wahl MA, Stohr M, Spillmann H, Jung TA, Gade LH (2007) Chem Commun 13:1349 Google Scholar
  82. 82.
    Stöhr M, Wahl M, Spillmann H, Gade LH Jung TA (2007) Small 3:1336 Google Scholar
  83. 83.
    Moresco F (2004) Phys Rep 399:175 Google Scholar
  84. 84.
    Bonifazi D, Kiebele A, Stöhr M, Cheng F, Jung TA, Diederich F, Spillmann H (2007) Adv Funct Mater 17:1051 Google Scholar
  85. 85.
    Bonifazi D, Spillmann H, Kiebele A, De Wild M, Seiler P, Cheng F, Güntherodt J, Jung TA, Diederich F (2004) Angew Chem Int Ed 43:4759 Google Scholar
  86. 86.
    Spillmann H, Kiebele A, Stöhr M, Jung TA, Bonifazi D, Cheng F, Diederich F (2006) Adv Mater 18:275 Google Scholar
  87. 87.
    Kiebele A, Bonifazi D, Cheng F, Stöhr M, Diederich F, Jung TA, Spillmann H (2006) Chem Phys Chem 7:1462 Google Scholar
  88. 88.
    Wintjies N, Bonifazi D, Cheng F, Kiebele A, Stöhr M, Jung TA, Spillmann H, Diederich F (2007) Angew Chem Int Ed 46:4089 Google Scholar
  89. 89.
    Lin N, Dmitriev A, Weckesser J, Barth JV, Kern K (2002) Angew Chem Int Ed 41:4779 Google Scholar
  90. 90.
    Spillmann H, Dmitriev A, Lin N, Messina P, Barth JV, Kern K (2003) J Am Chem Soc 125:10725 Google Scholar
  91. 91.
    Messina P, Dmitriev A, Lin N, Spillmann H, Abel M, Barth JV, Kern K (2002) J Am Chem Soc 124:1400 Google Scholar
  92. 92.
    Classen T, Fratesi G, Costantini G, Fabris S, Stadler F, Kim C, De Gironcoli S, Baroni S, Kern K (2005) Angew Chem Int Ed 44:6142 Google Scholar
  93. 93.
    Dmitriev A, Spillmann H, Lin N, Barth JV, Kern K (2003) Angew Chem Int Ed 42:2670 Google Scholar
  94. 94.
    Stephanow S, Lingenfelder M, Dmitriev A, Spillmann H, Lin N, Deng X, Cai C, Barth JV, Kern K (2004) Nat Mater 3:229 Google Scholar
  95. 95.
    Stepanow S, Lin N, Payer D, Schlickum U, Klappenberger F, Zoppellaro G, Ruben M, Brune H, Barth JV, Kern K (2007) Angew Chem Int Ed 46:710 Google Scholar
  96. 96.
    Clair S, Pons S, Brune H, Kern K, Barth JV (2005) Angew Chem Int Ed 44:7294 Google Scholar
  97. 97.
    Stepanow S, Lin N, Barth JV, Kern K (2006) Chem Commun 2153 Google Scholar
  98. 98.
    Méndez J, Caillard R, Otero G, Nicoara N, Martin-Gago JA (2006) Adv Mater 18:2048 Google Scholar
  99. 99.
    Auwärter W, Weber-Bargioni, Brink S, Riemann, Schiffrin A, Ruben M, Barth J (2007) Chem Phys Chem 8:250 Google Scholar
  100. 100.
    Balzani V, Venturi M, Credi A (2003) Molecular Devices and Machines. Wiley-VCH, Weinheim, Germany Google Scholar
  101. 101.
    Mena-Osteritz E, Bäuerle P (2006) Adv Mater 18:447 Google Scholar
  102. 102.
    Bäuerle P, Ammann M, Wilde M, Götz G, Mena-Osteritz E, Rang A, Schalley CA (2007) Angew Chem Int Ed 46:383 Google Scholar
  103. 103.
    Mena-Osteritz E (2002) Adv Mater 14:609 Google Scholar
  104. 104.
    Krömer J, Rios-Carreras I, Fuhrmann G, Musch C, Wunderlin M, Debaerdemaeker T, Mena-Osteritz E, Bäuerle P (2000) Angew Chem Int Ed 39:3481 Google Scholar
  105. 105.
    Pan GB, Cheng XH, Hoger S, Freyland W (2006) J Am Chem Soc 128:4218 Google Scholar
  106. 106.
    Kossev I, Reckien W, Kirchner, Felder T, Nieger M, Schalley CA, Vögtle F, Sokolowski M (2007) Adv Funct Mater 17:513 Google Scholar
  107. 107.
    Hunter CA (1992) J Am Chem Soc 114:5303 Google Scholar
  108. 108.
    Herrmann U, Jonischkeit T, Bargon J, Hahn U, Li QY, Schalley CA, Vogel E Vögtle F (2002) Anal Bioanal Chem 372:611 Google Scholar
  109. 109.
    Pan GB, Liu JM, Zhang HM, Wan LJ, Zheng QY, Bai CL (2003) Angew Chem Int Ed 42:2747 Google Scholar
  110. 110.
    Pan GB, Wan LJ, Zheng QY, Bai CL (2003) Chem Phys Lett 367:711 Google Scholar
  111. 111.
    Sakai T, Ohira A, Sakata M, Hirayama C, Kunitake M (2001) Chem Lett 782 Google Scholar
  112. 112.
    Yoshomoto S, Tsusumi E, Narita R, Murata Y, Murata M, Fujiwara K, Komatsu K, Ito O, Itaya K (2007) J Am Chem Soc 129:4366 Google Scholar
  113. 113.
    Itaka K, Yamashiro M, Ymaguchi J, Haemori M, Yaginuma S, Matsumoto Y, Kondo M, Koinuma H (2006) Adv Mater 18:1713 Google Scholar
  114. 114.
    Furukawa S, Tahara K, De Schryver F, Van der Auweraer M, Tobe Y, De Feyter S (2007) Angew Chem Int Ed 46:2831 Google Scholar
  115. 115.
    Tahata K, Furukawa S, Uji-i H, Uchino T, Ichikawa T, Zhang J, Mamdouh W, Sonoda M, De Schryver, De Feyter S, Tobe Y (2006) J Am Chem Soc 128:16613 Google Scholar
  116. 116.
    Schull G, Douillard L, Fiorini-Debuisschert C, Charra F, Mathevet F, Kreher D, Attias AJ (2006) Nano Lett 6:1360 Google Scholar
  117. 117.
    Schull G, Douillard L, Fiorini-Debuisschert C, Charra F, Mathevet F, Kreher D, Attias AJ (2006) Adv Mater 18:2954 Google Scholar
  118. 118.
    Xu S, Zeng Q, Lu J, Wang C, Wan L, Bai CL (2003) Surf Sci 538:L451 Google Scholar
  119. 119.
    Nishiyama F, Yokoyama T, Kamikado T, Yokoyama T, Mashiko S, Sakaguchi K, Kikuchi K (2007) Adv Mater 19:117 Google Scholar
  120. 120.
    Kröger J, Néel N, Jensen H, Berndt R, Rurali R, Lorente N (2006) J Phys: Condens Matter 18:S51 Google Scholar
  121. 121.
    Néel N, Kröger J, Berndt R (2006) Adv Mater 18:174 Google Scholar
  122. 122.
    Néel N, Kröger J, Berndt R (2006) Appl Phys Lett 88:163101 Google Scholar
  123. 123.
    Xiao W, Ruffieux P, Ait Mansour K, Gröning O, Palotas K, Hofer WA, Gröning P, Fasel R (2006) J Phys Chem B 110:21395 Google Scholar
  124. 124.
    Cañas-Ventura ME, Xiao W, Wasserfallen D, Müllen K, Brune H, Barth JV, Fasel R (2007) Angew Chem Int Ed 46:1814 Google Scholar
  125. 125.
    Ertl G (1967) Surf Sci 6:208 Google Scholar
  126. 126.
    Jensen F, Besenbacher F, Laesgaard E, Stensgaard I (1990) Phys Rev B 41:10233 Google Scholar
  127. 127.
    Coulman DJ, Wintterlin J, Behm RJ, Ertl G (1990) Phys Rev Lett 64:1761 Google Scholar
  128. 128.
    Besenbacher F, Jensen F, Lægsgaard E, Mortensen K, Stensgaard I (1991) J Vac Sci Technol B 9:874 Google Scholar
  129. 129.
    Kern K, Niheus H, Schatz A, Zeppenfeld P, Goerge J, Comsa G (1991) Phys Rev Lett 67:855 Google Scholar
  130. 130.
    Otero R, Naitoh Y, Rosei F, Jiang P, Thostrup P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2004) Angew Chem Int Ed 43:2092 Google Scholar
  131. 131.
    Pedersen MØ, Murray PWH, Lægsgaard E, Stensgaard I, Besenbacher F (1997) Surf Sci 389:300 Google Scholar
  132. 132.
    Otero R, Rosei F, Naitoh Y, Jiang P, Thostrup P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2004) Nano Lett 4:75 Google Scholar
  133. 133.
    Schunack M, Rosei F, Naitoh Y, Jiang P, Gourdon A, Lægsgaard A, Stensgaard I, Joachim C, Besenbacher F (2002) J Chem Phys 117:6259 Google Scholar
  134. 134.
    Rosei F, Schunack M, Jiang P, Gourdon A, Laegsgaard E, Stensgaard I, Joachim C, Besenbacher F (2002) Science 296:328 Google Scholar
  135. 135.
    Cicoira F, Miwa JA, Melucci M, Barbarella G, Rosei F (2006) Small 2:1366 Google Scholar
  136. 136.
    Cicoira F, Miwa JA, Perepichka DF, Rosei F (2007) J Phys Chem A 111:12674 Google Scholar
  137. 137.
    Koller G, Winter B, Oehzelt M, Ivanco J, Tetzer FP, Ramsey MG (2007) Organic Electronics 8:63 Google Scholar
  138. 138.
    Oehzelt M, Grill L, Berkebile S, Koller G, Netzer FP, Ramsey MG (2007) Chem Phys Chem 8:1707 Google Scholar
  139. 139.
    Bombis C, Moiseva M, Ibach H (2005) Phys Rev B 72:245408 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fabio Cicoira
    • 1
    • 2
  • Clara Santato
    • 3
    • 4
  • Federico Rosei
    • 5
    Email author
  1. 1.Department of Materials Science and Engineering, Bard HallCornell UniversityIthacaUSA
  2. 2.Institute of Photonics and NanotechnologyConsiglio Nazionale delle RicerchePovo (Trento)Italy
  3. 3.Département de génie physiqueEcole Polytechnique de MontréalMontréalCanada
  4. 4.ISMN-CNRBolognaItaly
  5. 5.Centre Énergie Matériaux et Télécommunications, Institut Nationalde la Recherche Scientifique (INRS)Université du QuébecVarennesCanada

Personalised recommendations