Advertisement

Ins and Outs of Microbial Adhesion

  • Mumtaz Virji
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 288)

Abstract

Microbial adhesion is generally a complex process, involving multiple adhesins on a single microbe and their respective target receptors on host cells. In some situations, various adhesins of a microbe may co-operate in an apparently hierarchical and sequential manner whereby the first adhesive event triggers the target cell to express receptors for additional microbial adhesins. In other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Mechanisms used to target the host include both lectin-like interactions and protein–protein interactions; the latter are often highly specific for the host or a tissue within the host. This reflective chapter aims to offer a point of view on microbial adhesion by presenting some experiences and thoughts especially related to respiratory pathogens and explore if there can be any future hope of controlling bacterial infections via preventing adhesion or invasion stages of microbial pathogenesis.

Keywords

Cerebral Malaria Bacterial Adhesion Moraxella Catarrhalis Cellular Invasion Microbial Adhesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, Adderson EE (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80:1629–1636CrossRefGoogle Scholar
  2. 2.
    Beadling C, Slifka MK (2004) How do viral infections predispose patients to bacterial infections? Curr Opin Infect Dis 17:185–191CrossRefGoogle Scholar
  3. 3.
    Bos MP, Kuroki M, Krop-Watorek A, Hogan D, Belland RJ (1998) CD66 receptor specificity exhibited by neisserial Opa variants is controlled by protein determinants in CD66 N-domains. Proc Natl Acad Sci USA 95:9584–9589CrossRefGoogle Scholar
  4. 4.
    Cartwright K (1995) Meningococcal carriage and disease. In: Cartwright K (ed.) Meningococcal disease. Wiley, Chichester, pp 115–146Google Scholar
  5. 5.
    Caugant DA, Tzanakaki G, Kriz P (2007) Lessons from meningococcal carriage studies. FEMS Microbiol Rev 31:52–63CrossRefGoogle Scholar
  6. 6.
    Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248CrossRefGoogle Scholar
  7. 7.
    Frankel G, Phillips AD (2008) Attaching effacing Escherichia coli. and paradigms of Tir-triggered actin polymerization: getting off the pedestal Cell Microbiol 10:549–556CrossRefGoogle Scholar
  8. 8.
    Garcia-Rodriguez JA, Fresnadillo Martinez MJ (2002) Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother 50:(Suppl S2)59–73CrossRefGoogle Scholar
  9. 9.
    Garmendia J, Frankel G, Crepin VF (2005) Enteropathogenic and enterohemorrhagic Escherichia coli. infections: translocation, translocation, translocation Infect Immun 73:2573–2585CrossRefGoogle Scholar
  10. 10.
    Griffiths NJ, Bradley CJ, Heyderman RS, Virji M (2007) IFN-gamma amplifies NfkappaB-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1 Cell Microbiol 9:2968–2983CrossRefGoogle Scholar
  11. 11.
    Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286:291–295CrossRefGoogle Scholar
  12. 12.
    Hament JM, Kimpen JL, Fleer A, Wolfs TF (1999) Respiratory viral infection predisposing for bacterial disease: a concise review. FEMS Immunol Med Microbiol 26:189–195CrossRefGoogle Scholar
  13. 13.
    Hammarstrom S, Baranov V (2001) Is there a role for CEA in innate immunity in the colon? Trends Microbiol 9:119–125CrossRefGoogle Scholar
  14. 14.
    Hill DJ, Virji M (2003) A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1 Mol Microbiol 48:117–129CrossRefGoogle Scholar
  15. 15.
    Hill DJ, Edwards AM, Rowe HA, Virji M (2005) Carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-binding recombinant polypeptide confers protection against infection by respiratory and urogenital pathogens. Mol Microbiol 55:1515–1527CrossRefGoogle Scholar
  16. 16.
    Hill DJ, Toleman MA, Evans DJ, Villullas S, Van Alphen L, Virji M (2001) The variable P5 proteins of typeable and non-typeable Haemophilus influenzae target human CEACAM1 Mol Microbiol 39:850–862CrossRefGoogle Scholar
  17. 17.
    Horst AK, Wagener C (2004) CEA-related cams. In: Behrens J, Nelson WJ (eds) Handbook of experimental pharmacology, cell adhesion. Springer, Berlin Heidelberg New York, pp 283–341Google Scholar
  18. 18.
    Hudson KJ, Bliska JB, Bouton AH (2005) Distinct mechanisms of integrin binding by Yersinia pseudotuberculosis adhesins determine the phagocytic response of host macrophages Cell Microbiol 7:1474–1489CrossRefGoogle Scholar
  19. 19.
    Isberg RR, Tran Van Nhieu G (1994) Binding and internalization of microorganisms by integrin receptors. Trends Microbiol 2:10–14CrossRefGoogle Scholar
  20. 20.
    Ishibashi Y, Nishikawa A (2003) Role of nuclear factor-kappa B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis Microb Pathog 35:169–177CrossRefGoogle Scholar
  21. 21.
    Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells Cell 91:511–520CrossRefGoogle Scholar
  22. 22.
    Leusch HG, Drzeniek Z, Markos-Pusztai Z, Wagener C (1991) Binding of Escherichia coli. and Salmonella strains to members of the carcinoembryonic antigen family: differential binding inhibition by aromatic alpha-glycosides of mannose Infect Immun 59:2051–2057Google Scholar
  23. 23.
    Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG, Haynes CA . et al. (2000) Crystal structure of enteropathogenic Escherichia coli. intimin-receptor complex Nature 405:1073–1077CrossRefGoogle Scholar
  24. 24.
    Moore J, Bailey SE, Benmechernene Z, Tzitzilonis C, Griffiths NJ, Virji M, Derrick JP (2005) Recognition of saccharides by the opcA, opaD, and opaB outer membrane proteins from Neisseria meningitidis J Biol Chem 280:31489–31497CrossRefGoogle Scholar
  25. 25.
    Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 135:1304–1307Google Scholar
  26. 26.
    Nassif X, So M (1995) Interaction of pathogenic neisseriae with nonphagocytic cells. Clin Microbiol Rev 8:376–388Google Scholar
  27. 27.
    Parente F, Cucino C, Anderloni A, Grandinetti G, Bianchi Porro G (2003) Treatment of Helicobacter pylori infection using a novel antiadhesion compound (3'sialyllactose sodium salt). A double blind, placebo-controlled clinical study Helicobacter 8:252–256CrossRefGoogle Scholar
  28. 28.
    Pasloske BL, Howard RJ (1994) Malaria, the red cell, and the endothelium. Annu Rev Med 45:283–295CrossRefGoogle Scholar
  29. 29.
    Poggio TV, La Torre JL, Scodeller EA (2006) Intranasal immunization with a recombinant truncated FimH adhesin adjuvanted with CpG oligodeoxynucleotides protects mice against uropathogenic Escherichia coli. challenge Can J Microbiol 52:1093–1102CrossRefGoogle Scholar
  30. 30.
    Prince SM, Achtman M, Derrick JP (2002) Crystal structure of the opcA integral membrane adhesin from Neisseria meningitidis Proc Natl Acad Sci USA 99:3417–3421CrossRefGoogle Scholar
  31. 31.
    Rao SP, Gehlsen KR, Catanzaro A (1992) Identification of a beta 1 integrin on Mycobacterium avium–Mycobacterium intracellulare Infect Immun 60:3652–3657Google Scholar
  32. 32.
    Roberts JA, Kaack MB, Baskin G, Chapman MR, Hunstad DA, Pinkner JS, Hultgren SJ (2004) Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli. PapDG protein J Urol 171:1682–1685CrossRefGoogle Scholar
  33. 33.
    Rowe HA, Griffiths NJ, Hill DJ, Virji M (2007) Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis Cell Microbiol 9:154–168CrossRefGoogle Scholar
  34. 34.
    Sa-Leao R, Nunes S, Brito-Avo A, Alves CR, Carrico JA, Saldanha J . et al. (2008) High rates of transmission of and colonization by Streptococcus pneumoniae and Haemophilus influenzae within a day care center revealed in a longitudinal study J Clin Microbiol 46:225–234CrossRefGoogle Scholar
  35. 35.
    Sandros J, Tuomanen E (1993) Attachment factors of Bordetella pertussis. : mimicry of eukaryotic cell recognition molecules Trends Microbiol 1:192–196CrossRefGoogle Scholar
  36. 36.
    Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760:527–537CrossRefGoogle Scholar
  37. 37.
    Sim RJ, Harrison MM, Moxon ER, Tang CM (2000) Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet 356:1653–1654CrossRefGoogle Scholar
  38. 38.
    Stephens DS (1989) Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays. Clin Microbiol Rev 2:(Suppl)S104–111Google Scholar
  39. 39.
    Talamas-Rohana P, Wright SD, Lennartz MR, Russell DG (1990) Lipophosphoglycan from Leishmania mexicana promastigotes binds to members of the CR3, p150,95 and LFA-1 family of leukocyte integrins J Immunol 144:4817–4824Google Scholar
  40. 40.
    Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV (2002) Bacterial adhesion to target cells enhanced by shear force. Cell 109:913–923CrossRefGoogle Scholar
  41. 41.
    Ukkonen P, Varis K, Jernfors M, Herva E, Jokinen J, Ruokokoski E . et al. (2000) Treatment of acute otitis media with an antiadhesive oligosaccharide: a randomised, double-blind, placebo-controlled trial. Lancet 356:1398–1402CrossRefGoogle Scholar
  42. 42.
    Unkmeir A, Latsch K, Dietrich G, Wintermeyer E, Schinke B, Schwender S . et al. (2002) Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells Mol Microbiol 46:933–946CrossRefGoogle Scholar
  43. 43.
    van Alphen L, Jansen HM, Dankert J (1995) Virulence factors in the colonization and persistence of bacteria in the airways. Am J Respir Crit Care Med 151:2094–2099Google Scholar
  44. 44.
    Vandeputte-Rutten L, Bos MP, Tommassen J, Gros P (2003) Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential. J Biol Chem 278:24825–24830CrossRefGoogle Scholar
  45. 45.
    Villullas S, Hill DJ, Sessions RB, Rea J, Virji M (2007) Mutational analysis of human CEACAM1: the potential of receptor polymorphism in increasing host susceptibility to bacterial infection. Cell Microbiol 9:329–346CrossRefGoogle Scholar
  46. 46.
    Virji M, Makepeace K, Moxon ER (1994) Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol 14:173–184CrossRefGoogle Scholar
  47. 47.
    Virji M, Watt SM, Barker S, Makepeace K, Doyonnas R (1996) The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae Mol Microbiol 22:929–939CrossRefGoogle Scholar
  48. 48.
    Virji M, Makepeace K, Peak IR, Ferguson DJ, Jennings MP, Moxon ER (1995) Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol 18:741–754CrossRefGoogle Scholar
  49. 49.
    Virji M, Evans D, Hadfield A, Grunert F, Teixeira AM, Watt SM (1999) Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules Mol Microbiol 34:538–551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2008

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Medicine School of Medical SciencesUniversity of BristolUK

Personalised recommendations