Skip to main content

New Resolution Technologies Controlled by Chiral Discrimination Mechanisms

  • Chapter
  • First Online:
Novel Optical Resolution Technologies

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 269))

Abstract

It is well known that optical resolution via crystallization is still a useful and practicalmethod for obtaining enantiomerically pure compounds for both laboratory experiment and industrial production,although it is a classical technique discovered nearly 160 years ago. In particular, diastereomericsalt formation using a resolving agent (diastereomer method) has been well applied in various fieldssuch as the pharmaceutical, agrochemical, and liquid crystal industries. Despite these affluent reportedand patented examples, unfortunately no concrete theory to determine an optimum resolution condition hasbeen devised, and only empirical procedures seem to provide a unique path in process development. Inthis chapter, three novel approaches for optical resolution via diastereomeric salt formation are presented:(1) chiral purity improvement by crystal habit modification with a tailored chiral additive; (2) a newapproach for finding a suitable resolving agent based on the space filler concept; and (3) chiralitycontrol by dielectrically controlled resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACL:

α-Amino-ε-caprolactam

bisPEA:

Bis(1-phenylethyl)amine

CHEA:

1-Cyclohexylethylamine

DCR:

Dielectrically controlled resolution

de:

Diastereomeric excess

DMT:

3-(Dimethylamino)-1-(2-thienyl)propan-1-ol

E :

Resolution efficiency

ee:

Enantiomeric excess

ε:

Solvent dielectric constant

MA:

Mandelic acid

ML:

Molecular length

MMT:

3-(Methylamino)-1-(2-thienyl)propan-1-ol

MPRD:

2-Methylpyrrolidine

MTBE:

tert-Butyl methyl ether

PEA:

1-Phenylethylamine

PTE:

1-Phenyl-2-(4-methylphenyl)ethylamine

TA:

Tartaric acid

TPA:

N-Tosyl-(S)-phenylalanine

References

  1. Pasteur LM (1848) Compt Rend 26:535

    Google Scholar 

  2. Pasteur LM (1848) Ann Chim Phys 24(3):442

    Google Scholar 

  3. Rouhi AM (2003) Chem Eng News (May 5) p 46

    Google Scholar 

  4. Indinavir (2001) Merck Index 13th edn, No. 4970

    Google Scholar 

  5. Murakami H, Tobiyama T, Sakai K (1997) JP Kokai 1997-48,762

    Google Scholar 

  6. Murakami H, Satoh S, Tobiyama T, Sakai K, Nohira H (1996) EP 710,652

    Google Scholar 

  7. Murakami H, Satoh S, Tobiyama T, Sakai K, Nohira H (1996) USP 5,792,869

    Google Scholar 

  8. Murakami H, Satoh S, Tobiyama T, Sakai K, Nohira H (1996) Chem Abstr 125:87209

    Google Scholar 

  9. Sertraline (2001) Merck Index 13th edn, No. 8541

    Google Scholar 

  10. Quallich GJ (2000) USP 6,593,496

    Google Scholar 

  11. Quallich GJ (2000) Chem Abstr 34:41980

    Google Scholar 

  12. Mendelovici M, Nidam T, Pilarsky G, Gershon N (2001) USP 6,552,227

    Google Scholar 

  13. Mendelovici M, Nidam T, Pilarsky G, Gershon N (2001) Chem Abstr 135:242019

    Google Scholar 

  14. Taber PG, Pfisterer DM, Colberg JC (2004) Org Proc Res Dev 8:385

    Article  CAS  Google Scholar 

  15. Orlistat (2001) Merck Index 13th edn, No. 6935

    Google Scholar 

  16. Karpf M, Zutter U (1991) EP 443,449

    Google Scholar 

  17. Karpf M, Zutter U (1991) Chem Abstr 115:255980

    Google Scholar 

  18. Duloxetine (2001) Merck Index 13th edn, No. 3498

    Google Scholar 

  19. Berglund RA (1994) EP 650,965, USP 5,362,886, JP 1995-188,065

    Google Scholar 

  20. Berglund RA (1994) Chem Abstr 122:132965

    Google Scholar 

  21. Sakai K, Sakurai R, Yuzawa A, Kobayashi Y, Saigo K (2003) Tetrahedron Asymmetr 14:1631

    Article  CAS  Google Scholar 

  22. Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates, and resolutions. Wiley, New York, p 251

    Google Scholar 

  23. Kozma D (2002) CRC handbook of optical resolution via diastereomeric salt formation. CRC, Boca Raton

    Google Scholar 

  24. Addadi L, van Mil J, Lahav M (1981) J Am Chem Soc 103:1249

    Article  CAS  Google Scholar 

  25. Addadi L, Gati E, Lahav M (1981) J Am Chem Soc 103:1251

    Article  CAS  Google Scholar 

  26. Addadi L, Berkovitch-Yellin Z, Domb N, Gati E, Lahav M, Leiserowitz L (1982) Nature 296:21

    Article  CAS  Google Scholar 

  27. Berkovitch-Yellin Z, Addadi L, Idelson M, Leiserowitz L, Lahav M (1982) Nature 296:27

    Article  CAS  Google Scholar 

  28. Sakai K, Murakami H, Saigo K, Nohira H (1994) JP Appl 1994-1757

    Google Scholar 

  29. Sakai K, Murakami H, Saigo K, Nohira H (1994) Chem Abstr 120:298229

    Google Scholar 

  30. Murakami H, Sakai K, Tobiyama T (2000) JP Appl 2000-297,066

    Google Scholar 

  31. Murakami H, Sakai K, Tobiyama T (2000) Chem Abstr 133:296269

    Google Scholar 

  32. Orthorhombic, P212121, Z=4, a=25.581(7), b=6.867(4), c=8.348(2), V=1474.4(9), R=0.048, Rw=0.051. Analytical results were identical to data by Brianso (crystal obtained from ether/ethanol solvent system): Brianso M-C (1979) Acta Crystallogr B35:2751. Polymorphological data were also reported: P21, Z=2, Hashimoto K, Sumida Y, Terada S, Okamura K (1993) J Mass Spectrom Soc Jpn (Shitsuryo Bunseki) 41:87

    Google Scholar 

  33. Sakai K, Maekawa Y, Saigo K, Sukegawa M, Murakami H, Nohira H (1992) Bull Chem Soc Jpn 65:1747

    Article  CAS  Google Scholar 

  34. Sakai K (1999) J Org Synth Chem Jpn 57:458

    Article  CAS  Google Scholar 

  35. Sakai K, Yoshida S, Hashimoto Y, Kinbara K, Saigo K, Nohira H (1998) Enantiomer 3:23

    CAS  Google Scholar 

  36. Borghese A, Libert V, Zhang T, Charles AA (2004) Org Proc Res Dev 8:532

    Article  CAS  Google Scholar 

  37. Dyer UC, Henderson DA, Mitchell MB (1999) Org Proc Res Dev 3:161

    Article  CAS  Google Scholar 

  38. Kellogg RM, Nieuwenhuijzen JW, Pouwer K, Vries TR, Broxterman QB, Grimbergen RGP, Kaptein B, La Crois RM, de Wever E, Zwaagstra K, van der Laan AC (2003) Synthesis 10:1626

    Article  Google Scholar 

  39. Nieuwenhuijzen JW, Grimbergen RGP, Koopman C, Kellogg RM, Vries T, Pouwer K, van Echten E, Kaptein B, Hulshof LA, Broxterman QB (2002) Angew Chem Int Ed 41:4281

    Article  CAS  Google Scholar 

  40. Vries T, Wynberg H, van Echten E, Koek J, ten Hoeve W, Kellogg RM, Broxterman QB, Minnaard A, Kaptein B, van der Slues S, Hulshof LA, Kooistra J (1998) Angew Chem Int Ed 37:2349

    Article  CAS  Google Scholar 

  41. Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K (1996) Tetrahedron Asymmetr 7:1539

    Article  CAS  Google Scholar 

  42. Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K (1996) J Chem Soc Perkin Trans 2 2615

    Google Scholar 

  43. Kinbara K, Hashimoto Y, Sukegawa M, Nohira H, Saigo K (1996) J Am Chem Soc 118:3441

    Article  CAS  Google Scholar 

  44. Kinbara K, Harada Y, Saigo K (1998) Tetrahedron Asymmetr 9:2219

    Article  CAS  Google Scholar 

  45. Kinbara K, Saigo K (2003) Top Stereochem 23:207, and references therein

    Article  CAS  Google Scholar 

  46. Sakai K (2004) CSJ Chem Chem Ind (Kagaku To Kogyo) 5:507

    Google Scholar 

  47. Sakai K, Saigo K, Murakami H, Nohira H (1993) Symposium on chiral compounds, Tokyo, 22 Oct 1993

    Google Scholar 

  48. Sakai K (1994) PhD dissertation, Saitama University, Japan

    Google Scholar 

  49. Kamiya N, Yoshikawa M, Tobiyama T, Nohira H, Fujimura R (1990) JP Appl 1990-2451

    Google Scholar 

  50. Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K (1996) Tetrahedron Asymmetr 7:1539

    Article  CAS  Google Scholar 

  51. Sakai K, Hashimoto Y, Kinbara K, Saigo K, Murakami H, Nohira H (1993) Bull Chem Soc Jpn 66:3414

    Article  CAS  Google Scholar 

  52. Nohira H (1984) JP 1984-110,656

    Google Scholar 

  53. Saigo K, Kubota N, Takebayashi S, Hasegawa M (1986) Bull Chem Soc Jpn 59:931

    Article  CAS  Google Scholar 

  54. Sakai K, Nohira H, Hashimoto Y, Kinbara K, Saigo K, Murakami H (1993) Symposium on molecular chirality, 20 April 1993, Tokyo

    Google Scholar 

  55. Sakai K, Yoshida S, Hashimoto Y, Kinbara K, Saigo K, Nohira H (1998) Enantiomer 3:23

    CAS  Google Scholar 

  56. Saigo K (1985) JP Appl 1985-104,045

    Google Scholar 

  57. Nohira H, Yoshida S (1989) JP Appl 1989-308,244

    Google Scholar 

  58. Smith L (1911) J Prakt Chem 84:731

    Article  Google Scholar 

  59. Dale JA, Dull DL, Mosher HS (1969) J Org Chem 34:2543

    Article  CAS  Google Scholar 

  60. Cesario M, Guilhem J (1974) Cryst Struct Commun 127

    Google Scholar 

  61. Cesario M, Guilhem J (1974) Cryst Struct Commun 131

    Google Scholar 

  62. Sakai K, Maekawa Y, Saigo K, Sukegawa M, Murakami H, Nohira H (1992) Bull Chem Soc Jpn 65:1747

    Article  CAS  Google Scholar 

  63. Sakai K, Yoshida Y, Hishimoto Y, Kinbara K, Saigo K, Nohira H (1998) Enantiomer 3:23

    CAS  Google Scholar 

  64. Sorbera LA, Castaner RM, Castaner J (2000) Drug Future 25:907

    CAS  Google Scholar 

  65. Berglund RA (1995) EP 650,965, US 5,362,886, JP 1995-188,065

    Google Scholar 

  66. Berglund RA (1995) Chem Abstr 122:132965

    Google Scholar 

  67. Sakai K, Sakurai R, Yuzawa A, Hatahira K (2002) JP Appl 2002-289,068

    Google Scholar 

  68. Sakai K, Sakurai R, Yuzawa A, Kobayashi Y, Saigo K (2003) Tetrahedron Asymmetr 14:1631

    Article  CAS  Google Scholar 

  69. Sakai K (2003) Symposium on molecular chirality 2003, Shizuoka, Japan, 19 Oct 2003, IL-8

    Google Scholar 

  70. Sakai K (2004) Japan Process Chemistry winter symposium, Tokyo, 3 Dec 2004

    Google Scholar 

  71. Sakurai R, Yuzawa A, Murakami H, Kobayashi Y, Saigo K, Sakai K (2005) Japan Process Chemistry summer symposium 2005, Tokyo, 28 July 2005, P-45

    Google Scholar 

  72. Sakai K, Sakurai R, Yuzawa A, Hatahira K (2006) USP Appl 2006/006,3943

    Google Scholar 

  73. Sakai K, Sakurai R, Hirayma N (2006) Molecular mechanism of dielectrically controlled resolution (DCR) (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  74. Sakai K (2003) Symposium on molecular chirality, Shizuoka, Japan, 10 Oct 2003, IL-8

    Google Scholar 

  75. Sakurai R, Sakai K, Yuzawa A, Hirayama N (2003) Symposium on molecular chirality, Shizuoka, Japan, 19 Oct 2003, PA-11

    Google Scholar 

  76. Sakai K, Sakurai R, Yuzawa A, Hirayama N (2003) Tetrahedron Asymmetr 14:3713

    Article  CAS  Google Scholar 

  77. Sakai K, Sakurai R, Yuzawa A, Hatahira K (2003) JP Appl 2003-338,118

    Google Scholar 

  78. Sakai K, Sakurai R, Hirayama N (2004) Tetrahedron Asymmetr 15:1073

    Article  CAS  Google Scholar 

  79. Sakai K, Sakurai R, Nohira H, Tanaka R, Hirayama N (2004) Tetrahedron Asymmetr 15:3495

    Article  CAS  Google Scholar 

  80. Sakurai R, Yuzawa A, Sakai K, Hirayama N (2006) Cryst Growth Des 6:1606

    Article  CAS  Google Scholar 

  81. Sakai K, Yokoyama M, Sakurai R, Hirayama N (2006) Tetrahedron Asymmetr 17:1541

    Article  CAS  Google Scholar 

  82. Sakai K, Sakurai R, Hirayama N (2006) Tetrahedron Asymmetr 17:1812

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Sakai .

Editor information

Kenichi Sakai Noriaki Hirayama Rui Tamura

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sakai, K., Sakurai, R., Nohira, H. (2006). New Resolution Technologies Controlled by Chiral Discrimination Mechanisms. In: Sakai, K., Hirayama, N., Tamura, R. (eds) Novel Optical Resolution Technologies. Topics in Current Chemistry, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2006_097

Download citation

Publish with us

Policies and ethics