Skip to main content

QM/MM Methods for Biological Systems

  • Chapter
  • First Online:
Atomistic Approaches in Modern Biology

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 268))

Abstract

Thirty years after the seminal contribution by Warshel and Levitt, we review the state of the art of combined quantum-mechanics/molecular-mechanics (QM/MM) methods, with a focus on biomolecular systems. We provide a detailed overview of the methodology of QM/MM calculations and their use within optimization and simulation schemes. A tabular survey of recent applications, mostly to enzymatic reactions, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADMP:

Atom-centred density-matrix propagation

BFGS:

Broyden–Fletcher–Goldfarb–Shanno (Hessean update algorithm in minimizations)

CASSCF:

Complete active space self-consistent field

CCSD:

Coupled-cluster theory including single and double excitations

COSMO:

Conductor-like screening model

CP-MD:

Car–Parrinello molecular dynamics

DFT:

Density-functional theory

DO:

Drude oscillator

DTSS:

Differential transition-state stabilization

EC:

Enzyme class

ECP:

Effective core potential

EFP:

Effective fragment potential

EGP:

Effective group potential

ELMO:

Extremely localized molecular orbital

ESP:

Electrostatic potential

EVB:

Empirical valence bond

FEP:

Free-energy perturbation

FQ:

Fluctuating charge

GHO:

Generalized hybrid orbital

GSBP:

Generalized solvent boundary potential

HDLC:

Hybrid delocalized coordinates

HF:

Hartree–Fock

IMOMM:

Integrated molecular orbital/molecular mechanics

KIE:

Kinetic isotope effect

L-BFGS:

Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm

LBHB:

Low-barrier hydrogen bond

LSCF:

Local self-consistent field

MC:

Monte Carlo

MC-VEEP:

Multicentred valence-electron effective potential

MD:

Molecular dynamics

MM:

Molecular mechanics

MECP:

Minimum-energy crossing point

MEP:

Minimum-energy path

MP2:

Second-order Møller–Plesset perturbation theory

NAC:

Near-attack configuration

NEB:

Nudged elastic band

OECP:

Optimized effective core potentials

ONIOM:

Our N-layered integrated molecular orbital/molecular mechanics

PBC:

Periodic boundary conditions

PES:

Potential-energy surface

PPD:

Polarized point dipole

P-RFO:

Partial rational-function optimizer

QCP:

Quantum capping potentials

QTCP:

Quantum-mechanical thermodynamic-cycle perturbation

QM:

Quantum mechanics

QM/MM:

Combined quantum mechanics/molecular mechanics

SCC-DFTB:

Self-consistent-charge density-functional tight-binding

RFO:

Rational-function optimizer

SCF:

Self-consistent field

SLBO:

Strictly localized bond orbital

SMD:

Steered molecular dynamics

VEP:

Variational electrostatic projection

TDDFT:

Time-dependent density-functional theory

TDHF:

Time-dependent Hartree–Fock

TI:

Thermodynamic integration

TPS:

Transition-path sampling

TS:

Transition state

US:

Umbrella sampling

VTST:

Variational transition-state theory

ZPE:

Zero-point energy

References

  1. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  Google Scholar 

  2. Warshel A, Karplus M (1972) Calculation of ground and excited state potential surfaces of conjugated molecules I: formulation and parametrization. J Am Chem Soc 94(16):5612–5625

    Article  CAS  Google Scholar 

  3. Singh UC, Kollman PA (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7(6):718–30

    Article  CAS  Google Scholar 

  4. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11(6):700–33

    Article  CAS  Google Scholar 

  5. Gao J (1996) Methods and applications of combined quantum mechanical and molecular mechanical potentials. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 7. VCH, New York, pp 119–185

    Google Scholar 

  6. Gao J (1996) Hybrid quantum mechanical/molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc Chem Res 29(6):298–305

    Article  CAS  Google Scholar 

  7. Cunningham MA, Bash PA (1997) Computational enzymology. Biochimie 79(11):687–689

    Article  CAS  Google Scholar 

  8. Gao J, Thompson MA (eds) (1998) Combined quantum mechanical and molecular mechanical methods. ACS symposium series, vol 712. American Chemical Society, Washington, DC

    Google Scholar 

  9. Merz KM Jr (1998) Quantum mechanical-molecular mechanical coupled potentials. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS symposium series, vol 712. American Chemical Society, Washington, DC, pp 2–15

    Google Scholar 

  10. Gao J (1998) Hybrid quantum mechanical/molecular mechanical (QM/MM) methods. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1257–1263

    Google Scholar 

  11. Amara P, Field MJ (1998) Combined quantum mechanical and molecular mechanical potentials. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 431–437

    Google Scholar 

  12. Ruiz-López MF, Rivail JL (1998) Combined quantum mechanics and molecular mechanics approaches to chemical and biochemical reactivity. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 437–448

    Google Scholar 

  13. Merz KM Jr, Stanton RV (1998) Quantum mechanical/molecular mechanical (QM/MM) coupled potentials. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 4. Wiley, Chichester, pp 2330–2343

    Google Scholar 

  14. Friesner RA, Beachy MD (1998) Quantum mechanical calculations on biological systems. Curr Opin Struct Biol 8(2):257–262

    Article  CAS  Google Scholar 

  15. Beck B, Clark T (1998) Some biological applications of semiempirical MO theory. Perspect Drug Disc Des 9–11:131–159

    Article  Google Scholar 

  16. Mordasini T, Thiel W (1998) Combined quantum mechanical and molecular approaches. Chimia 52(6):288–291

    CAS  Google Scholar 

  17. Monard G, Merz KM Jr (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32(10):904–911

    Article  CAS  Google Scholar 

  18. Hillier IH (1999) Chemical reactivity studied by hybrid QM/MM methods. THEOCHEM 463(1–2):45–52

    Article  CAS  Google Scholar 

  19. Amara P, Field MJ (1999) Hybrid potentials for large molecular systems. In: Leszczynski J (ed) Computational molecular biology. Theoretical and computational chemistry, vol 8. Elsevier, Amsterdam

    Google Scholar 

  20. Bruice TC, Kahn K (2000) Computational enzymology. Curr Opin Chem Biol 4:540–544

    Article  CAS  Google Scholar 

  21. Sherwood P (2000) Hybrid quantum mechanics/molecular mechanics approaches. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry. NIC Series, vol 1. John von Neumann Institute for Computing, Jülich, pp 257–277

    Google Scholar 

  22. Lyne PD, Walsh OA (2001) Computer simulation of biochemical reactions with QM-MM methods. In: Becker OM, Watanabe M (eds) Computational biochemistry and biophysics. Dekker, New York, pp 221–236

    Google Scholar 

  23. Mulholland AJ (2001) The QM/MM approach to enzymatic reactions. In: Eriksson LA (ed) Theoretical biochemistry: processes and properties of biological systems. Theoretical and computational chemistry, vol 9. Elsevier, Amsterdam, pp 597–653

    Google Scholar 

  24. Field MJ (2002) Simulating enzyme reactions: Challenges and perspectives. J Comput Chem 23(1):48–58

    Article  CAS  Google Scholar 

  25. Gogonea V (2002) The QM/MM method. An overview. Internet Electron J Mol Des 1(4):173–184

    CAS  Google Scholar 

  26. Castillo R, Oliva M, Martí S, Moliner V, Tuñón I, and Andrés J (2002) Hybrid QM/MM studies on chemical reactivity. Recent Res Dev Quantum Chem 3:51–74

    CAS  Google Scholar 

  27. Monard G, Prat-Resina X, González-Lafont A, Lluch JM (2003) Determination of enzymatic reaction pathways using QM/MM methods. Int J Quant Chem 93(3):229–244

    Article  CAS  Google Scholar 

  28. Ridder L, Mulholland AJ (2003) Modeling biotransformation reactions by combined quantum mechanical/molecular mechanical approaches: from structure to activity. Curr Top Med Chem 3(11):1241–1256

    Article  CAS  Google Scholar 

  29. Náray-Szabó G, Berente I (2003) Computer modelling of enzyme reactions. THEOCHEM 666–667:637–644

    Article  CAS  Google Scholar 

  30. Ryde U (2003) Combined quantum and molecular mechanics calculations on metalloproteins. Curr Opin Chem Biol 7(1):136–142

    Article  CAS  Google Scholar 

  31. Peräkylä M (2003) Ab initio methods in the study of reaction mechanisms – their role and perspectives in medicinal chemistry. In: Carloni P, Alber F (eds) Quantum medicinal chemistry. Methods and principles in medicinal chemistry, vol 17. Wiley, Weinheim, pp 157–176

    Google Scholar 

  32. Perruccio F, Ridder L, Mulholland AJ (2003) Quantum-mechanical/molecular-mechanical methods in medicinal chemistry. In: Carloni P, Alber F (eds) Quantum medicinal chemistry. methods and principles in medicinal chemistry, vol 17. Wiley, Weinheim, pp 177–198

    Chapter  Google Scholar 

  33. Rivail JL (2004) Hybrid quantum mechanical/molecular mechanical methods. In: Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) Computational medicinal chemistry for drug discovery. Dekker, New York, pp 119–131

    Google Scholar 

  34. Friesner RA (2004) Combined quantum and molecular mechanics (QM/MM). Drug Discovery Today: Technol 1(3):253–260

    Article  CAS  Google Scholar 

  35. Mulholland AJ (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discovery Today 10(20):1393–1402

    Article  CAS  Google Scholar 

  36. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  37. Lin H, Truhlar DG (2006) QM/MM: What have we learned, where are we, and where do we go from here? Theor Chem Acc, Online first, 8 July 2006

    Google Scholar 

  38. Maple JR (1998) Force Fields: A general discussion. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1015–1024

    Google Scholar 

  39. MacKerell AD Jr (2001) Atomistic models and force fields. In: Becker OM, MacKerell AD Jr, Roux B, Watanabe M (eds) Computational biochemistry and biophysics. Dekker, New York, pp 7–38

    Google Scholar 

  40. Ponder JW, Case DA (2003) Force fields for protein simulations. In: Daggett V (ed) Protein simulations. Advances in protein chemistry, vol 66. Academic Press, San Diego, pp 27–85

    Google Scholar 

  41. Liljefors T, Gundertofte K, Norrby P-O, Pettersson I (2004) Molecular mechanics and comparison of force fields. In: Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) Computational medicinal chemistry for drug discovery. Dekker, New York, p 1–28

    Google Scholar 

  42. MacKerell AD Jr (2004) Empirical force fields for biological macromolecules: Overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  Google Scholar 

  43. Maseras F, Morokuma K (1995) IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16(9):1170–1179

    Article  CAS  Google Scholar 

  44. Humbel S, Sieber S, Morokuma K (1996) The IMOMO method: Integration of different levels of molecular orbital approximations for geometry optimization of large systems: Test for n-butane conformation and SN2 reaction: RCl + Cl. J Chem Phys 105(5):1959–1967

    Article  CAS  Google Scholar 

  45. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) ONIOM: A multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels–Alder reactions and Pt(P(t-Bu)3)2+H2 oxidative addition. J Phys Chem 100(50):19357–19363

    Article  CAS  Google Scholar 

  46. Froese RDJ, Morokuma K (1998) Hybrid methods. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1244–1257

    Google Scholar 

  47. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. THEOCHEM 461–462:1–21

    Article  Google Scholar 

  48. Komáromi I, Muszbek L (2002) Application of the IMOMM (integrated molecular orbital molecular mechanics) method for biopolymers. In: Buzaneva E, Scharff P (eds) Frontiers of multifunctional nanosystems. NATO science series II: Mathematics, physics and chemistry, vol 57. Kluwer, Dordrecht, pp 17–28

    Google Scholar 

  49. Vreven T, Morokuma K (2003) Investigation of the S0 → S1 excitation in bacteriorhodopsin with the ONIOM(MO:MM) hybrid method. Theor Chem Acc 109(3):125–132

    CAS  Google Scholar 

  50. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery JA Jr, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2(3):815–826

    Article  CAS  Google Scholar 

  51. Bakowies D, Thiel W (1996) Hybrid models for combined quantum mechanical and molecular mechanical approaches. J Phys Chem 100(25):10580–10594

    Article  CAS  Google Scholar 

  52. Antes I, Thiel W (1998) On the treatment of link atoms in hybrid methods. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS Symposium Series, vol 712. American Chemical Society, Washington, DC, pp 50–65

    Google Scholar 

  53. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 18. Wiley, Hoboken, NJ, pp 89–146

    Chapter  Google Scholar 

  54. Yu H, van Gunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172(2):69–85

    Article  CAS  Google Scholar 

  55. Stern HA, Rittner F, Berne BJ, Friesner RA (2001) Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function. J Chem Phys 115(5):2237–2251

    Article  CAS  Google Scholar 

  56. Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947

    Article  CAS  Google Scholar 

  57. Grossfield A, Ren P, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125(50):15671–15682

    Article  CAS  Google Scholar 

  58. Lamoureux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm. J Chem Phys 119(6):3025–3039

    Article  CAS  Google Scholar 

  59. Lamoureux G, MacKerell AD Jr, Roux B (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119(10):5185–5197

    Article  CAS  Google Scholar 

  60. Yu H, Hansson T, van Gunsteren WF (2003) Development of a simple, self-consistent polarizable model for liquid water. J Chem Phys 118(1):221–234

    Article  CAS  Google Scholar 

  61. Yu H, van Gunsteren WF (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J Chem Phys 121(19):9549–9564

    Article  CAS  Google Scholar 

  62. Patel S, Brooks CL III (2004) CHARMM fluctuating charge force field for proteins: I Parameterization and application to bulk organic liquid simulations. J Comput Chem 25(1):1–16

    Article  CAS  Google Scholar 

  63. Patel S, MacKerell AD Jr, Brooks CL III (2004) CHARMM fluctuating charge force field for proteins: II Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25(12):1504–1514

    Article  CAS  Google Scholar 

  64. Vorobyov IV, Anisimov VM, MacKerell AD Jr (2005) Polarizable empirical force field for alkanes based on the classical Drude oscillator model. J Phys Chem B 109(40):18988–18999

    Article  CAS  Google Scholar 

  65. Anisimov VM, Lamoureux G, Vorobyov IV, Huang N, Roux B, MacKerell AD Jr (2005) Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J Chem Theory Comput 1(1):153–168

    Article  CAS  Google Scholar 

  66. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  67. Cieplak P, Caldwell J, Kollman PA (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J Comput Chem 22(10):1048–1057

    Article  CAS  Google Scholar 

  68. Wang Z-X, Zhang W, Wu C, Lei H, Cieplak P, Duan Y (2006) Strike a balance: optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J Comput Chem 27(6):781–790

    Article  CAS  Google Scholar 

  69. Banks JL, Kaminski GA, Zhou R, Mainz DT, Berne BJ, Friesner RA (1999) Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J Chem Phys 110:741–754

    Article  CAS  Google Scholar 

  70. Stern HA, Kaminski GA, Banks JL, Zhou R, Berne BJ, Friesner RA (1999) Fluctuating charge, polarizable dipole, and combined models: parameterization from ab initio quantum chemistry. J Phys Chem B 103(22):4730–4737

    Article  CAS  Google Scholar 

  71. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX, Murphy RB, Zhou R, Halgren TA (2002) Development of a polarizable force field for proteins via ab initio quantum chemistry: First generation model and gas phase tests. J Comput Chem 23(16):1515–1531

    Article  CAS  Google Scholar 

  72. Kaminski GA, Stern HA, Berne BJ, Friesner RA (2004) Development of an accurate and robust polarizable molecular mechanics force field from ab initio quantum chemistry. J Phys Chem A 108(4):621–627

    Article  CAS  Google Scholar 

  73. Ren P, Ponder JW (2002) Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J Comput Chem 23(16):1497–1506

    Article  CAS  Google Scholar 

  74. Thompson MA, Schenter GK (1995) Excited states of the bacteriochlorophyll b dimer of Rhodopseudomonas viridis: a QM/MM study of the photosynthetic reaction center that includes MM polarization. J Phys Chem 99(17):6374–86

    Article  CAS  Google Scholar 

  75. Gao J (1997) Energy components of aqueous solution: insight from hybrid QM/MM simulations using a polarizable solvent model. J Comput Chem 18(8):1061–1071

    Article  CAS  Google Scholar 

  76. Bryce RA, Vincent MV, Malcolm NOJ, Hillier IH, Burton NA (1998) Cooperative effects in the structuring of fluoride water clusters: ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent. J Chem Phys 109:3077–3085

    Article  CAS  Google Scholar 

  77. Jensen L, van Duijnen PT, Snijders JG (2003) A discrete solvent reaction field model within density functional theory. J Chem Phys 118(2):514–521

    Article  CAS  Google Scholar 

  78. Nam K, Gao J, York DM (2005) An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations. J Chem Theory Comput 1(1):2–13

    Article  CAS  Google Scholar 

  79. Riccardi D, Schaefer P, Cui Q (2005) pK a calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols. J Phys Chem B 109(37):17715–17733

    Article  CAS  Google Scholar 

  80. Schaefer P, Riccardi D, Cui Q (2005) Reliable treatment of electrostatics in combined QM/MM simulation of macromolecules. J Chem Phys 123(1):014905/1–14

    Article  CAS  Google Scholar 

  81. Dinner AR, Lopez X, Karplus M (2003) A charge-scaling method to treat solvent in QM/MM simulations. Theor Chem Acc 109(3):118–124

    CAS  Google Scholar 

  82. Gregersen BA, York DM (2005) Variational electrostatic projection (VEP) methods for efficient modeling of the macromolecular electrostatic and solvation environment in activated dynamics simulations. J Phys Chem B 109(1):536–556

    Article  CAS  Google Scholar 

  83. Gregersen BA, York DM (2006) A charge-scaling implementation of the variational electrostatic projection method. J Comput Chem 27(1):103–115

    Article  CAS  Google Scholar 

  84. Berkowitz M, McCammon JA (1982) Molecular dynamics with stochastic boundary conditions. Chem Phys Lett 90:215–217

    Article  CAS  Google Scholar 

  85. Brünger A, Brooks CL III, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105(5):495–500

    Article  Google Scholar 

  86. Brooks CL III, Brünger A, Karplus M (1985) Active site dynamics in protein molecules: a stochastic boundary molecular-dynamics approach. Biopolymers 24:843–865

    Article  CAS  Google Scholar 

  87. Brooks CL III, Karplus M (1989) Solvent effects on protein motion and protein effects on solvent motion: dynamics of the active site region of lysozyme. J Mol Biol 208:159–181

    Article  CAS  Google Scholar 

  88. King G, Warshel A (1989) A surface constrained all-atom solvent model for effective simulations of polar solutions. J Chem Phys 91(6):3647–3661

    Article  CAS  Google Scholar 

  89. Beglov D, Roux B (1994) Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys 100:9050–9063

    Article  CAS  Google Scholar 

  90. Im W, Bernèche S, Roux B (2001) Generalized solvent boundary potential for computer simulations. J Chem Phys 114(7):2924–2937

    Article  CAS  Google Scholar 

  91. König PH, Ghosh N, Hoffmann M, Elstner M, Tajkhorshid E, Frauenheim T, Cui Q (2006) Toward theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. J Phys Chem A 110(2):548–563

    Article  CAS  Google Scholar 

  92. Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, König P, Li G, Xu D, Guo H, Elstner M, Cui Q (2006) Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. J Phys Chem B 110(13):6458–6469

    Article  CAS  Google Scholar 

  93. Murphy RB, Philipp DM, Friesner RA (2000) A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments. J Comput Chem 21(16):1442–1457

    Article  CAS  Google Scholar 

  94. Freindorf M, Shao Y, Furlani TR, Kong J (2005) Lennard–Jones parameters for the combined QM/MM method using the B3LYP/6-31+G/AMBER potential. J Comput Chem 26(12):1270–1278

    Article  CAS  Google Scholar 

  95. Riccardi D, Li G, Cui Q (2004) Importance of van der Waals interactions in QM/MM simulations. J Phys Chem B 108(20):6467–6478

    Article  CAS  Google Scholar 

  96. Eurenius KP, Chatfield DC, Brooks BR, Hodoscek M (1996) Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. I. Theoretical considerations. Int J Quant Chem 60(6):1189–1200

    Article  CAS  Google Scholar 

  97. Koga N, Morokuma K (1990) A simple scheme of estimating substitution or substituent effects in the ab initio MO method based on the shift operator. Chem Phys Lett 172(3–4):243–248

    Article  CAS  Google Scholar 

  98. Matsubara T, Maseras F, Koga N, Morokuma K (1996) Application of the new “integrated MO + MM” (IMOMM) method to the organometallic reaction Pt(PR3)2 + H2 (R = H, Me, t-Bu, and Ph). J Phys Chem 100(7):2573–2580

    Article  CAS  Google Scholar 

  99. Senn HM (2001) Transition-metal-catalysed hydroamination of alkenes: ab initio molecular-dynamics studies. PhD Thesis, Diss ETH no 13972. ETH Zürich, Zürich

    Google Scholar 

  100. Eichler U, Kölmel CM, Sauer J (1997) Combining ab initio techniques with analytical potential functions for structure predictions of large systems: method and application to crystalline silica polymorphs. J Comput Chem 18(4):463–477

    Article  CAS  Google Scholar 

  101. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) A hybrid method for solutes in complex solvents: density functional theory combined with empirical force fields. J Chem Phys 110(21):10452–10467

    Article  CAS  Google Scholar 

  102. Lyne PD, Hodoscek M, Karplus M (1999) A hybrid QM–MM potential employing Hartree–Fock or density functional methods in the quantum region. J Phys Chem A 103(18):3462–3471

    Article  CAS  Google Scholar 

  103. de Vries AH, Sherwood P, Collins SJ, Rigby AM, Rigutto M, Kramer GJ (1999) Zeolite structure and reactivity by combined quantum-chemical–classical calculations. J Phys Chem B 103(29):6133–6141

    Article  CAS  Google Scholar 

  104. Field MJ, Albe M, Bret C, Proust-De Martin F, Thomas A (2000) The Dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem 21(12):1088–1100

    Article  CAS  Google Scholar 

  105. Woo TK, Cavallo L, Ziegler T (1998) Implementation of the IMOMM methodology for performing combined QM/MM molecular dynamic simulations and frequency calculations. Theor Chem Acc 100(5–6):307–313

    CAS  Google Scholar 

  106. Swart M (2003) AddRemove: a new link model for use in QM/MM studies. Int J Quant Chem 91(2):177–183

    Article  CAS  Google Scholar 

  107. Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodošček M, Brooks BR (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 117(23):10534–10547

    Article  CAS  Google Scholar 

  108. Ferré N, Olivucci M (2003) The amide bond: pitfalls and drawbacks of the link atom scheme. THEOCHEM 632:71–82

    Article  CAS  Google Scholar 

  109. Reuter N, Dejaegere A, Maigret B, Karplus M (2000) Frontier bonds in QM/MM methods: a comparison of different approaches. J Phys Chem A 104(8):1720–1735

    Article  CAS  Google Scholar 

  110. Waszkowycz B, Hillier IH, Gensmantel N, Payling DW (1990) A theoretical study of the hydrolysis by phospholipase A2: the catalytic role of the active site and substrate specificity. J Chem Soc Perkin Trans 2 (7):1259–1268

    Google Scholar 

  111. Waszkowycz B, Hillier IH, Gensmantel N, Payling DW (1991) A combined quantum mechanical/molecular mechanical model of the potential energy surface of ester hydrolysis by the enzyme phospholipase A2. J Chem Soc, Perkin Trans 2 (2):225–231

    Google Scholar 

  112. Waszkowycz B, Hillier IH, Gensmantel N, Payling DW (1991) A quantum mechanical/molecular mechanical model of the inhibition of the enzyme phospholipase A2. J Chem Soc, Perkin Trans 2 (11):1819–1832

    Google Scholar 

  113. Vasilyevy VV (1994) Tetrahedral intermediate formation in the acylation step of acetylcholinesterases. A combined quantum chemical and molecular mechanical model. THEOCHEM 110(2):129–41

    Article  Google Scholar 

  114. Lin H, Truhlar DG (2005) Redistributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109(17):3991–4004

    Article  CAS  Google Scholar 

  115. König PH, Hoffmann M, Frauenheim T, Cui Q (2005) A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method. J Phys Chem B 109(18):9082–9095

    Article  CAS  Google Scholar 

  116. Sherwood P, de Vries AH, Collins SJ, Greatbanks SP, Burton NA, Vincent MV, Hillier IH (1997) Computer simulation of zeolite structure and reactivity using embedded cluster methods. Faraday Discuss 106:79–92

    Article  CAS  Google Scholar 

  117. Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA, French SA, Sokol AA, Bromley ST, Thiel W, Turner AJ, Billeter S, Terstegen F, Thiel S, Kendrick J, Rogers SC, Casci J, Watson M, King F, Karlsen E, Sjøvoll M, Fahmi A, Schäfer A, Lennartz C (2003) QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. THEOCHEM 632(1–3):1–28

    Article  CAS  Google Scholar 

  118. Amara P, Field MJ (2003) Evaluation of an ab initio quantum mechanical/molecular mechanical hybrid-potential link-atom method. Theor Chem Acc 109(1):43–52

    CAS  Google Scholar 

  119. CPMD, v. 3.9, IBM Corp., 1990–2001, MPI für Festkörperforschung, Stuttgart, 1997–2004. http://www.cpmd.org/

  120. Antes I, Thiel W (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 103:9290–9295

    Article  CAS  Google Scholar 

  121. Zhang Y, Lee T-S, Yang W (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110(1):46–54

    Article  CAS  Google Scholar 

  122. Zhang Y (2005) Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. J Chem Phys 122(2):024114/1–7

    Article  CAS  Google Scholar 

  123. Alary F, Poteau R, Heully J-L, Barthelat J-L, Daudey J-P (2000) A new method for modelling spectator chemical groups in ab initio calculations: effective group potentials. Theor Chem Acc 104(3–4):174–178

    CAS  Google Scholar 

  124. Poteau R, Ortega I, Alary F, Solis AR, Barthelat J-C, Daudey J-P (2001) Effective group potentials. 1. Method. J Phys Chem A 105(1):198–205

    Article  CAS  Google Scholar 

  125. Poteau R, Alary F, El Makarim HA, Heully J-L, Barthelat J-C, Daudey J-P (2001) Effective group potentials. 2. Extraction and transferability for chemical groups involved in covalent or donor–acceptor bonds. J Phys Chem A 105(1):206–214

    Article  CAS  Google Scholar 

  126. Bessac F, Alary F, Carissan Y, Heully J-L, Daudey J-P, Poteau R (2003) Effective group potentials: a powerful tool for hybrid QM/MM methods? THEOCHEM 632(1–3):43–59

    Article  CAS  Google Scholar 

  127. Carissan Y, Bessac F, Alary F, Heully J-L, Poteau R (2006) What can we do with an effective group potential? Int J Quant Chem 106(3):727–733

    Article  CAS  Google Scholar 

  128. DiLabio GA, Hurley MM, Christiansen PA (2002) Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J Chem Phys 116(22):9578–9584

    Article  CAS  Google Scholar 

  129. DiLabio GA, Wolkow RA, Johnson ER (2005) Efficient silicon surface and cluster modeling using quantum capping potentials. J Chem Phys 122(4):044708/1–5

    Article  CAS  Google Scholar 

  130. Yasuda K, Yamaki D (2004) Simple minimum principle to derive a quantum-mechanical/molecular-mechanical method. J Chem Phys 121(9):3964–3972

    Article  CAS  Google Scholar 

  131. Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2005) Variational optimization of effective atom centered potentials for molecular properties. J Chem Phys 122(1):014113/1–6

    Article  CAS  Google Scholar 

  132. Laio A, VandeVondele J, Rothlisberger U (2002) A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations. J Chem Phys 116(16):6941–6947

    Article  CAS  Google Scholar 

  133. Slavíček P, Martínez TJ (2006) Multicentered valence electron effective potentials: A solution to the link atom problem for ground and excited electronic states. J Chem Phys 124(8):084107/1–10

    Article  CAS  Google Scholar 

  134. Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J Comput Chem 15(3):269–282

    Article  Google Scholar 

  135. Monard G, Loos M, Théry V, Baka K, Rivail J-L (1996) Hybrid classical quantum force field for modeling very large molecules. Int J Quant Chem 58(2):153–159

    Article  CAS  Google Scholar 

  136. Assfeld X, Rivail J-L (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100–106

    Article  CAS  Google Scholar 

  137. Assfeld X, Ferré N, Rivail JL (1998) The local self-consistent field: principles and applications to combined quantum mechanical–molecular mechanical computations on biomacromolecular systems. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS symposium series, vol 712. American Chemical Society, Washington, DC, pp 234–249

    Google Scholar 

  138. Ferré N, Assfeld X, Rivail J-L (2002) Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 23(6):610–624

    Article  CAS  Google Scholar 

  139. Hall RJ, Hindle SA, Burton NA, Hillier IH (2000) Aspects of hybrid QM/MM calculations: the treatment of the QM/MM interface region and geometry optimization with an application to chorismate mutase. J Comput Chem 21(16):1433–1441

    Article  CAS  Google Scholar 

  140. Nicoll RM, Hindle SA, MacKenzie G, Hillier IH, Burton NA (2001) Quantum mechanical/molecular mechanical methods and the study of kinetic isotope effects: modelling the covalent junction region and application to the enzyme xylose isomerase. Theor Chem Acc 106(1–2):105–112

    CAS  Google Scholar 

  141. Fornili A, Sironi M, Raimondi M (2003) Determination of extremely localized molecular orbitals and their application to quantum mechanics/molecular mechanics methods and to the study of intramolecular hydrogen bonding. THEOCHEM 632(1–3):157–172

    Article  CAS  Google Scholar 

  142. Fornili A, Moreau Y, Sironi M, Assfeld X (2006) On the suitability of strictly localized orbitals for hybrid QM/MM calculations. J Comput Chem 27(4):515–523

    Article  CAS  Google Scholar 

  143. Philipp DM, Friesner RA (1999) Mixed ab initio QM/MM modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide. J Comput Chem 20(14):1468–1494

    Article  CAS  Google Scholar 

  144. Murphy RB, Philipp DM, Friesner RA (2000) Frozen orbital QM/MM methods for density functional theory. Chem Phys Lett 321(1–2):113–120

    Article  CAS  Google Scholar 

  145. Gao J, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102(24):4714–4721

    Article  CAS  Google Scholar 

  146. Amara P, Field MJ, Alhambra C, Gao J (2000) The generalized hybrid orbital method for combined quantum mechanical/molecular mechanical calculations: formulation and tests of the analytical derivatives. Theor Chem Acc 104(5):336–343

    CAS  Google Scholar 

  147. Garcia-Viloca M, Gao J (2004) Generalized hybrid orbital for the treatment of boundary atoms in combined quantum mechanical and molecular mechanical calculations using the semiempirical parameterized model 3 method. Theor Chem Acc 111(2–6):280–286

    CAS  Google Scholar 

  148. Pu J, Gao J, Truhlar DG (2004) Generalized hybrid orbital (GHO) method for combining ab initio Hartree–Fock wave functions with molecular mechanics. J Phys Chem A 108(4):632–650

    Article  CAS  Google Scholar 

  149. Pu J, Gao J, Truhlar DG (2004) Combining self-consistent-charge density-functional tight-binding (SCC-DFTB) with molecular mechanics by the generalized hybrid orbital (GHO) method. J Phys Chem A 108(25):5454–5463

    Article  CAS  Google Scholar 

  150. Pu J, Gao J, Truhlar DG (2005) Generalized hybrid-orbital method for combining density functional theory with molecular mechanicals. Chem Phys Chem 6(9):1853–1865

    CAS  Google Scholar 

  151. Lennartz C, Schäfer A, Terstegen F, Thiel W (2002) Enzymatic reactions of triosephosphate isomerase: a theoretical calibration study. J Phys Chem B 106(7):1758–1767

    Article  CAS  Google Scholar 

  152. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105(2):569–585

    Article  CAS  Google Scholar 

  153. Elstner M, Frauenheim T, Suhai S (2003) An approximate DFT method for QM/MM simulations of biological structures and processes. THEOCHEM 632(1–3):29–41

    Article  CAS  Google Scholar 

  154. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268

    Article  CAS  Google Scholar 

  155. Schütz M, Hetzer G, Werner H-J (1999) Low-order scaling local electron correlation methods. I. Linear scaling local MP2. J Chem Phys 111(13):5691–5705

    Article  Google Scholar 

  156. Schütz M, Werner H-J (2000) Local perturbative triples correction (T) with linear cost scaling. Chem Phys Lett 318(4–5):370–378

    Article  Google Scholar 

  157. Schütz M (2000) Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T). J Chem Phys 113(22):9986–10001

    Article  Google Scholar 

  158. Schütz M, Werner H-J (2001) Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD). J Chem Phys 114(2):661–681

    Article  Google Scholar 

  159. Schütz M (2002) Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b. J Chem Phys 116(20):8772–8785

    Article  CAS  Google Scholar 

  160. Schütz M, Manby FR (2003) Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals. Phys Chem Chem Phys 5(16):3349–3358

    Article  CAS  Google Scholar 

  161. Werner H-J, Manby FR, Knowles PJ (2003) Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. J Chem Phys 118(18):8149–8160

    Article  CAS  Google Scholar 

  162. Werner H-J, Manby FR (2006) Explicitly correlated second-order perturbation theory using density fitting and local approximations. J Chem Phys 124(5):054114/1–12

    Article  CAS  Google Scholar 

  163. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  164. Marx D, Hutter J (2000) Ab initio molecular dynamics: Theory and implementation. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry. NIC Series, vol 1. John von Neumann Institute of Computing, Jülich, pp 301–449, http://www.fz-juelich.de/nic-series/Volume3/marx.pdf

  165. Woo TK, Blöchl PE, Ziegler T (2000) Towards solvation simulations with a combined ab initio molecular dynamics and molecular mechanics approach. THEOCHEM 506(1–3):313–334

    Article  CAS  Google Scholar 

  166. Blöchl PE (1995) Electrostatic decoupling of periodic images of plane-wave-expanded densities and derived atomic point charges. J Chem Phys 103:7422–7428

    Article  Google Scholar 

  167. Biswas PK, Gogonea V (2005) A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical-molecular-mechanical calculations. J Chem Phys 123:164114/1–9

    Article  CAS  Google Scholar 

  168. Laio A, VandeVondele J, Rothlisberger U (2002) D-RESP: Dynamically generated electrostatic potential derived charges from quantum mechanics/molecular mechanics simulations. J Phys Chem B 106(29):7300–7307

    Article  CAS  Google Scholar 

  169. Laio A, Gervasio FL, VandeVondele J, Sulpizi M, Rothlisberger U (2004) A variational definition of electrostatic potential derived charges. J Phys Chem B 108(23):7963–7968

    Article  CAS  Google Scholar 

  170. Laino T, Mohamed F, Laio A, Parrinello M (2005) An efficient real space multigrid QM/MM electrostatic coupling. J Chem Theory Comput 1(6):1176–1184

    Article  CAS  Google Scholar 

  171. MacKerell AD Jr (1998) Protein Force Fields. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 2191–2200

    Google Scholar 

  172. MacKerell AD Jr (2005) Empirical force fields for proteins: current status and future directions. In: Spellmeyer DC (ed) Annual reports in computational chemistry, vol 1. Elsevier, Amsterdam, pp 91–102

    Chapter  Google Scholar 

  173. Cieplak P (1998) Nucleic acid force fields. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1922–1930

    Google Scholar 

  174. Cheatham TE III (2005) Molecular modeling and atomistic simulation of nucleic acids. In: Spellmeyer DC (ed) Annual reports in computational chemistry, vol 1. Elsevier, Amsterdam, pp 75–89

    Chapter  Google Scholar 

  175. Woods RJ (1998) Carbohydrate force fields. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 220–233

    Google Scholar 

  176. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  177. Kollman P, Caldwell JW, Ross WS, Pearlman DA, Case DA, DeBolt S, Cheatham TE III, Ferguson D, Seibel G (1998) AMBER: a program for simulation of biological and organic molecules. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 11–13

    Google Scholar 

  178. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  179. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  180. MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: The energy function and its parameterization with an overview of the program. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 1. Wiley, Chichester, pp 271–277

    Google Scholar 

  181. Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21(2):86–104

    Article  CAS  Google Scholar 

  182. MacKerell AD Jr, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21(2):105–120

    Article  CAS  Google Scholar 

  183. van Gunsteren WF, Daura X, Mark AE (1998) GROMOS force field. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1211–1216

    Google Scholar 

  184. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103(19):3596–3607

    Article  CAS  Google Scholar 

  185. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  186. Jorgensen WL (1998) OPLS force fields. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 1986–1989

    Google Scholar 

  187. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  188. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics: The MM3 force-field for hydrocarbons. 1. J Am Chem Soc 111(23):8551–8566

    Article  CAS  Google Scholar 

  189. Lii JH, Allinger NL (1989) Molecular mechanics. The MM3 force-field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J Am Chem Soc 111(23):8566–8575

    Article  CAS  Google Scholar 

  190. Lii JH, Allinger NL (1989) Molecular mechanics. The MM3 force-field for hydrocarbons. 3. The van der Waals potentials and crystal data for aliphatic and aromatic hydrocarbons. J Am Chem Soc 111(23):8576–8582

    Article  CAS  Google Scholar 

  191. Allinger NL, Li FB, Yan LQ (1990) Molecular mechanics: The MM3 force-field for alkenes. J Comput Chem 11(7):848–867

    Article  CAS  Google Scholar 

  192. Allinger NL, Rahman M, Lii JH (1990) A molecular mechanics force-field (MM3) for alcohols and ethers. J Am Chem Soc 112:8293–8307

    Article  CAS  Google Scholar 

  193. Lii JH, Allinger NL (1991) The MM3 force-field for amides, polypeptides and proteins. J Comput Chem 12(2):186–199

    Article  CAS  Google Scholar 

  194. Allinger NL (1998) Force Fields: MM3. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1028–1033

    Google Scholar 

  195. Allinger NL, Chen KS, Lii JH (1996) An improved force field (MM4) for saturated hydrocarbons. J Comput Chem 17(5–6):642–668

    Article  CAS  Google Scholar 

  196. Langley CH, Lii JH, Allinger NL (2001) Molecular mechanics (MM4) calculations on carbonyl compounds. I. Aldehydes. J Comput Chem 22(13):1396–1425

    Article  CAS  Google Scholar 

  197. Langley CH, Lii JH, Allinger NL (2001) Molecular mechanics calculations on carbonyl compounds. II. Open-chain ketones. J Comput Chem 22(13):1426–1450

    Article  CAS  Google Scholar 

  198. Langley CH, Lii JH, Allinger NL (2001) Molecular mechanics calculations on carbonyl compounds. III. Cycloketones. J Comput Chem 22(13):1451–1475

    Article  CAS  Google Scholar 

  199. Langley CH, Lii JH, Allinger NL (2001) Molecular mechanics calculations on carbonyl compounds. IV. Heats of formation. J Comput Chem 22(13):1476–1483

    Article  CAS  Google Scholar 

  200. Langley CH, Lii JH, Allinger N (2003) Molecular mechanics (MM4) calculations on carbonyl compounds. I-IV (Eratum). J Comput Chem 24(10):1283–1286

    Article  CAS  Google Scholar 

  201. Langley CH, Allinger NL (2002) Molecular mechanics (MM4) calculations on amides. J Phys Chem A 106(23):5638–5652

    Article  CAS  Google Scholar 

  202. Allinger NL, Chen KH, Lii JH, Durkin KA (2003) Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds. J Comput Chem 24(12):1447–1472

    Article  CAS  Google Scholar 

  203. Lii JH, Chen KH, Durkin KA, Allinger NL (2003) Alcohols, ethers, carbohydrates, and related compounds. II. The anomeric effect. J Comput Chem 24(12):1473–1489

    Article  CAS  Google Scholar 

  204. Lii JH, Chen KH, Grindley TB, Allinger NL (2003) Alcohols, ethers, carbohydrates, and related compounds. III. The 1,2-dimethoxyethane system. J Comput Chem 24(12):1490–1503

    Article  CAS  Google Scholar 

  205. Lii JH, Chen KH, Allinger NL (2003) Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates. J Comput Chem 24(12):1504–1513

    Article  CAS  Google Scholar 

  206. Halgren TA (1996) Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

    Article  CAS  Google Scholar 

  207. Halgren TA (1996) Merck molecular force field. 2. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17(5–6):520–552

    Article  CAS  Google Scholar 

  208. Halgren TA (1996) Merck molecular force field. 3. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17(5–6):553–586

    Article  CAS  Google Scholar 

  209. Halgren TA, Nachbar RB (1996) Merck molecular force field. 4. Conformational energies and geometries for MMFF94. J Comput Chem 17(5–6):587–615

    CAS  Google Scholar 

  210. Halgren TA (1996) Merck molecular force field. 5. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17(5–6):616–641

    Article  CAS  Google Scholar 

  211. Halgren TA (1998) Force Fields: MMFF94. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1033–1035

    Google Scholar 

  212. Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 20(7):720–729

    Article  CAS  Google Scholar 

  213. Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular interaction energies and geometries. J Comput Chem 20(7):730–748

    Article  CAS  Google Scholar 

  214. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  215. Casewit CJ, Colwell KS, Rappé AK (1992) Application of a universal force field to organic molecules. J Am Chem Soc 114:10035–10046

    Article  CAS  Google Scholar 

  216. Casewit CJ, Colwell KS, Rappé AK (1992) Application of a universal force field to main group compounds. J Am Chem Soc 114:10046–10053

    Article  CAS  Google Scholar 

  217. Rappé AK, Colwell KS, Casewit CJ (1993) Application of a universal force field to metal complexes. Inorg Chem 32:3438–3450

    Article  Google Scholar 

  218. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The AMBER biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  Google Scholar 

  219. Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26(16):1689–1700

    Article  CAS  Google Scholar 

  220. te Velde GT, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders GJ, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967

    Article  CAS  Google Scholar 

  221. Guest MF, Bush IJ, van Dam HJJ, Sherwood P, Thomas JMH, van Lenthe JH, Havenith RWA, Kendrick J (2005) The GAMESS-UK electronic structure package: algorithms, developments and applications. Mol Phys 103(6–8):719–747

    CAS  Google Scholar 

  222. Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju JL, Nichols JA, Nieplocha J, Straatsma TP, Windus TL, Wong AT (2000) High performance computational chemistry: an overview of NWChem a distributed parallel application. Comput Phys Commun 128(1–2):260–283

    Article  CAS  Google Scholar 

  223. Colombo MC, Guidoni L, Laio A, Magistrato A, Maurer P, Piana S, Röhrig U, Spiegel K, Sulpizi M, VandeVondele J, Zumstein M, Röthlisberger U (2002) Hybrid QM/MM Car-Parrinello simulations of catalytic and enzymatic reactions. Chimia 56(1–2):13–19 2002.

    Article  CAS  Google Scholar 

  224. Sebastiani D, Röthlisberger U (2003) Advances in density-functional-based modeling techniques – recent extensions of the Car-Parrinello approach. In: Carloni P, Alber F (eds) Quantum medicinal chemistry. Methods and principles in medicinal chemistry, vol 17. Wiley, Weinheim, pp 5–39

    Google Scholar 

  225. Woo TK, Margl PM, Blöchl PE, Ziegler T (1997) A combined Car–Parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J Phys Chem B 101:7877–7880

    Article  CAS  Google Scholar 

  226. Woo TK, Margl PM, Deng L, Ziegler T (1998) A combined Car-Parrinello quantum mechanical–molecular mechanical implementation for ab initio molecular dynamics simulations of extended systems. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS symposium series, vol 712. American Chemical Society, Washington, DC, pp 128–147

    Google Scholar 

  227. Woo TK, Margl PM, Deng L, Cavallo L, Ziegler T (1999) Towards more realistic computational modeling of homogenous catalysis by density functional theory: Combined QM/MM and ab initio molecular dynamics. Catal Today 50:479–500

    Article  CAS  Google Scholar 

  228. Thiel W (2004) MNDO99, V. 6.1. Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany

    Google Scholar 

  229. Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol Simul 29(5):291–341

    Article  CAS  Google Scholar 

  230. Gale JD (2005) GULP: Capabilities and prospects. Z Kristallogr 220(5–6):552–554

    CAS  Google Scholar 

  231. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York

    Google Scholar 

  232. Åqvist J, Warshel A (1993) Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem Rev 93:2523–2544

    Article  Google Scholar 

  233. Shurki A, Warshel A (2003) Structure/function correlations of proteins using MM, QM/MM, and related approaches: Methods, concepts, pitfalls, and current progress. In: Dagett V (ed) Protein simulations. Advances in protein chemistry, vol 66. Academic Press, San Diego, pp 249–313

    Google Scholar 

  234. Warshel A (2003) Computer simulations of enzyme catalysis: Methods, progress, and insights. Annu Rev Biophys Biomol Struct 32:425–443

    Article  CAS  Google Scholar 

  235. Jensen JH, Day PN, Gordon MS, Basch H, Cohen D, Garmer DR, Krauss M, Stevens WJ (1994) Effective fragment method for modeling intermolecular hydrogen-bonding effects on quantum mechanical calculations. In: Smith DA (ed) Modeling the hydrogen bond. ACS symposium series, vol 569. American Chemical Society, Washington, DC, pp 139–151

    Google Scholar 

  236. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) An effective fragment method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105(5):1968–1986

    Article  CAS  Google Scholar 

  237. Kairys V, Jensen JH (2000) QM/MM boundaries across covalent bonds: a frozen localized molecular orbital-based approach for the effective fragment potential method. J Phys Chem A 104(28):6656–6665

    Article  CAS  Google Scholar 

  238. Gordon MS, Freitag MA, Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ (2001) The effective fragment potential method: a QM-based MM approach to modeling environmental effects in chemistry. J Phys Chem A 105(2):293–307

    Article  CAS  Google Scholar 

  239. Grigorenko BL, Nemukhin AV, Topol IA, Burt SK (2002) Modeling of biomolecular systems with the quantum mechanical and molecular mechanical method based on the effective fragment potential technique: proposal of flexible fragments. J Phys Chem A 106(44):10663–10672

    Article  CAS  Google Scholar 

  240. Nemukhin AV, Grigorenko BL, Bochenkova AV, Topol IA, Burt SK (2002) A QM/MM approach with effective fragment potentials applied to the dipeptide-water structures. THEOCHEM 581(1–3):167–175

    Article  CAS  Google Scholar 

  241. Nemukhin AV, Grigorenko BL, Topol IA, Burt SK (2003) Flexible effective fragment QM/MM method: validation through the challenging tests. J Comput Chem 24(12):1410–1420

    Article  CAS  Google Scholar 

  242. Ryde U, Olsen L, Nilsson K (2002) Quantum chemical geometry optimizations in proteins using crystallographic raw data. J Comput Chem 23(11):1058–1070

    Article  CAS  Google Scholar 

  243. Ryde U, Nilsson K (2003) Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 125(47):14232–14233

    Article  CAS  Google Scholar 

  244. Ryde U, Nilsson K (2003) Quantum refinement—a combination of quantum chemistry and protein crystallography. THEOCHEM 632(1–3):259–275

    Article  CAS  Google Scholar 

  245. Tronrud DE (2004) Introduction to macromolecular refinement. Acta Crystallogr D: Biol Crystallogr 60:2156–2168

    Article  CAS  Google Scholar 

  246. Kleywegt GJ, Henrick K, Dodson EJ, van Aalten DMF (2003) Pound-wise but penny-foolish: How well do micromolecules fare in macromolecular refinement? Structure 11(9):1051–1059

    Article  CAS  Google Scholar 

  247. Klähn M, Braun-Sand S, Rosta E, Warshel A (2005) On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions. J Phys Chem B 109(32):15645–15650

    Article  CAS  Google Scholar 

  248. Zhang Y, Kua J, McCammon JA (2003) Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J Phys Chem B 107(18):4459–4463

    Article  CAS  Google Scholar 

  249. Schlegel HB (1995) Geometry optimization on potential energy surfaces. In: Yarkony DR (ed) Modern electronic structure theory. Advanced series in physical chemistry, vol 2/I. World Scientific, Singapore, pp 459–500

    Google Scholar 

  250. Schlegel HB (1998) Geometry optimization I. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1136–1142

    Google Scholar 

  251. Schlick T (1998) Geometry optimization II. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley, Chichester, pp 1142–1157

    Google Scholar 

  252. Jensen F (1998) Transition structure optimization techniques. In: von Ragué Schleyer P (ed) Encyclopedia of computational chemistry, vol 5. Wiley, Chichester, pp 3114–2123

    Google Scholar 

  253. Schlegel HB (2003) Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J Comput Chem 24(12):1514–1527

    Article  CAS  Google Scholar 

  254. Farkas Ö, Schlegel HB (1998) Methods for geometry optimization of large molecules. I. An O(N 2) algorithm for solving systems of linear equations for the transformation of coordinates and forces. J Chem Phys 109(17):7100–7104

    Article  CAS  Google Scholar 

  255. Farkas Ö, Schlegel HB (1999) Methods for optimizing large molecules. Part II. Quadratic search. J Chem Phys 111(24):10806–10814

    Article  CAS  Google Scholar 

  256. Farkas Ö, Schlegel HB (2002) Methods for optimizing large molecules. Part III. An improved algorithm for geometry optimization using direct inversion in the iterative subspace (GDIIS). Phys Chem Chem Phys 4(1):11–15

    Article  CAS  Google Scholar 

  257. Farkas Ö, Schlegel HB (2003) Geometry optimization methods for modeling large molecules. THEOCHEM 666:31–39

    Article  CAS  Google Scholar 

  258. Paizs B, Fogarasi G, Pulay P (1998) An efficient direct method for geometry optimization of large molecules in internal coordinates. J Chem Phys 109(16):6571–6576

    Article  CAS  Google Scholar 

  259. Baker J, Kinghorn D, Pulay P (1999) Geometry optimization in delocalized internal coordinates: an efficient quadratically scaling algorithm for large molecules. J Chem Phys 110:4986–4991

    Article  CAS  Google Scholar 

  260. Paizs B, Baker J, Suhai S, Pulay P (2000) Geometry optimization of large biomolecules in redundant internal coordinates. J Chem Phys 113(16):6566–6572

    Article  CAS  Google Scholar 

  261. Németh K, Coulaud O, Monard G, Ángyán JG (2000) Linear scaling algorithm for the coordinate transformation problem of molecular geometry optimization. J Chem Phys 113(14):5598–5603

    Article  Google Scholar 

  262. Németh K, Coulaud O, Monard G, Ángyán JG (2001) An efficient method for the coordinate transformation problem of massively three-dimensional networks. J Chem Phys 114(22):9747–9753

    Article  CAS  Google Scholar 

  263. Prat-Resina X, Garcia-Viloca M, Monard G, González-Lafont A, Lluch JM, Bofill JM, Anglada JM (2002) The search for stationary points on a quantum mechanical/molecular mechanical potential-energy surface. Theor Chem Acc 107(3):147–153

    CAS  Google Scholar 

  264. Billeter SR, Turner AJ, Thiel W (2000) Linear scaling geometry optimization and transition state search in hybrid delocalized internal coordinates. Phys Chem Chem Phys 2:2177–2186

    Article  CAS  Google Scholar 

  265. Baker J, Kessi A, Delley B (1996) The generation and use of delocalized internal coordinates in geometry optimization. J Chem Phys 105:192–212

    Article  CAS  Google Scholar 

  266. Pulay P, Fogarasi G (1992) Geometry optimization in redundant internal coordinates. J Chem Phys 96(4):2856–2860

    Article  CAS  Google Scholar 

  267. Moliner V, Turner AJ, Williams IH (1997) Transition-state structural refinement with GRACE and CHARMM: realistic modeling of lactate dehydrogenase using a combined quantum/classical method. Chem Commun (14):1271–1272

    Google Scholar 

  268. Turner AJ, Moliner V, Williams IH (1999) Transition-state structural refinement with GRACE and CHARMM: flexible QM/MM modeling for lactate dehydrogenase. Phys Chem Chem Phys 1(6):1323–1331

    Article  CAS  Google Scholar 

  269. Prat-Resina X, González-Lafont À, Lluch JM (2003) How important is the refinement of transition state structures in enzymatic reactions? THEOCHEM 632(1–3):297–307

    Article  CAS  Google Scholar 

  270. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I: Microiterations and constraints. J Comput Chem 24(6):760–769

    Article  CAS  Google Scholar 

  271. Vreven T, Frisch MJ, Kudin KN, Schlegel HB, Morokuma K (2006) Geometry optimization with QM/MM methods. II: Explicit quadratic coupling. Mol Phys 104(5–7):701–714

    Article  CAS  Google Scholar 

  272. Hayashi S, Ohmine I (2000) Proton transfer in bacteriorhodopsin: structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method. J Phys Chem B 104(45):10678–10691

    Article  CAS  Google Scholar 

  273. Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112(8):3483–3492

    Article  CAS  Google Scholar 

  274. Prat-Resina X, Bofill JM, González-Lafont À, Lluch JM (2004) Geometry optimization and transition state search in enzymes: different options in the microiterative method. Int J Quant Chem 98(4):367–377

    Article  CAS  Google Scholar 

  275. Martí S, Moliner V, Tuñón I, Williams IH (2005) Computing kinetic isotope effects for chorismate mutase with high accuracy: a new DFT/MM strategy. J Phys Chem B 109(9):3707–3710

    Article  CAS  Google Scholar 

  276. Martí S, Moliner V, Tuñón I (2005) Improving the QM/MM description of chemical processes: a dual level strategy to explore the potential energy surface in very large systems. J Chem Theory Comput 1(5):1008–1016

    Article  CAS  Google Scholar 

  277. Martí S, Moliner V, Tuñón I (2006) Improving the QM/MM description of chemical processes: a dual level strategy to explore the potential energy surface in very large systems (Erratum). J Chem Theory Comput 2(1):216

    Article  CAS  Google Scholar 

  278. Mills G, Jónsson H (1994) Quantum and thermal effects in H2 dissociative adsorption: evaluation of free-energy barriers in multidimensional quantum systems. Phys Rev Lett 72(7):1124–1127

    Article  CAS  Google Scholar 

  279. Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 387–404

    Google Scholar 

  280. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  281. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  CAS  Google Scholar 

  282. Henkelman G, Jóhannesson G, Jónsson H (2002) Methods for finding saddle points and minimum energy paths. In: Schwartz SD (ed) Theoretical methods in condensed phase chemistry. Progress in theoretical chemistry and physics, vol 5. Kluwer, Dordrecht, pp 269–300

    Chapter  Google Scholar 

  283. Xie L, Liu H, Yang W (2004) Adapting the nudged elastic band method for determining minimum-energy paths of chemical reactions in enzymes. J Chem Phys 120(17):8039–8052

    Article  CAS  Google Scholar 

  284. Ayala PY, Schlegel HB (1997) A combined method for determining reaction paths, minima, and transition state geometries. J Chem Phys 107:375–384

    Article  CAS  Google Scholar 

  285. Liu H, Lu Z, Cisneros GA, Yang W (2004) Parallel iterative reaction path optimization in ab initio quantum mechanical/molecular mechanical modeling of enzyme reactions. J Chem Phys 121(2):697–706

    Article  CAS  Google Scholar 

  286. Cisneros GA, Liu H, Lu Z, Yang W (2005) Reaction path determination for quantum mechanical/molecular mechanical modeling of enzyme reactions by combining first order and second order “chain-of-replicas” methods. J Chem Phys 122(11):114502/1–7

    Article  CAS  Google Scholar 

  287. Woodcock HL, Hodošček M, Sherwood P, Lee YS, Schaefer HF III, Brooks BR (2003) Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theor Chem Acc 109(3):140–148

    CAS  Google Scholar 

  288. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  289. Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: application to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18:431–492

    Article  CAS  Google Scholar 

  290. Straatsma TP, McCammon JA (1992) Computational alchemy. Annu Rev Phys Chem 43:407–435

    Article  CAS  Google Scholar 

  291. Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd ed. Computational science series, vol 1. Academic Press, San Diego

    Google Scholar 

  292. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615

    Article  CAS  Google Scholar 

  293. Bash PA, Field MJ, Karplus M (1987) Free energy perturbation method for chemical reactions in the condensed phase: a dynamic approach based on a combined quantum and molecular mechanics potential. J Am Chem Soc 109:8092–8094

    Article  CAS  Google Scholar 

  294. Gao J, Xia X (1992) A priori evaluation of aqueous polarization effects through Monte Carlo QM-MM simulations. Science 258(5082):631–635

    Article  CAS  Google Scholar 

  295. Gao J (1992) Absolute free-energy of solvation from Monte-Carlo simulations using combined quantum and molecular mechanical potentials. J Phys Chem 96(2):537–540

    Article  CAS  Google Scholar 

  296. Stanton RV, Hartsough DS, Merz KM Jr (1993) Calculation of solvation free energies using a density functional/molecular dynamics coupled potential. J Phys Chem 97(46):11868–11870

    Article  CAS  Google Scholar 

  297. Hartsough DS, Merz KM Jr (1995) Potential of mean force calculations on the SN1 fragmentation of tert-butyl chloride. J Phys Chem 99(1):384–390

    Article  CAS  Google Scholar 

  298. Stanton RV, Little LR, Merz KM Jr (1995) An examination of a Hartree–Fock/molecular mechanical coupled potential. J Phys Chem 99(48):17344–17348

    Article  CAS  Google Scholar 

  299. Stanton RV, Hartsough DS, Merz KM Jr (1995) An examination of a density-functional/molecular mechanical coupled potential. J Comput Chem 16(1):113–128

    Article  CAS  Google Scholar 

  300. Hartsough DS, Merz KM Jr (1995) Dynamic force field models: molecular dynamics simulations of human carbonic anhydrase II using a quantum mechanical/molecular mechanical coupled potential. J Phys Chem 99(28):11266–11275

    Article  CAS  Google Scholar 

  301. Senn HM, Thiel S, Thiel W (2005) Enzymatic hydroxylation in p-hydroxybenzoate hydroxylase: a case study for QM/MM molecular dynamics. J Chem Theory Comput 1(3):494–505

    Article  CAS  Google Scholar 

  302. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. J Chem Phys 114(22):9758–9763

    Article  CAS  Google Scholar 

  303. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J Chem Phys 115(22):10291–10302

    Article  CAS  Google Scholar 

  304. Schlegel HB, Iyengar SS, Li XS, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. III. Comparison with Born–Oppenheimer dynamics. J Chem Phys 117(19):8694–8704

    Article  CAS  Google Scholar 

  305. Iyengar SS, Schlegel HB, Voth GA, Millam JM, Scuseria GE, Frisch MJ (2002) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. IV. Formal analysis of the deviations from Born–Oppenheimer dynamics. Isr J Chem 42(2–3):191–202

    Article  CAS  Google Scholar 

  306. Iyengar SS, Schlegel HB, Voth GA (2003) Atom-centered density matrix propagation (ADMP): generalizations using Bohmian mechanics. J Phys Chem A 107(37):7269–7277

    Article  CAS  Google Scholar 

  307. Rega N, Iyengar SS, Voth GA, Schlegel HB, Vreven T, Frisch MJ (2004) Hybrid ab-initio/empirical molecular dynamics: combining the ONIOM scheme with the atom-centered density matrix propagation (ADMP) approach. J Phys Chem B 108(13):4210–4220

    Article  CAS  Google Scholar 

  308. Gonzalez-Lafont A, Truong TN, Truhlar DG (1991) Direct dynamics calculations with neglect of diatomic differential overlap molecular orbital theory with specific reaction parameters. J Phys Chem 95(12):4618–4627

    Article  CAS  Google Scholar 

  309. Lau EY, Kahn K, Bash PA, Bruice TC (2000) The importance of reactant positioning in enzyme catalysis: a hybrid quantum mechanics/molecular mechanics study of a haloalkane dehalogenase. Proc Natl Acad Sci USA 97(18):9937–9942

    Article  CAS  Google Scholar 

  310. Cui Q, Karplus M (2001) Triosephosphate isomerase: a theoretical comparison of alternative pathways. J Am Chem Soc 123(10):2284–2290

    Article  CAS  Google Scholar 

  311. Cui Q, Karplus M (2002) Quantum mechanical/molecular mechanical studies of the triosephosphate isomerase-catalyzed reaction: verification of methodology and analysis of reaction mechanisms. J Phys Chem B 106(7):1768–1798

    Article  CAS  Google Scholar 

  312. Alhambra C, Corchado JC, Sánchez ML, Gao JL, Truhlar DG (2000) Quantum dynamics of hydride transfer in enzyme catalysis. J Am Chem Soc 122:8197–8203

    Article  CAS  Google Scholar 

  313. Devi-Kesavan LS, Garcia-Viloca M, Gao J (2003) Semiempirical QM/MM potential with simple valence bond (SVB) for enzyme reactions. Application to the nucleophilic addition reaction in haloalkane dehalogenase. Theor Chem Acc 109(3):133–139

    CAS  Google Scholar 

  314. Corchado JC, Coitiño EL, Chuang YY, Fast PL, Truhlar DG (1998) Interpolated variational transition-state theory by mapping. J Phys Chem A 102(14):2424–2438

    Article  CAS  Google Scholar 

  315. Chuang YY, Corchado JC, Truhlar DG (1999) Mapped interpolation scheme for single-point energy corrections in reaction rate calculations and a critical evaluation of dual-level reaction path dynamics methods. J Phys Chem A 103(8):1140–1149

    Article  CAS  Google Scholar 

  316. Ruiz-Pernía JJ, Silla E, Tuñón I, Martí S, Moliner V (2004) Hybrid QM/MM potentials of mean force with interpolated corrections. J Phys Chem B 108(24):8427–8433

    Article  CAS  Google Scholar 

  317. Rod TH, Ryde U (2005) Quantum mechanical free energy barrier for an enzymatic reaction. Phys Rev Lett 94(13):138302/1–4

    Article  CAS  Google Scholar 

  318. Rod TH, Ryde U (2005) Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol O-methyltransferase. J Chem Theory Comput 1(6):1240–1251

    Article  CAS  Google Scholar 

  319. McQuarrie DA (2000) Statistical mechanics. University Science Books, Sausalito, CA

    Google Scholar 

  320. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22(8):1420–1426

    Article  CAS  Google Scholar 

  321. Kästner J, Senn HM, Thiel S, Otte N, Thiel W (2006) QM/MM free-energy perturbation compared to thermodynamic integration and umbrella sampling: application to an enzymatic reaction. J Chem Theory Comput 2(2):452–461

    Article  CAS  Google Scholar 

  322. Chandrasekhar J, Smith SF, Jorgensen WL (1984) SN2 Reaction profiles in the gas phase and aqueous solution. J Am Chem Soc 106(10):3049–3050

    Article  CAS  Google Scholar 

  323. Chandrasekhar J, Smith SF, Jorgensen WL (1985) Theoretical examination of the SN2 reaction involving chloride ion and methyl chloride in the gas phase and aqueous solution. J Am Chem Soc 107(1):154–163

    Article  CAS  Google Scholar 

  324. Zheng YJ, Merz KM Jr (1992) Mechanism of the human carbonic anhydrase II catalyzed hydration of carbon dioxide. J Am Chem Soc 114(26):10498–10507

    Article  CAS  Google Scholar 

  325. Stanton RV, Peräkylä M, Bakowies D, Kollman PA (1998) Combined ab initio and free energy calculations to study reactions in enzymes and solution: amide hydrolysis in trypsin and aqueous solution. J Am Chem Soc 120(14):3448–3457

    Article  CAS  Google Scholar 

  326. Bentzien J, Florián J, Glennon TM, Warshel A (1998) Quantum mechanical-molecular mechanical approaches for studying chemical reactions in proteins and solution. In: Gao J, Thompson MA (eds) Combined quantum mechanical and molecular mechanical methods. ACS symposium series, vol 712. American Chemical Society, Washington, DC, pp 16–34

    Google Scholar 

  327. Bentzien J, Muller RP, Florián J, Warshel A (1998) Hybrid ab initio quantum mechanics/molecular mechanics calculations of free energy surfaces for enzymic reactions: the nucleophilic attack in subtilisin. J Phys Chem B 102:2293–2301

    Article  CAS  Google Scholar 

  328. Štrajbl M, Hong G, Warshel A (2002) Ab initio QM/MM simulation with proper sampling: “first principle” calculations of the free energy of the autodissociation of water in aqueous solution. J Phys Chem B 106:13333–13343

    Article  CAS  Google Scholar 

  329. Rosta E, Klähn M, Warshel A (2006) Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. J Phys Chem B 110:2934–2941

    Article  CAS  Google Scholar 

  330. Li G, Zhang X, Cui Q (2003) Free energy perturbation calculations with combined QM/MM potentials complications, simplifications, and applications to redox potential calculations. J Phys Chem B 107(33):8643–8653

    Article  CAS  Google Scholar 

  331. Li G, Cui Q (2003) pK a Calculations with QM/MM free energy perturbations. J Phys Chem B 107(51):14521–14528

    Article  CAS  Google Scholar 

  332. Yang W, Bitetti-Putzer R, Karplus M (2004) Chaperoned alchemical free energy simulations: a general method for QM, MM, and QM/MM potentials. J Chem Phys 120(20):9450–9453

    Article  CAS  Google Scholar 

  333. Hu H, Yang W (2005) Dual-topology/dual-coordinate free-energy simulation using QM/MM force field. J Chem Phys 123(4):041102/1–4

    Article  CAS  Google Scholar 

  334. Fixman M (1974) Classical statistical mechanics of constraints: a theorem and application to polymers. Proc Natl Acad Sci USA 71:3050–3053

    Article  CAS  Google Scholar 

  335. Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156:472–477

    Article  CAS  Google Scholar 

  336. Sprik M, Ciccotti G (1998) Free energy from constrained molecular dynamics. J Chem Phys 109:7737–7744

    Article  CAS  Google Scholar 

  337. den Otter WK, Briels WJ (1998) The calculation of free-energy differences by constrained molecular-dynamics simulations. J Chem Phys 109:4139–4146

    Article  CAS  Google Scholar 

  338. den Otter WK (2000) Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates. J Chem Phys 112:7283–7292

    Article  CAS  Google Scholar 

  339. den Otter WK, Briels WJ (2000) Free energy from molecular dynamics with multiple constraints. Mol Phys 98(12):773–781

    Article  CAS  Google Scholar 

  340. Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115:9169–9183

    Article  CAS  Google Scholar 

  341. Schlitter J, Klähn M (2003) A new concise expression for the free energy of a reaction coordinate. J Chem Phys 118(5):2057–2060

    Article  CAS  Google Scholar 

  342. Schlitter J, Klähn M (2003) The free energy of a reaction coordinate at multiple constraints: a concise formulation. Mol Phys 101(23–24):3439–3443

    Article  CAS  Google Scholar 

  343. Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K (2001) Steered molecular dynamics investigations of protein function. J Mol Graphics Model 19(1):13–25

    Article  CAS  Google Scholar 

  344. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224–230

    Article  CAS  Google Scholar 

  345. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2690–2693

    Article  CAS  Google Scholar 

  346. Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E 56:5018–5035

    Article  CAS  Google Scholar 

  347. Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90:1481–1487

    Article  Google Scholar 

  348. Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60:2721–2726

    Article  CAS  Google Scholar 

  349. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120(13):5946–5961

    Article  CAS  Google Scholar 

  350. Cuendet MA (2006) Statistical mechanical derivation of Jarzynski's identity for thermostated non-Hamiltonian dynamics. Phys Rev Lett 96(12):120602/1–4

    Article  CAS  Google Scholar 

  351. Hendrix DA, Jarzynski C (2001) A “fast-growth” method of computing free energy differences. J Chem Phys 114:5974–5981

    Article  CAS  Google Scholar 

  352. Jensen M, Park S, Tajkhorshid E, Schulten K (2002) Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci USA 99:6731–6736

    Article  CAS  Google Scholar 

  353. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J Chem Phys 119:3559–3566

    Article  CAS  Google Scholar 

  354. Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci USA 98:3658–3661

    Article  CAS  Google Scholar 

  355. Jarzynski C (2001) How does a system respond when driven away from thermal equilibrium? Proc Natl Acad Sci USA 98:3636–3638

    Article  CAS  Google Scholar 

  356. Liphardt J, Dumont S, Smith SB, Tinoco I Jr, Bustamante C (2002) Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. Science 296(5574):1832–1835

    Article  CAS  Google Scholar 

  357. Egolf DA (2002) Statistical mechanics: far from equilibrium. Science 296(5574):1813–1815

    Article  Google Scholar 

  358. Hummer G (2001) Fast-growth thermodynamic integration: error and efficiency analysis. J Chem Phys 114:7330–7337

    Article  CAS  Google Scholar 

  359. Hu H, Yun RH, Hermans J (2002) Reversibility of free energy simulations: slow growth may have a unique advantage. (With a note on use of Ewald summation). Mol Simul 28(1–2):67–80

    Article  CAS  Google Scholar 

  360. Zuckerman DM, Woolf TB (2002) Theory of a systematic computational error in free energy differences. Phys Rev Lett 89(18):180602/1–4

    Article  CAS  Google Scholar 

  361. Zuckerman DM, Woolf TB (2002) Overcoming finite-sampling errors in fast-switching free-energy estimates: extrapolative analysis of a molecular system. Chem Phys Lett 351(5-6):445–453

    Article  CAS  Google Scholar 

  362. Zuckerman DM, Woolf TB (2004) Systematic finite-sampling inaccuracy in free energy differences and other nonlinear quantities. J Stat Phys 114(5–6):1303–1323

    Article  Google Scholar 

  363. Ytreberg FM, Zuckerman DM (2004) Efficient use of nonequilibrium measurement to estimate free energy differences for molecular systems. J Comput Chem 25(14):1749–1759

    Article  CAS  Google Scholar 

  364. Gore J, Ritort F, Bustamante C (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc Natl Acad Sci USA 100(22):12564–12569

    Article  CAS  Google Scholar 

  365. Fox RF (2003) Using nonequilibrium measurements to determine macromolecule free-energy differences. Proc Natl Acad Sci USA 100(22):12537–12538

    Article  CAS  Google Scholar 

  366. Rodriguez-Gomez D, Darve E, Pohorille A (2004) Assessing the efficiency of free energy calculation methods. J Chem Phys 120(8):3563–3578

    Article  CAS  Google Scholar 

  367. Lua RC, Grosberg AY (2005) Practical applicability of the Jarzynski relation in statistical mechanics: a pedagogical example. J Phys Chem B 109(14):6805–6811

    Article  CAS  Google Scholar 

  368. Lechner W, Oberhofer H, Dellago C, Geissler PL (2006) Equilibrium free energies from fast-switching trajectories with large time steps. J Chem Phys 124(4):044113/1–12

    Article  CAS  Google Scholar 

  369. Raugei S, Cascella M, Carloni P (2004) A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. J Am Chem Soc 126(48):15730–15737

    CAS  Google Scholar 

  370. Chandler D (1998) Finding transition pathways: throwing ropes over rough mountain passes, in the dark. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 51–66

    Google Scholar 

  371. Dellago C, Bolhuis PG, Csajka FS, Chandler D (1998) Transition path sampling and the calculation of rate constants. J Chem Phys 108(5):1964–1977

    Article  CAS  Google Scholar 

  372. Dellago C, Bolhuis PG, Chandler D (1998) Efficient transition path sampling: application to Lennard–Jones cluster rearrangements. J Chem Phys 108(22):9236–9245

    Article  CAS  Google Scholar 

  373. Bolhuis PG, Dellago C, Chandler D (1998) Sampling ensembles of deterministic transition pathways. Faraday Discuss 110:421–436

    Article  CAS  Google Scholar 

  374. Csajka FS, Chandler D (1998) Transition pathways in a many-body system: application to hydrogen-bond breaking in water. J Chem Phys 109(3):1125–1133

    Article  CAS  Google Scholar 

  375. Dellago C, Bolhuis PG, Chandler D (1999) On the calculation of reaction rate constants in the transition path ensemble. J Chem Phys 110(14):6617–6625

    Article  CAS  Google Scholar 

  376. Bolhuis PG, Dellago C, Geissler PL, Chandler D (2000) Transition path sampling: throwing ropes over mountains in the dark. J Phys Condens Matter 12:A147–A152

    Article  CAS  Google Scholar 

  377. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M (2001) Autoionization in liquid water. Science 291(5511):2121–2124

    Article  CAS  Google Scholar 

  378. Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002) Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu Rev Phys Chem 53:291–318

    Article  CAS  Google Scholar 

  379. Dellago C, Bolhuis PG, Geissler PL (2002) Transition path sampling. Adv Chem Phys 123:1–78

    CAS  Google Scholar 

  380. Zahn D (2005) Unprejudiced identification of reaction mechanisms from biased transition path sampling. J Chem Phys 123(4):044104/1–7

    Article  CAS  Google Scholar 

  381. Basner JE, Schwartz SD (2005) How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study. J Am Chem Soc 127:13822–13831

    Article  CAS  Google Scholar 

  382. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99(20):12562–12566

    Article  CAS  Google Scholar 

  383. Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys Rev Lett 90(23):238302/1–4

    Article  CAS  Google Scholar 

  384. Micheletti C, Laio A, Parrinello M (2004) Reconstructing the density of states by history-dependent metadynamics. Phys Rev Lett 92(17):170601/1–4

    Article  CAS  Google Scholar 

  385. Wu Y, Schmitt JD, Car R (2004) Mapping potential energy surfaces. J Chem Phys 121(3):1193–1200

    Article  CAS  Google Scholar 

  386. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109(14):6714–6721

    Article  CAS  Google Scholar 

  387. Ensing B, Laio A, Parrinello M, Klein ML (2005) A recipe for the computation of the free energy barrier and the lowest free energy path of concerted reactions. J Phys Chem B 109(14):6676–6687

    Article  CAS  Google Scholar 

  388. Raiteri P, Laio A, Gervasio FL, Micheletti C, Parrinello M (2006) Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B 110(8):3533–3539

    Article  CAS  Google Scholar 

  389. Bussi G, Laio A, Parrinello M (2006) Equilibrium free energies from nonequilibrium metadynamics. Phys Rev Lett 96:090601/1–4

    Article  CAS  Google Scholar 

  390. Ensing B, De Vivo M, Liu ZW, Moore P, Klein ML (2006) Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res 39(2):73–81

    Article  CAS  Google Scholar 

  391. Huber T, Torda AE, Gunsteren WF (1994) Local elevation: a method for improving the searching properties of molecular-dynamics simulation. J Comput-Aided Mol Des 8(6):695–708

    Article  CAS  Google Scholar 

  392. Grubmüller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E 52(3):2893–2906

    Article  Google Scholar 

  393. Müller EM, de Meijere A, Grubmüller H (2002) Predicting unimolecular chemical reactions: chemical flooding. J Chem Phys 116(3):897–905

    Article  CAS  Google Scholar 

  394. Wang F, Landau DP (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86(10):2050–2053

    Article  CAS  Google Scholar 

  395. Wang F, Landau DP (2001) Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E 64(5):056101/1–16

    Article  CAS  Google Scholar 

  396. Landau DP, Wang F (2002) Determining the density of states for classical statistical models by a flat-histogram random walk. Comput Phys Commun 147(1–2):674–677

    Article  CAS  Google Scholar 

  397. Raugei S, Carloni P (2006) Structure and function of vanadium haloperoxidases. J Phys Chem B 110(8):3747–3758

    Article  CAS  Google Scholar 

  398. Rosso L, Tuckerman ME (2002) An adiabatic molecular dynamics method for the calculation of free energy profiles. Mol Simul 28:91–112

    Article  CAS  Google Scholar 

  399. Rosso L, Mináry P, Zhu Z, Tuckerman ME (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Chem Phys 116:4389–4402

    Article  CAS  Google Scholar 

  400. VandeVondele J, Rothlisberger U (2002) Canonical adiabatic free energy sampling (CAFES): a novel method for the exploration of free energy surfaces. J Phys Chem B 106:203–208

    Article  CAS  Google Scholar 

  401. Piana S, Bucher D, Carloni P, Rothlisberger U (2004) Reaction mechanism of HIV-1 protease by hybrid Car–Parrinello/classical MD simulations. J Phys Chem B 108(30):11139–11149

    Article  CAS  Google Scholar 

  402. Lu Z, Yang W (2004) Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. J Chem Phys 121(1):89–100

    Article  CAS  Google Scholar 

  403. Miller WH, Handy NC, Adams JE (1980) Reaction path Hamiltonian for polyatomic molecules. J Chem Phys 72(1):99–112

    Article  CAS  Google Scholar 

  404. Nabuurs SB, Spronk CAEM, Krieger E, Vriend G, Hooft RWW (2004) Protein structures: what good is beauty if it cannot be seen? In: Bultinck P, Tollenaere JP, De Winter H, Langenaeker W (eds) (2004) Computational medicinal chemistry for drug discovery. Dekker, New York, pp 387–403

    Google Scholar 

  405. Hooft RWW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381(6580):272

    Article  CAS  Google Scholar 

  406. Word JM (2003) Reduce, V. 2.21. Biochemistry Department, Duke University, Durham, NC, http://www.kinemage.biochem.duke.edu/software/reduce.php

  407. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747

    Article  CAS  Google Scholar 

  408. Garcia-Viloca M, Poulsen TD, Truhlar DG, Gao JL (2004) Sensitivity of molecular dynamics simulations to the choice of the X-ray structure used to model an enzymatic reaction. Protein Sci 13(9):2341–2354

    Article  CAS  Google Scholar 

  409. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(1):52–56

    Article  CAS  Google Scholar 

  410. Forrest LR, Honig B (2005) An assessment of the accuracy of methods for predicting hydrogen positions in protein structures. Proteins Struct Funct Bioinf 61(2):296–309

    Article  CAS  Google Scholar 

  411. Jensen JH, Li H, Robertson AD, Molina PA (2005) Prediction and rationalization of protein pK a values using QM and QM/MM methods. J Phys Chem A 109(30):6634–6643

    Article  CAS  Google Scholar 

  412. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct Funct Bioinf 61(4):704–721

    Article  CAS  Google Scholar 

  413. Zhang L, Hermans J (1996) Hydrophilicity of cavities in proteins. Proteins Struct Funct Genet 24(4):433–438

    Article  CAS  Google Scholar 

  414. Olsson MHM, Hong GY, Warshel A (2003) Frozen density functional free energy simulations of redox proteins: computational studies of the reduction potential of plastocyanin and rusticyanin. J Am Chem Soc 125(17):5025–5039

    CAS  Google Scholar 

  415. Altun A, Thiel W (2005) Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes. J Phys Chem B 109:1268–1280

    Article  CAS  Google Scholar 

  416. Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24:1375–1377

    CAS  Google Scholar 

  417. Villà J, Warshel A (2001) Energetics and dynamics of enzymatic reactions. J Phys Chem B 105(33):7887–7907

    Article  CAS  Google Scholar 

  418. Kollman PA, Kuhn B, Peräkylä M (2002) Computational studies of enzyme-catalyzed reactions: Where are we in predicting mechanisms and in understanding the nature of enzyme catalysis? J Phys Chem B 106(7):1537–1542

    Article  CAS  Google Scholar 

  419. Gao JL, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  420. Martí S, Roca M, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2004) Theoretical insights in enzyme catalysis. Chem Soc Rev 33(2):98–107

    Article  CAS  Google Scholar 

  421. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655):186–195

    Article  CAS  Google Scholar 

  422. Blake CCF, Mair GA, Northy ACT, Phillips DC, Sarma VR (1967) On the conformation of the hen egg-white lysozyme molecule. Proc R Soc London B 167:365–377

    Article  CAS  Google Scholar 

  423. Blake CCF, Johnson LN, Mair GA, North ACT, Phillips DC, Sarma VR (1967) Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc London B 167:378–388

    CAS  Google Scholar 

  424. Ford LO, Machin PA, Phillips DC, Tjian R, Johnson LN (1974) Crystal structure of a lysozyme-tetrasaccharide lactone complex. J Mol Biol 88(2):349–360

    Article  CAS  Google Scholar 

  425. Tapia O, Andrés J, Safont VS (1994) Enzyme catalysis and transition structures in vacuo. Transition structures for the enolization, carboxylation and oxygenation reactions in ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco). J Chem Soc, Faraday Trans 90(16):2365–2374

    Article  CAS  Google Scholar 

  426. Khanjin NA, Snyder JP, Menger FM (1999) Mechanism of chorismate mutase: contribution of conformational restriction to catalysis in the Claisen rearrangement. J Am Chem Soc 121(50):11831–11846

    Article  CAS  Google Scholar 

  427. Vallee BL, Williams RJ (1968) Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci USA 59(2):498–505

    Article  CAS  Google Scholar 

  428. Williams RJ (1971) The entatic state. Cold Spring Harb Symp Quant Biol 36:53–62

    CAS  Google Scholar 

  429. Williams RJP (1985) Metalloenzyme catalysis: the entatic state. J Mol Catal 30(1–2):1–26

    CAS  Google Scholar 

  430. Williams RJP (1995) Energized (entatic) states of groups and of secondary structures in proteins and metalloproteins. Eur J Biochem 234(2):363–381

    Article  CAS  Google Scholar 

  431. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98–104

    Article  CAS  Google Scholar 

  432. Storm DR, Koshland DE (1970) A source for the special catalytic power of enzymes: orbital steering. Proc Natl Acad Sci USA 66(2):445–452

    Article  CAS  Google Scholar 

  433. Mesecar AD, Stoddard BL, Koshland DE (1997) Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 277(5323):202–206

    Article  CAS  Google Scholar 

  434. Menger FM (1993) Enzyme reactivity from an organic perspective. Acc Chem Res 26(4):206–212

    Article  CAS  Google Scholar 

  435. Kollman PA, Kuhn B, Donini O, Perakyla M, Stanton R, Bakowies D (2001) Elucidating the nature of enzyme catalysis utilizing a new twist on an old methodology: quantum mechanical-free energy calculations on chemical reactions in enzymes and in aqueous solution. Acc Chem Res 34(1):72–79

    Article  CAS  Google Scholar 

  436. Bruice TC, Benkovic SJ (2000) Chemical basis for enzyme catalysis. Biochemistry 39:6267–6274

    Article  CAS  Google Scholar 

  437. Bruice TC (2002) A view at the millennium: the efficiency of enzymatic catalysis. Acc Chem Res 35:139–148

    Article  CAS  Google Scholar 

  438. Hur S, Bruice TC (2003) The near attack conformation approach to the study of the chorismate to prephenate reaction. Proc Natl Acad Sci USA 100(21):12015–12020

    Article  CAS  Google Scholar 

  439. Hur S, Bruice TC (2003) Enzymes do what is expected (chalcone isomerase versus chorismate mutase). J Am Chem Soc 125(6):1472–1473

    Article  CAS  Google Scholar 

  440. Hur S, Bruice TC (2003) Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis. J Am Chem Soc 125(19):5964–5972

    Article  CAS  Google Scholar 

  441. Hur S, Bruice TC (2003) Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants). J Am Chem Soc 125(35):10540–10542

    Article  CAS  Google Scholar 

  442. Zhang X, Zhang X, Bruice TC (2005) A definitive mechanism for chorismate mutase. Biochemistry 44(31):10443–10448

    Article  CAS  Google Scholar 

  443. Repasky MP, Guimarães CRW, Chandrasekhar J, Tirado-Rives J, Jorgensen WL (2003) Investigation of solvent effects for the Claisen rearrangement of chorismate to prephenate: mechanistic interpretation via near attack conformations. J Am Chem Soc 125(23):6663–6672

    Article  CAS  Google Scholar 

  444. Guimarães CRW, Repasky MP, Chandrasekhar J, Tirado-Rives J, Jorgensen WL (2003) Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase. J Am Chem Soc 125(23):6892–6899

    Article  CAS  Google Scholar 

  445. Ranaghan KE, Mulholland AJ (2004) Conformational effects in enzyme catalysis: QM/MM free energy calculation of the “NAC” contribution in chorismate mutase. Chem Commun (10):1238–1239

    Google Scholar 

  446. Shurki A, Štrajbl M, Villà J, Warshel A (2002) How much do enzymes really gain by restraining their reacting fragments? J Am Chem Soc 124:4097–4107

    Article  CAS  Google Scholar 

  447. Štrajbl M, Shurki A, Kato M, Warshel A (2003) Apparent NAC effect in chorismate mutase reflects electrostatic transition state stabilization. J Am Chem Soc 125:10228–10237

    Article  CAS  Google Scholar 

  448. Lee JK, Houk KN (1997) A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Science 276(5314):942–945

    Article  CAS  Google Scholar 

  449. Devi-Kesavan LS, Gao J (2003) Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase. J Am Chem Soc 125(6):1532–1540

    Article  CAS  Google Scholar 

  450. Page MI, Jencks WP (1971) Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci USA 68(8):1678–1683

    Article  CAS  Google Scholar 

  451. Blow D (2000) So do we understand how enzymes work? Structure 8:R77–R81

    Article  CAS  Google Scholar 

  452. Villà J, Štrajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A (2000) How important are entropic contributions to enzyme catalysis? Proc Natl Acad Sci USA 97:11899–11904

    Article  Google Scholar 

  453. Cleland WW, Kreevoy MM (1994) Low-barrier hydrogen-bonds and enzymatic catalysis. Science 264(5167):1887–1890

    Article  CAS  Google Scholar 

  454. Frey PA, Whitt SA, Tobin JB (1994) A low-barrier hydrogen-bond in the catalytic triad of serine proteases. Science 264(5167):1927–1930

    Article  CAS  Google Scholar 

  455. Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273(40):25529–25532

    Article  CAS  Google Scholar 

  456. Pan YP, McAllister MA (1997) Characterization of low-barrier hydrogen bonds. 1. Microsolvation effects. An ab initio and DFT investigation. J Am Chem Soc 119(32):7561–7566

    Article  CAS  Google Scholar 

  457. Pan YP, McAllister MA (1997) Characterization of low-barrier hydrogen bonds. 5. Microsolvation of enol-enolate. An ab initio and DFT investigation. J Org Chem 62(23):8171–8176

    Article  CAS  Google Scholar 

  458. Pan YP, McAllister MA (1998) Characterization of low-barrier hydrogen bonds. 6. Cavity polarity effects on the formic acid formate anion model system. An ab initio and DFT investigation. J Am Chem Soc 120(1):166–169

    Article  CAS  Google Scholar 

  459. Careri G, Fasella P, Gratton E (1979) Enzyme dynamics: the statistical physics approach. Annu Rev Biophys Bioeng 8:69–97

    Article  CAS  Google Scholar 

  460. Karplus M, McCammon JA (1983) Dynamics of proteins: elements and function. Annu Rev Biochem 52:263–300

    Article  CAS  Google Scholar 

  461. Berendsen HJC, Hayward S (2000) Collective protein dynamics in relation to function. Curr Opin Struct Biol 10:165–169

    Article  CAS  Google Scholar 

  462. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295(5559):1520–1523

    Article  CAS  Google Scholar 

  463. Olsson MHM, Parson WW, Warshel A (2006) Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Rev 106:1737–1756

    Article  CAS  Google Scholar 

  464. Hwang JK, Chu ZT, Yadav A, Warshel A (1991) Simulations of quantum-mechanical corrections for rate constants of hydride-transfer reactions in enzymes and solutions. J Phys Chem 95(22):8445–8448

    Article  CAS  Google Scholar 

  465. Kohen A, Klinman JP (1999) Hydrogen tunneling in biology. Chem Biol 6(7):R191–R198

    Article  CAS  Google Scholar 

  466. Sutcliffe MJ, Scrutton NS (2000) Enzyme catalysis: over-the-barrier or through-the-barrier? Trends Biochem Sci 25(9):405–408

    Article  CAS  Google Scholar 

  467. Truhlar DG, Gao J, Garcia-Viloca M, Alhambra C, Corchado J, Sanchez ML, Poulsen TD (2004) Ensemble-averaged variational transition state theory with optimized multidimensional tunneling for enzyme kinetics and other condensed-phase reactions. Int J Quant Chem 100(6):1136–1152

    Article  CAS  Google Scholar 

  468. Zhang X, Houk KN (2005) Why enzymes are proficient catalysts: beyond the Pauling paradigm. Acc Chem Res 38(5):379–385

    Article  CAS  Google Scholar 

  469. Bash PA, Field MJ, Davenport RC, Petsko GA, Ringe D, and Karplus M (1991) Computer-simulation and analysis of the reaction pathway of triosephosphate isomerase. Biochemistry 30:5826–5832

    Article  CAS  Google Scholar 

  470. Mulholland AJ, Richards WG (1997) Acetyl-CoA enolization in citrate synthase: a quantum mechanical/molecular mechanical (QM/MM) study. Proteins Struct Funct Genet 27(1):9–25

    Article  CAS  Google Scholar 

  471. Liu H, Zhang Y, Yang W (2000) How is the active site of enolase organized to catalyze two different reaction steps? J Am Chem Soc 122(28):6560–6570

    Article  CAS  Google Scholar 

  472. Cui Q, Elstner M, Karplus M (2002) A theoretical analysis of the proton and hydride transfer in liver alcohol dehydrogenase (LADH). J Phys Chem B 106(10):2721–2740

    Article  CAS  Google Scholar 

  473. Hermann JC, Hensen C, Ridder L, Mulholland AJ, Höltje HD (2005) Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A β-lactamase with benzylpenicillin. J Am Chem Soc 127(12):4454–4465

    Article  CAS  Google Scholar 

  474. Cheng Y, Zhang Y, McCammon JA (2005) How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study. J Am Chem Soc 127(5):1553–1562

    Article  CAS  Google Scholar 

  475. Garcia-Viloca M, Truhlar DG, Gao J (2003) Importance of substrate and cofactor polarization in the active site of dihydrofolate reductase. J Mol Biol 327(2):549–560

    Article  CAS  Google Scholar 

  476. Sokalski WA (1985) The physical nature of catalytic activity due to the molecular environment in terms of intermolecular interaction theory: derivation of simplified models. J Mol Catal 30(3):395–410

    Article  CAS  Google Scholar 

  477. Szefczyk B, Mulholland AJ, Ranaghan KE, Sokalski WA (2004) Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field. J Am Chem Soc 126(49):16148–16159

    Article  CAS  Google Scholar 

  478. Roca M, Martí S, Andrés J, Moliner V, Tuñón I, Bertrán J, Williams IH (2003) Theoretical modeling of enzyme catalytic power: analysis of “cratic” and electrostatic factors in catechol O-methyltransferase. J Am Chem Soc 125(25):7726–7737

    Article  CAS  Google Scholar 

  479. Ridder L, Palfey BA, Vervoort JIM, Rietjens CM (2000) Modeling flavin and substrate substituent effects on the activation barrier and rate of oxygen transfer by p-hydroxybenzoate hydroxylase. FEBS Lett 478(1–2):197–201

    Article  CAS  Google Scholar 

  480. Ridder L, Harvey JN, Rietjens IMCM, Vervoort J, Mulholland AJ (2003) Ab initio QM/MM modeling of the hydroxylation step in p-hydroxybenzoate hydroxylase. J Phys Chem B 107(9):2118–2126

    Article  CAS  Google Scholar 

  481. Billeter SR, Hanser CFW, Mordasini TZ, Scholten M, Thiel W, van Gunsteren WF (2001) Molecular dynamics study of oxygenation reactions catalysed by the enzyme p-hydroxybenzoate hydroxylase. Phys Chem Chem Phys 3:688–695

    Article  CAS  Google Scholar 

  482. Ridder L, Mulholland AJ, Rietjens IMCM, Vervoort J (2000) A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogenated derivatives by phenol hydroxylase. J Am Chem Soc 122(36):8728–8738

    Article  CAS  Google Scholar 

  483. Poulsen TD, Garcia-Viloca M, Gao J, Truhlar DG (2003) Free energy surface, reaction paths, and kinetic isotope effect of short-chain acyl-CoA dehydrogenase. J Phys Chem B 107(35):9567–9578

    Article  CAS  Google Scholar 

  484. Alhambra C, Corchado J, Sánchez ML, Garcia-Viloca M, Gao J, Truhlar DG (2001) Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics. Theory and application to liver alcohol dehydrogenase. J Phys Chem B 105:11326–11340

    Article  CAS  Google Scholar 

  485. Tresadern G, Faulder PF, Gleeson MP, Tai Z, MacKenzie G, Burton NA, Hillier IH (2003) Recent advances in quantum mechanical/molecular mechanical calculations of enzyme catalysis: hydrogen tunnelling in liver alcohol dehydrogenase and inhibition of elastase by α-ketoheterocycles. Theor Chem Acc 109(3):108–117

    CAS  Google Scholar 

  486. Walker RC, de Souza MM, Mercer IP, Gould IR, Klug DR (2002) Large and fast relaxations inside a protein: calculation and measurement of reorganization energies in alcohol dehydrogenase. J Phys Chem B 106(44):11658–11665

    Article  CAS  Google Scholar 

  487. Formaneck MS, Li G, Zhang X, Cui Q (2002) Calculating accurate redox potentials in enzymes with a combined QM/MM free energy perturbation approach. J Theor Comput Chem 1(1):53–67

    Article  CAS  Google Scholar 

  488. Wymore T, Hempel J, Cho SS, MacKerell AD Jr, Nicholas HB Jr, Deerfield DW II (2004) Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation. Proteins Struct Funct Bioinf 57(4):758–771

    Article  CAS  Google Scholar 

  489. Wymore T, Deerfield DW II, Field MJ, Hempel J, Nicholas HB Jr (2003) Initial catalytic events in class 3 aldehyde dehydrogenase: MM and QM/MM simulations. Chem-Biol Interact 143–144:75–84

    Article  CAS  Google Scholar 

  490. Moliner V, Williams IH (2000) Flexible QM/MM modelling embraces alternative mechanisms for lactate dehydrogenase. Chem Commun (19):1843–1844

    Google Scholar 

  491. Ferrer S, Silla E, Tuñón I, Oliva M, Moliner V, Williams IH (2005) Dependence of enzyme reaction mechanism on protonation state of titratable residues and QM level description: lactate dehydrogenase. Chem Commun (47):5873–5875

    Google Scholar 

  492. Ferrer S, Ruiz-Pernía JJ, Tuñón I, Moliner V, Garcia-Viloca M, González-Lafont A, Lluch JM (2005) A QM/MM exploration of the potential energy surface of pyruvate to lactate transformation catalyzed by LDH. Improving the accuracy of semiempirical descriptions. J Chem Theory Comput 1(4):750–761

    Article  CAS  Google Scholar 

  493. Cummins PL, Gready JE (2000) QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond. J Mol Graphics Model 18(1):42–49

    Article  CAS  Google Scholar 

  494. Cummins PL, Gready JE (2000) Combined quantum and molecular mechanics (QM/MM) study of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase. J Phys Chem B 104(18):4503–4510

    Article  CAS  Google Scholar 

  495. Beierlein F, Lanig H, Schürer G, Horn AHC, Clark T (2003) Quantum mechanical/molecular mechanical (QM/MM) docking: an evaluation for known test systems. Mol Phys 101(15):2469–2480

    Article  CAS  Google Scholar 

  496. Titmuss SJ, Cummins PL, Bliznyuk AA, Rendell AP, Gready JE (2000) Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods applied to enzyme reactions. Chem Phys Lett 320(1–2):169–176

    Article  CAS  Google Scholar 

  497. Cummins PL, Greatbanks SP, Rendell AP, Gready JE (2002) Computational methods for the study of enzymic reaction mechanisms. 1. Application to the hydride transfer step in the catalysis of dihydrofolate reductase. J Phys Chem B 106(38):9934–9944

    Article  CAS  Google Scholar 

  498. Titmuss SJ, Cummins PL, Rendell AP, Bliznyuk AA, Gready JE (2002) Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis. J Comput Chem 23(14):1314–1322

    Article  CAS  Google Scholar 

  499. Cummins PL, Gready JE (2003) Computational methods for the study of enzymic reaction mechanisms. II. An overlapping mechanically embedded method for hybrid semi-empirical-QM/MM calculations. THEOCHEM 632(1–3):247–257

    Article  CAS  Google Scholar 

  500. Garcia-Viloca M, Truhlar DG, Gao J (2003) Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Biochemistry 42(46):13558–13575

    Article  CAS  Google Scholar 

  501. Thorpe IF, Brooks CL III (2003) Barriers to hydride transfer in wild type and mutant dihydrofolate reductase from E. coli. J Phys Chem B 107(50):14042–14051

    Article  CAS  Google Scholar 

  502. Cummins PL, Gready JE (2005) Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation. J Comput Chem 26(6):561–568

    Article  CAS  Google Scholar 

  503. Ferrer S, Silla E, Tuñón I, Martí S, Moliner V (2003) Catalytic mechanism of dihydrofolate reductase enzyme. A combined quantum-mechanical/molecular-mechanical characterization of the N5 protonation step. J Phys Chem B 107(50):14036–14041

    Article  CAS  Google Scholar 

  504. Proust-De Martin F, Dumas R, Field MJ (2000) A hybrid-potential free-energy study of the isomerization step of the acetohydroxy acid isomeroreductase reaction. J Am Chem Soc 122(32):7688–7697

    Article  CAS  Google Scholar 

  505. Alhambra C, Sánchez ML, Corchado J, Gao J, Truhlar DG (2001) Quantum mechanical tunneling in methylamine dehydrogenase. Chem Phys Lett 347:512–518

    Article  CAS  Google Scholar 

  506. Faulder PF, Tresadern G, Chohan KK, Scrutton NS, Sutcliffe MJ, Hillier IH, Burton NA (2001) QM/MM studies show substantial tunneling for the hydrogen-transfer reaction in methylamine dehydrogenase. J Am Chem Soc 123(35):8604–8605

    Article  CAS  Google Scholar 

  507. Tresadern G, Nunez S, Faulder PF, Wang H, Hillier IH, Burton NA (2003) Direct dynamics calculations of reaction rate and kinetic isotope effects in enzyme catalysed reactions. Faraday Discuss 122:223–242

    Article  CAS  Google Scholar 

  508. Tresadern G, Wang H, Faulder PF, Burton NA, Hillier IH (2003) Extreme tunnelling in methylamine dehydrogenase revealed by hybrid QM/MM calculations: potential energy surface profile for methylamine and ethanolamine substrates and kinetic isotope effect values. Mol Phys 101(17):2775–2784

    Article  CAS  Google Scholar 

  509. Torrent M, Vreven T, Musaev DG, Morokuma K, Farkas Ö, Schlegel HB (2002) Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase. J Am Chem Soc 124(2):192–193

    Article  CAS  Google Scholar 

  510. Hoffmann M, Khavrutskii IV, Musaev DG, Morokuma K (2004) Protein effects on the O2 binding to the active site of the methane monooxygenase: ONIOM studies. Int J Quant Chem 99(6):972–980

    Article  CAS  Google Scholar 

  511. Friesner RA, Baik M-H, Gherman BF, Guallar V, Wirstam M, Murphy RB, Lippard SJ (2003) How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations. Coord Chem Rev 238–239:267–290

    Article  CAS  Google Scholar 

  512. Gherman BF, Lippard SJ, Friesner RA (2005) Substrate hydroxylation in methane monooxygenase: quantitative modeling via mixed quantum mechanics/molecular mechanics techniques. J Am Chem Soc 127:1025–1037

    Article  CAS  Google Scholar 

  513. Shiota Y, Yoshizawa K (2004) QM/MM study of the mononuclear non-heme iron active site of phenylalanine hydroxylase. J Phys Chem B 108(44):17226–17237

    Article  CAS  Google Scholar 

  514. Nemukhin AV, Grigorenko BL, Topol IA, Burt SK (2006) Modeling dioxygen binding to the non-heme iron-containing enzymes. Int J Quant Chem 106(10):2184–2190

    Article  CAS  Google Scholar 

  515. Bathelt CM, Mulholland AJ, Harvey JN (2005) QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase. Dalton Trans (21):3470–3476

    Google Scholar 

  516. Schöneboom JC, Thiel W (2004) The resting state of P450cam: a QM/MM study. J Phys Chem B 108(22):7468–7478

    Article  CAS  Google Scholar 

  517. Swart M, Groenhof AR, Ehlers AW, Lammertsma K (2005) Substrate binding in the active site of cytochrome P450CAM. Chem Phys Lett 403(1–3):35–41

    Article  CAS  Google Scholar 

  518. Schöneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S (2002) The elusive oxidant species of cytochrome P450 enzymes: characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. J Am Chem Soc 124(27):8142–8151

    Article  CAS  Google Scholar 

  519. Bathelt CM, Zurek J, Mulholland AJ, Harvey JN (2005) Electronic structure of compound I in human isoforms of cytochrome P450 from QM/MM modeling. J Am Chem Soc 127:12900–12908

    Article  CAS  Google Scholar 

  520. Cohen S, Kumar D, Shaik S (2006) In silico design of a mutant of cytochrome P450 containing selenocysteine. J Am Chem Soc 128:2649–2653

    Article  CAS  Google Scholar 

  521. Schöneboom JC, Neese F, Thiel W (2005) Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters. J Am Chem Soc 127(16):5840–5853

    Article  CAS  Google Scholar 

  522. Schöneboom JC, Cohen S, Lin H, Shaik S, Thiel W (2004) Quantum mechanical/molecular mechanical investigation of the mechanism of C–H hydroxylation of camphor by cytochrome P450cam: theory supports a two-state rebound mechanism. J Am Chem Soc 126(12):4017–4034

    Article  CAS  Google Scholar 

  523. Altun A, Guallar V, Friesner RA, Shaik S, Thiel W (2006) The effect of heme environment on the hydrogen abstraction reaction of camphor in P450cam catalysis: a QM/MM study. J Am Chem Soc 128:3924–3925

    Article  CAS  Google Scholar 

  524. Lin H, Schöneboom JC, Cohen S, Shaik S, Thiel W (2004) QM/MM study of the product-enzyme complex in P450cam catalysis. J Phys Chem B 108(28):10083–10088

    CAS  Google Scholar 

  525. Guallar V, Friesner RA (2004) Cytochrome P450CAM enzymatic catalysis cycle: a quantum mechanics/molecular mechanics study. J Am Chem Soc 126(27):8501–8508

    Article  CAS  Google Scholar 

  526. Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem Rev 105(6):2279–2328

    Article  CAS  Google Scholar 

  527. Derat E, Cohen S, Shaik S, Altun A, Thiel W (2005) Principal active species of horseradish peroxidase, compound I: a hybrid quantum mechanical/molecular mechanical study. J Am Chem Soc 127(39):13611–13621

    Article  CAS  Google Scholar 

  528. Kamachi T, Yoshizawa K (2005) Water-assisted oxo mechanism for heme metabolism. J Am Chem Soc 127(30):10686–10692

    Article  CAS  Google Scholar 

  529. Martí MA, Crespo A, Bari SE, Doctorovich FA, Estrin DA (2004) QM–MM study of nitrite reduction by nitrite reductase of Pseudomonas aeruginosa. J Phys Chem B 108(46):18073–18080

    Article  CAS  Google Scholar 

  530. Källrot N, Nilsson K, Rasmussen T, Ryde U (2005) Theoretical study of structure of catalytic copper site in nitrite reductase. Int J Quant Chem 102:520–541

    Article  CAS  Google Scholar 

  531. Morao I, Tai Z, Hillier IH, Burton NA (2003) What form of Ng-hydroxy-L-arginine is the intermediate in the mechanism of NO synthase? QM and QM/MM calculations of substrate-active site interactions. THEOCHEM 632(1–3):277–285

    Article  CAS  Google Scholar 

  532. Fernández ML, Martí MA, Crespo A, Estrin DA (2005) Proximal effects in the modulation of nitric oxide synthase reactivity: a QM-MM study. J Biol Inorg Chem 10:595–604

    Article  CAS  Google Scholar 

  533. Crespo A, Martí MA, Kalko SG, Morreale A, Orozco M, Gelpi JL, Luque FJ, Estrin DA (2005) Theoretical study of the truncated hemoglobin HbN: exploring the molecular basis of the NO detoxification mechanism. J Am Chem Soc 127(12):4433–4444

    Article  CAS  Google Scholar 

  534. Marti MA, Crespo A, Capece L, Boechi L, Bikiel DE, Scherlis DA, Estrin DA (2006) Dioxygen affinity in heme proteins investigated by computer simulation. J Inorg Biochem 100(4):761–770

    Article  CAS  Google Scholar 

  535. Wirstam M, Lippard SJ, Friesner RA (2003) Reversible dioxygen binding to hemerythrin. J Am Chem Soc 125(13):3980–3987

    Article  CAS  Google Scholar 

  536. Rovira C, Schulze B, Eichinger M, Evanseck JD, Parrinello M (2001) Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: a QM/MM density functional study. Biophys J 81(1):435–445

    CAS  Google Scholar 

  537. Freindorf M, Shao Y, Brown ST, Kong J, Furlani TR (2006) A combined density functional theory and molecular mechanics (QM/MM) study of FeCO vibrations in carbonmonoxy myoglobin. Chem Phys Lett 419(4–6):563–566

    Article  CAS  Google Scholar 

  538. Rovira C (2003) Applications of Car-Parrinello molecular dynamics in biochemistry – binding of ligands in myoglobin. In: Carloni P, Alber F (eds) Quantum medicinal chemistry. Methods and principles in medicinal chemistry, vol 17. Wiley, Weinheim, pp 73–112

    Chapter  Google Scholar 

  539. Harvey JN (2004) Spin-forbidden CO ligand recombination in myoglobin. Faraday Discuss 127:165–177

    Article  CAS  Google Scholar 

  540. Guallar V, Jarzecki AA, Friesner RA, Spiro TG (2006) Modeling of ligation-induced helix/loop displacements in myoglobin: toward an understanding of hemoglobin allostery. J Am Chem Soc 128(16):5427–5435

    Article  CAS  Google Scholar 

  541. Strickland N, Mulholland AJ, Harvey JN (2006) The Fe–CO bond energy in myoglobin: a QM/MM study of the effect of tertiary structure. Biophys J 90(4):L27–L29

    Article  CAS  Google Scholar 

  542. Kravitz JY, Pecoraro VL, Carlson HA (2005) Quantum mechanics/molecular mechanics calculations of the vanadium dependent chloroperoxidase. J Chem Theory Comput 1(6):1265–1274

    Article  CAS  Google Scholar 

  543. Rulíšek L, Solomon EI, Ryde U (2005) A combined quantum and molecular mechanical study of the O2 reductive cleavage in the catalytic cycle of multicopper oxidases. Inorg Chem 44(16):5612–5628

    Article  CAS  Google Scholar 

  544. Rothlisberger U, Carloni P, Doclo K, Parrinello M (2000) A comparative study of galactose oxidase and active site analogs based on QM/MM Car-Parrinello simulations. J Biol Inorg Chem 5(2):236–250

    Article  CAS  Google Scholar 

  545. Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Computational exploration of the catalytic mechanism of dopamine β-monooxygenase: modeling of its mononuclear copper active sites. Inorg Chem 44(12):4226–4236

    Article  CAS  Google Scholar 

  546. Yoshizawa K, Kihara N, Kamachi T, Shiota Y (2006) Catalytic mechanism of dopamine β-monooxygenase mediated by Cu(III)–Oxo. Inorg Chem 45(7):3034–3041

    Article  CAS  Google Scholar 

  547. Sundararajan M, Hillier IH, Burton NA (2006) Structure and redox properties of the protein, rubredoxin, and its ligand and metal mutants studied by electronic structure calculation. J Phys Chem A 110(2):785–790

    Article  CAS  Google Scholar 

  548. Magistrato A, DeGrado WF, Laio A, Rothlisberger U, VandeVondele J, Klein ML (2003) Characterization of the dizinc analogue of the synthetic diiron protein DF1 using ab initio and hybrid quantum/classical molecular dynamics simulations. J Phys Chem B 107(17):4182–4188

    Article  CAS  Google Scholar 

  549. Ryde U, Olsson MHM (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quant Chem 81(5):335–347

    Article  CAS  Google Scholar 

  550. Moon S, Patchkovskii S, Salahub DR (2003) QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins. THEOCHEM 632:287–295

    Article  CAS  Google Scholar 

  551. Datta SN, Sudhamsu J, Pandey A (2004) Theoretical determination of the standard reduction potential of plastocyanin in vitro. J Phys Chem B 108(23):8007–8016

    Article  CAS  Google Scholar 

  552. Prabhakar R, Musaev DG, Khavrutskii IV, Morokuma K (2004) Does the active site of mammalian glutathione peroxidase (GPx) contain water molecules? An ONIOM study. J Phys Chem B 108(34):12643–12645

    Article  CAS  Google Scholar 

  553. Bergès J, Rickards G, Rauk A, Houée-Levin C (2006) QM/MM study of electron addition on protein disulfide bonds. Chem Phys Lett 421:63–67

    Article  CAS  Google Scholar 

  554. Chu J-W, Brooks BR, Trout BL (2004) Oxidation of methionine residues in aqueous solutions: free methionine and methionine in granulocyte colony-stimulating factor. J Am Chem Soc 126(50):16601–16607

    Article  CAS  Google Scholar 

  555. Ridder L, Rietjens IMCM, Vervoort J, Mulholland AJ (2002) Quantum mechanical/molecular mechanical free energy simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J Am Chem Soc 124(33):9926–9936

    Article  CAS  Google Scholar 

  556. Ruggiero GD, Williams IH, Roca M, Moliner V, Tuñón I (2004) QM/MM determination of kinetic isotope effects for COMT-catalyzed methyl transfer does not support compression hypothesis. J Am Chem Soc 126(28):8634–8635

    Article  CAS  Google Scholar 

  557. Roca M, Moliner V, Ruiz-Pernía JJ, Silla E, Tuñón I (2006) Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force. J Phys Chem A 110(2):503–509

    Article  CAS  Google Scholar 

  558. Roca M, Andrés J, Moliner V, Tuñón I, Bertrán J (2005) On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations. J Am Chem Soc 127(30):10648–10655

    Article  CAS  Google Scholar 

  559. Hu P, Zhang Y (2006) Catalytic mechanism and product specifity of the histone lysin methyltransferase SET7/9: an ab initio QM/MM-FE study with multiple initial structures. J Am Chem Soc 128(4):1272–1278

    Article  CAS  Google Scholar 

  560. Núñez S, Antoniou D, Schramm VL, Schwartz SD (2004) Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J Am Chem Soc 126(48):15720–15729

    Google Scholar 

  561. Sheppard DW, Burton NA, Hillier IH (2000) Ab initio hybrid quantum mechanical/molecular mechanical studies of the mechanisms of the enzymes protein kinase and thymidine phosphorylase. THEOCHEM 506:35–44

    Article  CAS  Google Scholar 

  562. Gao X-F, Huang X-R, Sun C-C (2006) Role of each residue in catalysis in the active site of pyrimidine nucleoside phosphorylase from Bacillus subtilis: a hybrid QM/MM study. J Struct Biol 154(1):20–26

    Article  CAS  Google Scholar 

  563. Cheng Y, Zhang Y, McCammon JA (2006) How does activation loop phosphorylation modulate catalytic activity in the cAMP-dependent protein kinase: a theoretical study. Protein Sci 15(4):672–683

    Article  CAS  Google Scholar 

  564. Rungrotmongkol T, Hannongbua S, Mulholland A (2004) Mechanistic study of HIV-1 reverse transcriptase at the active site based on QM/MM method. J Theor Comput Chem 3(4):491–500

    Article  CAS  Google Scholar 

  565. Thomas A, Field MJ (2002) Reaction mechanism of the HGXPRTase from Plasmodium falciparum: a hybrid potential quantum mechanical/molecular mechanical study. J Am Chem Soc 124(42):12432–12438,

    Article  CAS  Google Scholar 

  566. Mulholland AJ, Lyne PD, Karplus M (2000) Ab initio QM/MM study of the citrate synthase mechanism. A low-barrier hydrogen bond is not involved. J Am Chem Soc 122(3):534–535

    Article  CAS  Google Scholar 

  567. Kurz LC, Fite B, Jean J, Park J, Erpelding T, Callis P (2005). Photophysics of tryptophan fluorescence: link with the catalytic strategy of the citrate synthase from Thermoplasma acidophilum. Biochemistry 44(5):1394–1413

    Article  CAS  Google Scholar 

  568. Senn HM, O'Hagan D, Thiel W (2005) Insight into enzymatic C–F bond formation from QM and QM/MM calculations. J Am Chem Soc 127:13643–13655

    Article  CAS  Google Scholar 

  569. Schürer G, Lanig H, Clark T (2004) Aeromonas proteolytica aminopeptidase: an investigation of the mode of action using a quantum mechanical/molecular mechanical approach. Biochemistry 43(18):5414–5427

    Article  CAS  Google Scholar 

  570. Schürer G, Horn AHC, Gedeck P, Clark T (2002) The reaction mechanism of bovine lens leucine aminopeptidase. J Phys Chem B 106(34):8815–8830

    Article  CAS  Google Scholar 

  571. Klein CDP, Schiffmann R, Folkers G, Piana S, Röthlisberger U (2003) Protonation states of methionine aminopeptidase and their relevance for inhibitor binding and catalytic activity. J Biol Chem 278(48):47862–47867

    Article  CAS  Google Scholar 

  572. Cross JB, Vreven T, Meroueh SO, Mobashery S, Schlegel HB (2005) Computational investigation of irreversible inactivation of the zinc-dependent protease carboxypeptidase A. J Phys Chem B 109(10):4761–4769

    Article  CAS  Google Scholar 

  573. Phoon L, Burton NA (2005) Assessment of a mechanism for reactive inhibition of carboxypeptidase A with QM/MM methods. J Mol Graphics Model 24(2):94–101

    Article  CAS  Google Scholar 

  574. Molina PA, Sikorski RS, Jensen JH (2003) NMR chemical shifts in the low-pH form of α-chymotrypsin. A QM/MM and ONIOM-NMR study. Theor Chem Acc 109(3):100–107

    CAS  Google Scholar 

  575. Molina PA, Jensen JH (2003) A predictive model of strong hydrogen bonding in proteins: the Nδ1-H-Oδ1 hydrogen bond in low-pH α-chymotrypsin and α-lytic protease. J Phys Chem B 107(25):6226–6233

    Article  CAS  Google Scholar 

  576. Pieraccini S, Sironi M, Colombo G (2006) Modeling enzymatic processes: a molecular simulation analysis of the origins of regioselectivity. Chem Phys Lett 418:373–376

    Article  CAS  Google Scholar 

  577. Antonczak S, Monard G, Ruiz-López M, Rivail JL (2000) Insights in the peptide hydrolysis mechanism by thermolysin: a theoretical QM/MM study. J Mol Model 6:527–538

    Article  CAS  Google Scholar 

  578. Nemukhin AV, Grigorenko BL, Rogov AV, Topol IA, Burt SK (2004) Modeling of serine protease prototype reactions with the flexible effective fragment potential quantum mechanical/molecular mechanical method. Theor Chem Acc 111(1):36–48

    CAS  Google Scholar 

  579. Ishida T, Kato S (2003) Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. J Am Chem Soc 125(39):12035–12048

    Article  CAS  Google Scholar 

  580. Ishida T, Kato S (2004) Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study. J Am Chem Soc 126(22):7111–7118

    Article  CAS  Google Scholar 

  581. Ishida T (2006) Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process. Biochemistry 45(17):5413–5420

    Article  CAS  Google Scholar 

  582. Gräter F, Schwarzl SM, Dejaegere A, Fischer S, Smith JC (2005) Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics. J Phys Chem B 109:10474–10483

    Article  CAS  Google Scholar 

  583. Topf M, Várnai P, Richards WG (2002) Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: insights into the active site hydrogen-bonding network. J Am Chem Soc 124(49):14780–14788

    Article  CAS  Google Scholar 

  584. Topf M, Richards WG (2004) Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase. J Am Chem Soc 126(44):14631–14641

    Article  CAS  Google Scholar 

  585. Gleeson MP, Hillier IH, Burton NA (2004) Theoretical analysis of peptidyl α-ketoheterocyclic inhibitors of human neutrophil elastase: insight into the mechanism of inhibition and the application of QM/MM calculations in structure-based drug design. Org Biomol Chem 2(16):2275–2280

    Article  CAS  Google Scholar 

  586. Guo H, Wlodawer A, Guo H (2005) A general acid-base mechanism for the stabilization of a tetrahedral adduct in a serine-carboxyl peptidase: a computational study. J Am Chem Soc 127:15662–15663

    Article  CAS  Google Scholar 

  587. Xu Q, Guo H, Wlodawer A, Guo H (2006) The importance of dynamics in substrate-assisted catalysis and specificity. J Am Chem Soc 128(18):5994–5995

    Article  CAS  Google Scholar 

  588. Hensen C, Hermann JC, Nam K, Ma S, Gao J, Höltje H-D (2004) A combined QM/MM approach to protein-ligand interactions: polarization effects of the HIV-1 protease on selected high affinity inhibitors. J Med Chem 47(27):6673–6680

    Article  CAS  Google Scholar 

  589. Sulpizi M, Laio A, VandeVondele J, Cattaneo A, Rothlisberger U, Carloni P (2003) Reaction mechanism of caspases: insights from QM/MM Car–Parrinello simulations. Proteins Struct Funct Genet 52(2):212–224

    Article  CAS  Google Scholar 

  590. Corminboeuf C, Hu P, Tuckerman ME, Zhang Y (2006) Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc 128(14):4530–4531

    Article  CAS  Google Scholar 

  591. Madison V, Duca J, Bennett F, Bohanon S, Cooper A, Chu M, Desai J, Girijavallabhan V, Hare R, Hruza A, Hendrata S, Huang Y, Kravec C, Malcolm B, McCormick J, Miesel L, Ramanathan L, Reichert P, Saksena A, Wang J, Weber PC, Zhu H, Fischmann T (2002) Binding affinities and geometries of various metal ligands in peptide deformylase inhibitors. Biophys Chem 101–102:239–247

    Article  Google Scholar 

  592. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2005) A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem 48(17):5437–5447

    Article  CAS  Google Scholar 

  593. Pitarch J, Pascual-Ahuir J-L, Silla E, Tuñón I (2000) A quantum mechanics/molecular mechanics study of the acylation reaction of TEM1 β-lactamase and penicillanate. J Chem Soc, Perkin Trans 2 (4):761–767

    Google Scholar 

  594. Díaz N, Suárez D, Sordo TL, Merz KM Jr (2001) Acylation of class A β-lactamases by penicillins: a theoretical examination of the role of serine 130 and the β-lactam carboxylate group. J Phys Chem B 105(45):11302–11313

    Article  CAS  Google Scholar 

  595. Hermann JC, Ridder L, Mulholland AJ, Höltje H-D (2003) Identification of Glu166 as the general base in the acylation reaction of class A β-lactamases through QM/MM modeling. J Am Chem Soc 125(32):9590–9591

    Article  CAS  Google Scholar 

  596. Castillo R, Silla E, Tuñón I (2002) Role of protein flexibility in enzymatic catalysis: quantum mechanical-molecular mechanical study of the deacylation reaction in class A β-lactamases. J Am Chem Soc 124(8):1809–1816

    Article  CAS  Google Scholar 

  597. Meroueh SO, Fisher JF, Schlegel HB, Mobashery S (2005) Ab initio QM/MM study of class A β-lactamase acylation: dual participation of Glu166 and Lys73 in a concerted base promotion of Ser70. J Am Chem Soc 127:15397–15407

    Article  CAS  Google Scholar 

  598. Hermann JC, Ridder L, Höltje H-D, Mulholland AJ (2006) Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A β-lactamase. Org Biomol Chem 4:206–210

    Article  CAS  Google Scholar 

  599. Gherman BF, Goldberg SD, Cornish VW, Friesner RA (2004) Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C β-lactamase. J Am Chem Soc 126(24):7652–7664

    Article  CAS  Google Scholar 

  600. Olsen L, Rasmussen T, Hemmingsen L, Ryde U (2004) Binding of benzylpenicillin to metallo-β-lactamase: a QM/MM study. J Phys Chem B 108(45):17639–17648

    Article  CAS  Google Scholar 

  601. Gu W, Zhu J, Liu H (2002) Different protonation states of the Bacillus cereus binuclear zinc metallo-β-lactamase active site studied by combined quantum mechanical and molecular mechanical simulations. J Theor Comput Chem 1(1):69–80

    Article  CAS  Google Scholar 

  602. Dal Peraro M, Llarrull LI, Rothlisberger U, Vila AJ, Carloni P (2004) Water-assisted reaction mechanism of monozinc β-lactamases. J Am Chem Soc 126(39):12661–12668

    Article  CAS  Google Scholar 

  603. Xu D, Zhou Y, Xie D, Guo H (2005) Antibiotic binding to monozinc CphA β-lactamase from Aeromonas hydropila: quantum mechanical/molecular mechanical and density functional theory studies. J Med Chem 48(21):6679–6689

    Article  CAS  Google Scholar 

  604. Park H, Brothers EN, Merz KM Jr (2005) Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-β-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 127(12):4232–4241

    Article  CAS  Google Scholar 

  605. Li J, Cross JB, Vreven T, Meroueh SO, Mobashery S, Schlegel HB (2005) Lysine carboxylation in proteins: OXA-10 β-lactamase. Proteins Struct Funct Bioinf 61(2):246–257

    Article  CAS  Google Scholar 

  606. Oliva M, Dideberg O, Field MJ (2003) Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Proteins Struct Funct Bioinf 53(1):88–100

    Article  CAS  Google Scholar 

  607. Díaz N, Suárez D, Sordo TL, Merz KM Jr (2001) A theoretical study of the aminolysis reaction of lysine 199 of human serum albumin with benzylpenicillin: consequences for immunochemistry of penicillins. J Am Chem Soc 123(31):7574–7583

    Article  CAS  Google Scholar 

  608. Lodola A, Mor M, Hermann JC, Tarzia G, Piomelli D, Mulholland AJ (2005) QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chem Commun (35):4399–4401

    Google Scholar 

  609. Zhang Y, Kua J, McCammon JA (2002) Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 124(35):10572–10577

    Article  CAS  Google Scholar 

  610. Hurley MM, Wright JB, Lushington GH, White WE (2003) Quantum mechanics and mixed quantum mechanics/molecular mechanics simulations of model nerve agents with acetylcholinesterase. Theor Chem Acc 109(3):160–168

    CAS  Google Scholar 

  611. Gao D, Zhan C-G (2005) Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase. Proteins Struct Funct Bioinf 62:99–110

    Article  CAS  Google Scholar 

  612. Zhan C-G, Gao D (2005) Catalytic mechanism and energy barriers for butyrylcholinesterase-catalyzed hydrolysis of cocaine. Biophys J 89:3863–3872

    Article  CAS  Google Scholar 

  613. Funke SA, Otte N, Eggert T, Bocola M, Jaeger K-E, Thiel W (2005) Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein Eng Des Sel 18(11):509–514

    Article  CAS  Google Scholar 

  614. Dinner AR, Blackburn GM, Karplus M (2001) Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413(6857):752–755

    Article  CAS  Google Scholar 

  615. Banerjee A, Yang W, Karplus M, Verdine GL (2005) Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434:612–618

    Article  CAS  Google Scholar 

  616. Biarnés X, Nieto J, Planas A, Rovira C (2006) Substrate distortion in the Michaelis complex of bacillus 1,3–1,4-β-glucanase: insight from first principles molecular dynamics simulations. J Biol Chem 281:1432–1441

    Article  CAS  Google Scholar 

  617. Dittrich M, Hayashi S, Schulten K (2003) On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J 85(4):2253–2266

    CAS  Google Scholar 

  618. Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the βTP and βDP catalytic sites of F1-ATPase. Biophys J 87(5):2954–2967

    Article  CAS  Google Scholar 

  619. Li G, Cui Q (2004) Mechanochemical coupling in myosin: a theoretical analysis with molecular dynamics and combined QM/MM reaction path calculations. J Phys Chem B 108(10):3342–3357

    Article  CAS  Google Scholar 

  620. Lopez X, York DM, Dejaegere A, Karplus M (2002) Theoretical studies on the hydrolysis of phosphate diesters in the gas phase, solution, and RNase A. Int J Quant Chem 86(1):10–26

    Article  CAS  Google Scholar 

  621. Topol IA, Cachau RE, Nemukhin AV, Grigorenko BL, Burt SK (2004) Quantum chemical modeling of the GTP hydrolysis by the RAS–GAP protein complex. Biochim Biophys Acta 1700(1):125–136

    CAS  Google Scholar 

  622. Grigorenko BL, Nemukhin AV, Topol IA, Cachau RE, Burt SK (2005) QM/MM modeling the Ras–GAP catalyzed hydrolysis of guanosine triphosphate. Proteins Struct Funct Bioinf 60(3):495–503

    Article  CAS  Google Scholar 

  623. Klähn M, Schlitter J, Gerwert K (2005) Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein. Biophys J 88(6):3829–3844

    Article  CAS  Google Scholar 

  624. De Vivo M, Ensing B, Klein ML (2005) Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle. J Am Chem Soc 127(32):11226–11227

    Article  CAS  Google Scholar 

  625. Gleeson MP, Burton NA, Hillier IH (2003) Prediction of the potency of inhibitors of adenosine deaminase by QM/MM calculations. Chem Commun (17):2180–2181

    Google Scholar 

  626. Gleeson MP, Burton NA, Hillier IH (2003) The mechanism of adenosine deaminase catalysis studied by QM/MM calculations: the role of histidine 238 and the activity of the alanine 238 mutant. Phys Chem Chem Phys 5(19):4272–4278

    Article  CAS  Google Scholar 

  627. Xu Q, Guo H (2004) Quantum mechanical/molecular mechanical molecular dynamics simulations of cytidine deaminase: from stabilization of transition state analogues to catalytic mechanisms. J Phys Chem B 108(7):2477–2483

    Article  CAS  Google Scholar 

  628. Guo H, Rao N, Xu Q, Guo H (2005) Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: implications for enzyme catalysis. J Am Chem Soc 127(9):3191–3197

    Article  CAS  Google Scholar 

  629. Xu D, Guo H, Gao J, Cui Q (2004) A QM/MM study of a nucleophilic aromatic substitution reaction catalyzed by 4-chlorobenzoyl-CoA dehalogenase. Chem Commun (7):892–893

    Google Scholar 

  630. Xu D, Wei Y, Wu J, Dunaway-Mariano D, Guo H, Cui Q, Gao J (2004) QM/MM studies of the enzyme-catalyzed dechlorination of 4-chlorobenzoyl-CoA provide insight into reaction energetics. J Am Chem Soc 126(42):13649–13658

    Article  CAS  Google Scholar 

  631. Wu J, Xu D, Lu X, Wang C, Guo H, Dunaway-Mariano D (2006) Contributions of long-range electrostatic interactions to 4-chlorobenzoyl-CoA dehalogenase catalysis: a combined theoretical and experimental study. Biochemistry 45:102–112

    Article  CAS  Google Scholar 

  632. Soriano A, Silla E, Tuñón I, Martí S, Moliner V, Bertrán J (2004) Electrostatic effects in enzyme catalysis: a quantum mechanics/molecular mechanics study of the nucleophilic substitution reaction in haloalkane dehalogenase. Theor Chem Acc 112(4):327–334

    Article  CAS  Google Scholar 

  633. Nam K, Prat-Resina X, Garcia-Viloca M, Devi-Kesavan LS, Gao J (2004) Dynamics of an enzymatic substitution reaction in haloalkane dehalogenase. J Am Chem Soc 126(5):1369–1376

    Article  CAS  Google Scholar 

  634. Zhang X, Harrison DHT, Cui Q (2002) Functional specificities of methylglyoxal synthase and triosephosphate isomerase: a combined QM/MM analysis. J Am Chem Soc 124(50):14871–14878

    Article  CAS  Google Scholar 

  635. Guimarães CRW, Udier-Blagović M, Jorgensen WL (2005) Macrophomate synthase: QM/MM simulations address the Diels–Alder versus Michael–aldol reaction mechanism. J Am Chem Soc 127(10):3577–3588

    Article  CAS  Google Scholar 

  636. Sicinska D, Truhlar DG, Paneth P (2005) Dependence of transition state structure on substrate: the intrinsic C-13 kinetic isotope effect is different for physiological and slow substrates of the ornithine decarboxylase reaction because of different hydrogen bonding structures. J Am Chem Soc 127(15):5414–5422

    Article  CAS  Google Scholar 

  637. Lundberg M, Blomberg MRA, Siegbahn PEM (2004) Developing active site models of ODCase – from large quantum models to a QM/MM approach. In: Lee JK (ed) Orotidine monophosphate decarboxylase: a mechanistic dialogue. Topics in current chemistry, vol 238. Springer, Berlin Heidelberg New York, pp 79–112

    Google Scholar 

  638. Loferer MJ, Tautermann CS, Loeffler HH, Liedl KR (2003) Influence of backbone conformations of human carbonic anhydrase II on carbon dioxide hydration: hydration pathways and binding of bicarbonate. J Am Chem Soc 125(29):8921–8927

    Article  CAS  Google Scholar 

  639. Garcia-Viloca M, Nam K, Alhambra C, Gao J (2004) Solvent and Protein effects on the vibrational frequency shift and energy relaxation of the azide ligand in carbonic anhydrase. J Phys Chem B 108(35):13501–13512

    Article  CAS  Google Scholar 

  640. Tautermann CS, Loferer MJ, Voegele AF, Liedl KR (2003) About the kinetic feasibility of the Lipscomb mechanism in human carbonic anhydrase II. J Phys Chem B 107(43):12013–12020

    Article  CAS  Google Scholar 

  641. Kamachi T, Toraya T, Yoshizawa K (2004) Catalytic roles of active-site amino acid residues of coenzyme B12-dependent diol dehydratase: protonation state of histidine and pull effect of glutamate. J Am Chem Soc 126(49):16207–16216

    Article  CAS  Google Scholar 

  642. Cisneros GA, Liu H, Zhang Y, Yang W (2003) Ab initio QM/MM study shows there is no general acid in the reaction catalyzed by 4-oxalocrotonate tautomerase. J Am Chem Soc 125(34):10384–10393

    Article  CAS  Google Scholar 

  643. Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang W (2004) The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment. Biochemistry 43(22):6885–6892

    Article  CAS  Google Scholar 

  644. Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang W (2006) Theoretical and experimental determination on two substrates turned over by 4-oxalocrotonate tautomerase. J Phys Chem A 110(2):700–708

    Article  CAS  Google Scholar 

  645. Garcia-Viloca M, González-Lafont À, Lluch JM (2001) A QM/MM study of the racemization of vinylglycolate catalyzed by mandelate racemase enzyme. J Am Chem Soc 123(4):709–721

    Article  CAS  Google Scholar 

  646. Prat-Resina X, Garcia-Viloca M, González-Lafont A, Lluch JM (2002) On the modulation of the substrate activity for the racemization catalyzed by mandelate racemase enzyme: a QM/MM study. Phys Chem Chem Phys 4(21):5365–5371

    Article  CAS  Google Scholar 

  647. Prat-Resina X, González-Lafont À, Lluch JM (2005) Reaction mechanism of the mandelate anion racemization catalyzed by mandelate racemase enzyme: a QM/MM molecular dynamics free energy study. J Phys Chem B 109:21089–21101

    Article  CAS  Google Scholar 

  648. Puig E, Garcia-Viloca M, González-Lafont À, Lluch JM (2006) On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic. J Phys Chem A 110:717–725

    Article  CAS  Google Scholar 

  649. Guallar V, Jacobson M, McDermott A, Friesner RA (2004) Computational modeling of the catalytic reaction in triosephosphate isomerase. J Mol Biol 337(1):227–239

    Article  CAS  Google Scholar 

  650. Cui Q, Karplus M (2002) Promoting modes and demoting modes in enzyme-catalyzed proton transfer reactions: a study of models and realistic systems. J Phys Chem B 106(32):7927–7947

    Article  CAS  Google Scholar 

  651. Cui Q, Karplus M (2002) Quantum mechanics/molecular mechanics studies of triosephosphate isomerase-catalyzed reactions: effect of geometry and tunneling on proton-transfer rate constants. J Am Chem Soc 124:3093–3124

    Article  CAS  Google Scholar 

  652. Wang M, Lu Z, Yang W (2002) Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method. J Chem Phys 121(1):101–107

    Article  CAS  Google Scholar 

  653. Konuklar FAS, Aviyente V, Monard G, Lopez RMF (2004) Theoretical approach to the wear and tear mechanism in triosephoshate isomerase: a QM/MM study. J Phys Chem B 108(12):3925–3934

    Article  CAS  Google Scholar 

  654. Garcia-Viloca M, Alhambra C, Truhlar DG, Gao J (2003) Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects. J Comput Chem 24(2):177–190

    Article  CAS  Google Scholar 

  655. Li G, Cui Q (2003) What is so special about Arg 55 in the catalysis of cyclophilin A? Insights from hybrid QM/MM simulations. J Am Chem Soc 125(49):15028–15038

    Article  CAS  Google Scholar 

  656. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2001) Transition structure selectivity in enzyme catalysis: a QM/MM study of chorismate mutase. Theor Chem Acc 105(3):207–212

    Google Scholar 

  657. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J, Field MJ (2001) A hybrid potential reaction path and free energy study of the chorismate mutase reaction. J Am Chem Soc 123(8):1709–1712

    Article  CAS  Google Scholar 

  658. Lee YS, Worthington SE, Krauss M, Brooks BR (2002) Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics. J Phys Chem B 106(46):12059–12065

    Article  CAS  Google Scholar 

  659. Crespo A, Scherlis DA, Martí MA, Ordejón P, Roitberg AE, Estrin DA (2003) A DFT-based QM–MM approach designed for the treatment of large molecular systems: application to chorismate mutase. J Phys Chem B 107(49):13728–13736

    Article  CAS  Google Scholar 

  660. Guo H, Cui Q, Lipscomb WN, Karplus M (2003) Understanding the role of active-site residues in chorismate mutase catalysis from molecular-dynamics simulations. Angew Chem Int Ed 42(13):1508–1511

    Article  CAS  Google Scholar 

  661. Martí S, Moliner V, Tuñón I, Williams IH (2003) QM/MM calculations of kinetic isotope effects in the chorismate mutase active site. Org Biomol Chem 1(3):483–487

    Article  CAS  Google Scholar 

  662. Ranaghan KE, Ridder L, Szefczyk B, Sokalski WA, Hermann JC, Mulholland AJ (2003) Insights into enzyme catalysis from QM/MM modelling: transition state stabilization in chorismate mutase. Mol Phys 101(17):2695–2714

    Article  CAS  Google Scholar 

  663. Ranaghan KE, Ridder L, Szefczyk B, Sokalski WA, Hermann JC, Mulholland AJ (2004) Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Org Biomol Chem 2(7):968–80

    Article  CAS  Google Scholar 

  664. Ruggiero GD, Guy SJ, Martí S, Moliner V, Williams IH (2004) Vibrational analysis of the chorismate rearrangement: relaxed force constants, isotope effects and activation entropies calculated for reaction in vacuum, water and the active site of chorismate mutase. J Phys Org Chem 17(6–7):592–601

    Article  CAS  Google Scholar 

  665. Claeyssens F, Ranaghan KE, Manby FR, Harvey JN, Mulholland AJ (2005) Multiple high-level QM/MM reaction paths demonstrate transition-state stabilization in chorismate mutase: correlation of barrier height with transition-state stabilization. Chem Commun (40):5068–5070

    Google Scholar 

  666. Guimarães CRW, Udier-Blagović M, Tubert-Brohman I, Jorgensen WL (2005) Effects of Arg90 neutralization on the enzyme-catalyzed rearrangement of chorismate to prephenate. J Chem Theory Comput 1(4):617–625

    Article  CAS  Google Scholar 

  667. Ishida T, Fedorov DG, Kitaura K (2006) All electron quantum chemical calculation of the entire enzyme system confirms a collective catalytic device in the chorismate mutase reaction. J Phys Chem B 110:1457–1463

    Article  CAS  Google Scholar 

  668. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2004) A comparative study of Claisen and Cope rearrangements catalyzed by chorismate mutase. An insight into enzymatic efficiency: transition state stabilization or substrate preorganization? J Am Chem Soc 126(1):311–319

    Google Scholar 

  669. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2000) A QM/MM study of the conformational equilibria in the chorismate mutase active site. The role of the enzymatic deformation energy contribution. J Phys Chem B 104(47):11308–11315

    Article  CAS  Google Scholar 

  670. Guo H, Cui Q, Lipscomb WN, Karplus M (2001) Substrate conformational transitions in the active site of chorismate mutase: their role in the catalytic mechanism. Proc Natl Acad Sci USA 98(16):9032–9037

    Article  CAS  Google Scholar 

  671. Guo H, Lipscomb WN, Cui Q, Karplus M (2005) Molecular dynamics simulations of yeast chorismate mutase: substrate conformational transitions and enzymatic catalysis. In: Puglisi JD (ed) Structure, dynamics and function of biological macromolecules and assemblies. NATO Science Series I: Life and behavioural sciences, vol 364. IOS Press, Amsterdam, pp 63–74

    Google Scholar 

  672. Loferer MJ, Webb BM, Grant GH, Liedl KR (2003) Energetic and stereochemical effects of the protein environment on substrate: a theoretical study of methylmalonyl-CoA mutase. J Am Chem Soc 125(4):1072–1078

    Article  CAS  Google Scholar 

  673. Zurek J, Bowman AL, Sokalski WA, Mulholland AJ (2004) MM and QM/MM modeling of threonyl-tRNA synthetase: model testing and simulations. Struct Chem 15(5):405–414

    Article  CAS  Google Scholar 

  674. Nonella M, Mathias G, Eichinger M, Tavan P (2003) Structures and vibrational frequencies of the quinones in Rb. sphaeroides derived by a combined density functional/molecular mechanics approach. J Phys Chem B 107(1):316–322

    Article  CAS  Google Scholar 

  675. Hughes JM, Hutter MC, Reimers JR, Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123(35):8550–8563

    Article  CAS  Google Scholar 

  676. Reimers JR, Hutter MC, Hughes JM, Hush NS (2000) Nature of the special-pair radical cation in bacterial photosynthesis. Int J Quant Chem 80(6):1224–1243

    Article  CAS  Google Scholar 

  677. Hasegawa J, Ishida M, Nakatsuji H, Lu Z, Liu H, Yang W (2003) Energetics of the electron transfer from bacteriopheophytin to ubiquinone in the photosynthetic reaction center of Rhodopseudomonas viridis: theoretical study. J Phys Chem B 107(3):838–847

    Article  CAS  Google Scholar 

  678. Rajamani R, Gao J (2002) Combined QM/MM study of the opsin shift in bacteriorhodopsin. J Comput Chem 23(1):96–105

    Article  CAS  Google Scholar 

  679. Bondar N, Elstner M, Fischer S, Smith JC, Suhai S (2004) Can coordinate driving describe proton transfer coupled to complex protein motions? Phase Transitions 77:47–52

    Article  CAS  Google Scholar 

  680. Bondar AN, Elstner M, Suhai S, Fischer S, Smith JC (2005) Direct proton transfer in a putative L-state intermediate of the bacteriorhodopsin photocycle. Phase Transitions 78:5–9

    Article  CAS  Google Scholar 

  681. Lee Y-S, Krauss M (2004) Dynamics of proton transfer in bacteriorhodopsin. J Am Chem Soc 126(7):2225–2230

    Article  CAS  Google Scholar 

  682. Warshel A, Chu ZT (2001) Nature of the surface crossing process in bacteriorhodopsin: computer simulations of the quantum dynamics of the primary photochemical event. J Phys Chem B 105(40):9857–9871

    Article  CAS  Google Scholar 

  683. Bondar AN, Smith JC, Fischer SK (2005) QM/MM investigation of the hydrogen-bonding interactions in putative K and early-M intermediates of the bacteriorhodopsin photocycle. Phase Transitions 78:671–675

    Article  CAS  Google Scholar 

  684. Hayashi S, Tajkhorshid E, Kandori H, Schulten K (2004) Role of hydrogen-bond network in energy storage of bacteriorhodopsin's light-driven proton pump revealed by ab initio normal-mode analysis. J Am Chem Soc 126(34):10516–10517

    Article  CAS  Google Scholar 

  685. Rousseau R, Kleinschmidt V, Schmitt UW, Marx D (2004) Modeling protonated water networks in bacteriorhodopsin. Phys Chem Chem Phys 6(8):1848–1859

    Article  CAS  Google Scholar 

  686. Sugihara M, Buss V, Entel P, Hafner J, Bondar AN, Elstner M, Frauenheim T (2004) Ab initio, tight-binding and QM/MM calculations of the rhodopsin chromophore in its binding pocket. Phase Transitions 77(1–2):31–45

    Article  CAS  Google Scholar 

  687. Sugihara M, Buss V (2005) Retinal versus 13-demethyl-retinal inside the rhodopsin binding pocket–a QM/MM study. Phase Transitions 78:11–15

    Article  CAS  Google Scholar 

  688. Gascón JA, Sproviero EM, Batista VS (2006) Computational studies of the primary phototransduction event in visual rhodopsin. Acc Chem Res 39(3):184–193

    Article  CAS  Google Scholar 

  689. Gascon JA, Batista VS (2004) QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophys J 87(5):2931–2941

    Article  CAS  Google Scholar 

  690. Sugihara M, Hufen J, Buss V (2006) Origin and consequences of steric strain in the rhodopsin binding pocket. Biochemistry 45(3):801–810

    Article  CAS  Google Scholar 

  691. Gascón JA, Sproviero EM, Batista VS (2005) QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin. J Chem Theory Comput 1(4):674–685

    Article  CAS  Google Scholar 

  692. Röhrig UF, Guidoni L, Rothlisberger U (2005) Solvent and protein effects on the structure and dynamics of the rhodopsin chromophore. ChemPhysChem 6(9):1836–1847

    Article  CAS  Google Scholar 

  693. Hayashi S, Tajkhorshid E, Pebay-Peyroula E, Royant A, Landau EM, Navarro J, Schulten K (2001) Structural determinants of spectral tuning in retinal proteins: bacteriorhodopsin vs. sensory rhodopsin II. J Phys Chem B 105(41):10124–10131

    Article  CAS  Google Scholar 

  694. Fujimoto K, Hasegawa J, Hayashi S, Kato S, Nakatsuji H (2005) Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study. Chem Phys Lett 414(1–3):239–242

    Article  CAS  Google Scholar 

  695. Ferré N, Olivucci M (2003) Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory. J Am Chem Soc 125(23):6868–6869

    Article  CAS  Google Scholar 

  696. Wanko M, Hoffmann M, Strodel P, Koslowski A, Thiel W, Neese F, Frauenheim T, Elstner M (2005) Calculating absorption shifts for retinal proteins: computational challenges. J Phys Chem B 109(8):3606–3615

    Article  CAS  Google Scholar 

  697. Patnaik SS, Trohalaki S, Pachter R (2004) Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation. Biopolymers 75(6):441–452

    Article  CAS  Google Scholar 

  698. Sinicropi A, Andruniow T, Ferré N, Basosi R, Olivucci M (2005) Properties of the emitting state of the green fluorescent protein resolved at the CASPT2//CASSCF/CHARMM level. J Am Chem Soc 127(33):11534–11535

    Article  CAS  Google Scholar 

  699. Marques MAL, López X, Varsano D, Castro A, Rubio A (2003) Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein. Phys Rev Lett 90(25):258101/1–4

    Article  CAS  Google Scholar 

  700. Dittrich M, Freddolino PL, Schulten K (2005) When light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. J Phys Chem B 109(26):13006–13013

    Article  CAS  Google Scholar 

  701. Groenhof G, Bouxin-Cademartory M, Hess B, de Visser SP, Berendsen HJC, Olivucci M, Mark AE, Robb MA (2004) Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J Am Chem Soc 126(13):4228–4233

    Article  CAS  Google Scholar 

  702. http://amber.scripps.edu/

  703. http://www.cemcomco.com/

  704. http://www.charmm.org/

  705. http://www.scm.com/

  706. http://www.cse.clrc.ac.uk/qcg/gamess-uk/

  707. http://www.gaussian.com/

  708. http://www.emsl.pnl.gov/docs/nwchem/

  709. http://www.schroedinger.com/

  710. http://www.pt.tu-clausthal.de/atp/

  711. http://www.chemshell.org/

  712. http://comp.chem.umn.edu/qmmm/

  713. http://www.molpro.com/

  714. http://www.thch-uni-bonn.de/tc/orca/

  715. http://www.turbomole.com/

  716. http://www.igc.ethz.ch/gromos/

  717. http://www.ivec.org/GULP/

  718. http://www.cse.clrc.ac.uk/msi/software/DL_POLY/

  719. http://swift.cmbi.ru.nl/gv/whatcheck/

  720. http://biotech.ebi.ac.uk:8400/

  721. http://swift.cmbi.ru.nl/whatif/

  722. http://propka.chem.uiowa.edu/

  723. http://hekto.med.unc.edu:8080/HERMANS/software/DOWSER/Dowser.htm

  724. http://www.chem.qmul.ac.uk/iubmb/enzyme/

  725. Yang Z, Zhou Y, Liu K, Cheng Y, Liu R, Chen G, Jia Z (2003) Computational study on the function of water within a β-helix antifreeze protein dimer and in the process of ice-protein binding. Biophys J 85(4):2599–2605

    Article  CAS  Google Scholar 

  726. Liu H, Elstner M, Kaxiras E, Frauenheim T, Hermans J, Yang W (2001) Quantum mechanics simulation of protein dynamics on long timescale. Proteins Struct Funct Genet 44(4):484–489

    Article  CAS  Google Scholar 

  727. Li H, Hains AW, Everts JE, Robertson AD, Jensen JH (2002) The prediction of protein pK a's using QM/MM: the pK a of lysine 55 in turkey ovomucoid third domain. J Phys Chem B 106(13):3486–3494

    Article  CAS  Google Scholar 

  728. Magalhães AL, Maigret B, Gomes JANF, Ramos MJ (2000) Hybrid QM/MM study of a fundamental biological interaction surrounded by its protein environment. Internet J Chem 3:11

    Google Scholar 

  729. Cho AE, Guallar V, Berne BJ, Friesner R (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26(9):915–931

    Article  CAS  Google Scholar 

  730. Mlinsek G, Novic M, Hodoscek M, Solmajer T (2001) Prediction of enzyme binding: human thrombin inhibition study by quantum chemical and artificial intelligence methods based on X-ray structures. J Chem Inf Comput Sci 41(5):1286–1294

    Article  CAS  Google Scholar 

  731. Spiegel K, Rothlisberger U, Carloni P (2004) Cisplatin binding to DNA oligomers from hybrid Car–Parrinello/molecular dynamics simulations. J Phys Chem B 108(8):2699–2707

    Article  CAS  Google Scholar 

  732. Jia M, Qu W, Yang Z, Chen G (2005) Theoretical study of the factors that affect the structure and stability of the adduct of a new platinum anticancer drug with a duplex DNA. Int J Mod Phys B 19(15–17/2):2939–2949

    Article  CAS  Google Scholar 

  733. Dolenc J, Borštnik U, Hodošček M, Koller J, Janežič D (2005) An ab initio QM/MM study of the conformational stability of complexes formed by netropsin and DNA. The importance of van der Waals interactions and hydrogen bonding. THEOCHEM 718(1–3):77–85

    Article  CAS  Google Scholar 

  734. Magistrato A, Ruggerone P, Spiegel K, Carloni P, Reedijk J (2006) Binding of novel azole-bridged dinuclear platinum(II) anticancer drugs to DNA: insights from hybrid QM/MM molecular dynamics simulations. J Phys Chem B 110(8):3604–3613

    Article  CAS  Google Scholar 

  735. Gossens C, Tavernelli I, Rothlisberger U (2005) Rational design of organo-ruthenium anticancer compounds. Chimia 59(3):81–84

    Article  CAS  Google Scholar 

  736. Spiegel K, Rothlisberger U, Carloni P (2006) Duocarmycins binding to DNA investigated by molecular simulation. J Phys Chem B 110(8):3647–3660

    Article  CAS  Google Scholar 

  737. Guallar V, Borrelli KW (2005) A binding mechanism in protein–nucleotide interactions: implication for U1A RNA binding. Proc Natl Acad Sci USA 102(11):3954–3959

    Article  CAS  Google Scholar 

  738. Zhang Y (2006) Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theor Chem Acc 116:43–50

    Article  CAS  Google Scholar 

  739. Elstner M (2006) The SCC-DFTB method and its application to biological systems. Theor Chem Acc 116(1):316–325

    Article  CAS  Google Scholar 

  740. Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schütz M, Thiel S, Thiel W, Werner H-J (2006) High-accuracy computation of reaction barriers in enzymes. Angew Chem Int Ed 45(41):6856–6859

    Article  CAS  Google Scholar 

  741. Laino T, Mohamed F, Laio A, Parrinello M (2006) An efficient linear-scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. J Chem Theor Comput 2:1370–1378

    Article  CAS  Google Scholar 

  742. Yu N, Hayik SA, Wang B, Liao N, Reynolds CH, Merz KM Jr (2006) Assigning the protonation states of the key aspartates in β-secretase using QM/MM X-ray structure refinement. J Chem Theor Comput 2:1057–1069

    Article  CAS  Google Scholar 

  743. Schöll-Paschinger E, Dellago C (2006) A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution. J Chem Phys 125(5):054105/1–5

    Article  CAS  Google Scholar 

  744. Xiong H, Crespo A, Marti M, Estrin D, Roitberg AE (2006) Free energy calculations with non-equilibrium methods: applications of the Jarzynski relationship. Theor Chem Acc 116(1):338–346

    Article  CAS  Google Scholar 

  745. Olsson MHM, Mavri J, Warshel A (2006) Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunneling and dynamical effects in lipoxygenase and other systems. Phil Trans R Soc B 361:1417–1432

    Article  CAS  Google Scholar 

  746. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235

    Article  CAS  Google Scholar 

  747. Bruice TC (2006) Computational approaches: reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem Rev 106(8):3170–3187

    Article  CAS  Google Scholar 

  748. Antoniou D, Basner J, Núñez S, Schwartz SD (2006) Computational and theoretical methods to explore the relation between enzyme dynamics and catalysis. Chem Rev 106(8):3170–3187

    Article  CAS  Google Scholar 

  749. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209

    Article  CAS  Google Scholar 

  750. Pu J, Gao J, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106(8):3140–3169

    Article  CAS  Google Scholar 

  751. Schramm VL (ed) (2006) Chem Rev 106(8)

    Google Scholar 

  752. Zheng J, Wang D, Thiel W, Shaik S (2006) QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam. J Am Chem Soc 128(40):13204–13215

    Article  CAS  Google Scholar 

  753. Altun A, Shaik S, Thiel W (2006) Systematic QM/MM investigation of factors that affect the cytochrome P450-catalyzed hydrogen abstraction of camphor. J Comput Chem 27:1324–1337

    Article  CAS  Google Scholar 

  754. Tuttle T, Keinan E, Thiel W (2006) Understanding the enzymatic activity of 4-oxalocrotonate tautomerase and its mutant analogues: a computational study. J Phys Chem B 110:19685–19695

    Article  CAS  Google Scholar 

  755. Crespo A, Martí MA, Estrin DA, Roitberg AE (2005) Multiple-steering QM–MM calculation of the free energy profile in chorismate mutase. J Am Chem Soc 127(19):6940–6941

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.M.S. thanks Drs. Johannes Kästner and Tell Tuttle for insightful discussions. This work was supported by the Volkswagenstiftung.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Martin Senn or Walter Thiel .

Editor information

Markus Reiher

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Senn, H.M., Thiel, W. (2006). QM/MM Methods for Biological Systems. In: Reiher, M. (eds) Atomistic Approaches in Modern Biology. Topics in Current Chemistry, vol 268. Springer, Berlin, Heidelberg . https://doi.org/10.1007/128_2006_084

Download citation

Publish with us

Policies and ethics