Skip to main content

Reactive Nitrogen Species in Plant Metabolism

  • Chapter
  • First Online:
Progress in Botany Vol. 84

Part of the book series: Progress in Botany ((BOTANY,volume 84))

  • 138 Accesses

Abstract

Reactive nitrogen species are a set of highly reactive molecules that derive from nitric oxide and oxidative metabolism, such as nitrogen dioxide, peroxynitrite, nitroxyl anion, nitrate, among others. The role of reactive nitrogen species in plants has become an area of much scientific interest in recent years. In particular, nitric oxide and peroxynitrite are the main reactive nitrogen species best known for their important interactions with different cellular metabolic processes related to seed germination, plant growth and development, root development, stomatal movements, interaction with phytohormones, reproduction, pollen tube development and fruit ripening. It is also relevant to highlight the important role of nitric oxide as a signalling molecule involved in alleviating toxic effects caused by various biotic and abiotic stresses via intense cellular metabolic reprogramming. Thus, nitric oxide is able to modulate oxidative, antioxidant and phytohormonal metabolisms, among others, as well as ion homeostasis, metal transport and transcriptional factors. With such a background, this chapter summarises recent advances in the metabolic pathways in generating reactive nitrogen species, their bioactivity to react with different cellular molecules, like proteins, nucleic acids and fatty acids, and finally, their role in plant metabolism under physiological and stress conditions.

Communicated by Francisco M. Cánovas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

·OH:

Hydroxyl radical

8-NO2-G:

8-Nitrogunanine

8-Oxo-G:

8-Oxogunanine

ABA:

Abscisic acid

ABI5:

ABA INSENSITIVE 5

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACCO:

1-Aminocyclopropane-1-carboxylic acid oxidase

ANN1:

Annexin 1

AOX:

Alternative oxidase

APX:

Ascorbate peroxidase

BH4:

Tetrahydrobiopterin

BR:

Brassinosteroids

CAM1:

Calmodulin 1

CAM4:

Calmodulin 4

CaMBPs:

Calmodulin-binding proteins

Cat:

Catalase

CBF:

C-repeat binding factors

CDP:

Cell death programme

cGMP:

Cyclic guanosine monophosphate

CMC:

Critical micellar concentrations

CMLs:

Calmodulin-like proteins

CO2:

Carbon dioxide

CO3:

Carbon trioxide anion

ET:

Ethylene

ETC:

Electron transport chain

EVOO:

Extra virgin olive oil

FAD:

Flavin adenine dinucleotide

FBA2:

Fructose bisphosphate aldolase-2

FMN:

Flavin mononucleotide

GA:

Gibberellins

GC:

Guanylate cyclase

GDC:

Glycine decarboxylase complex

Gly I:

Glyoxalase I

Gly II:

Glyoxalase II

GOX:

Glyoxylate oxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSNO:

Nitrosoglutathione

GSNOR:

Nitrosoglutathione reductase

GSSG:

Oxidised glutathione

H2O2:

Hydrogen peroxide

H2S:

Hydrogen sulphide

HNO2:

Nitrous acid

HPR1:

Peroxisomal hydroxypyruvate reductase

HR:

Hypersensitive response

HSF:

Heat shock factors

HSP:

Heat shock proteins

JA:

Jasmonic acid

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MDH1:

Malate dehydrogenase-1

MDHAR:

Monodehydroascorbate reductase

MG:

Methylglyoxal

MoCo:

Molybdenum cofactor

N2O3:

Dinitrogen trioxide

N2O4:

Dinitrogen tetroxide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NH3:

Ammonia

NH4+:

Ammonium

NiR:

Nitrite reductase

NO:

Nitric oxide

NO:

Nitroxyl anion

NO+:

Nitrosonium cation

NO2:

Nitrite

NO2:

Nitrogen dioxide

NO2Cl:

Nitryl chloride

NO2-cLA:

Conjugated nitro-linoleic acid

NO2-FAs:

Nitrated fatty acids

NO2-LA:

Nitro-linoleic acid

NO2-Ln:

Nitro-linolenic acid

NO2-OA:

Nitro-oleic acid

NO3:

Nitrate

NOS:

Nitric oxide synthase

NPR1:

Pathogenesis-related non-expressor gene 1

NR:

Nitrate reductase

O2:

Superoxide

ONOO:

Peroxynitrite

PA:

Phosphatidic acid

PCD:

Programmed cell death

PEPCK:

Phosphoenolpyruvate carboxykinase

PLD:

Phospholipase D

PM-NiNOR:

Plasma membrane-bound nitrite reductase

PM-NR:

Plasma membrane-bound nitrate reductase

POD:

Peroxidase

PR-2:

β-1,3-glucanase

PR-3:

Chitinase

PRs:

Pathogenesis-related proteins

PRTM5:

Protein methyltransferase 5

Prx:

Peroxiredoxin

PRY1:

ABA receptors

PSII:

Photosystem II

PTMs:

Post-translational modifications

RBOHD:

Respiratory burst oxidase homologue D

R-NHOH:

Hydroxylamines

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SA:

Salicylic acid

SABP3:

Salicylic acid-binding protein

SAR:

Systemic acquired resistance

SKP1:

S-phase-related kinase

SNO:

S-nitrosothiols

SOD:

Superoxide dismutase

SOS:

Salt overly sensitive

THF:

Pterin tetrahydrofolate

TIR1:

Transport inhibitory response 1

Trx:

Thioredoxin

Trx/TrxR:

Thioredoxin/thioredoxin reductase system

XOR:

Xanthine oxidoreductase

Y-NO2:

3-Nitrotyrosine

γ-ECS:

Gamma-glutamylcysteine synthetase

References

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal cam plant kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    PubMed  Google Scholar 

  • Agarwal P, Agarwal PK, Gohil D (2018) Transcription factor-based genetic engineering for salinity tolerance in crops. In: Salinity responses and tolerance in plants, volume 1: targeting sensory, transport and signaling mechanisms, pp 185–211

    Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79–93

    PubMed  Google Scholar 

  • Ahmad P, Tripathi DK, Deshmukh R, Pratap Singh V, Corpas FJ (2019) Revisiting the role of ros and rns in plants under changing environment

    Google Scholar 

  • Ahmad A, Khan WU, Ali Shah A, Yasin NA, Naz S, Ali A, Tahir A, Iram Batool A (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica Juncea. Chemosphere 262:128384

    PubMed  Google Scholar 

  • Airaki M, Sánchez-Moreno L, Leterrier M, Barroso JB, Palma JM, Corpas FJ (2011) Detection and quantification of S-nitrosoglutathione (Gsno) in pepper (Capsicum Annuum L.) plant organs by Lc-Es/Ms. Plant Cell Physiol 52:2006–2015

    PubMed  Google Scholar 

  • Akinyemi AJ, Faboya OL, Olayide I, Faboya OA, Ijabadeniyi T (2017) Effect of cadmium stress on non-enzymatic antioxidant and nitric oxide levels in two varieties of maize (Zea Mays). Bull Environ Contam Toxicol 98:845–849

    PubMed  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Khan MN, Ali HM, Alakeel KA (2019) Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia Faba L. Environ Exp Bot 161:290–302

    Google Scholar 

  • Alber NA, Sivanesan H, Vanlerberghe GC (2017) The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant Cell Environ 40:1074–1085

    PubMed  Google Scholar 

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers Abi5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    PubMed  Google Scholar 

  • Alemayehu A, Zelinová V, Bočová B, Huttová J, Mistrík I, Tamás L (2015) Enhanced nitric oxide generation in root transition zone during the early stage of cadmium stress is required for maintaining root growth in barley. Plant Soil 390:213–222

    Google Scholar 

  • Alnusairi GSH, Mazrou YSA, Qari SH, Elkelish AA, Soliman MH, Eweis M, Abdelaal K, El-Samad GA, Ibrahim MFM, Elnahhas N (2021) Exogenous nitric oxide reinforces photosynthetic efficiency, osmolyte, mineral uptake, antioxidant, expression of stress-responsive genes and ameliorates the effects of salinity stress in wheat. Plants (Basel) 10

    Google Scholar 

  • Andryka-Dudek P, Ciacka K, Wiśniewska A, Bogatek R, Gniazdowska A (2019) Nitric oxide-induced dormancy removal of apple embryos is linked to alterations in expression of genes encoding Aba and Ja biosynthetic or transduction pathways and Rna nitration. Int J Mol Sci 20

    Google Scholar 

  • Andy P (2016) Abiotic stress tolerance in plants. Plant Sci 7:1–9

    Google Scholar 

  • Aranda-Caño L, Sánchez-Calvo B, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Valderrama R, Barroso JB (2019) Post-translational modification of proteins mediated by nitro-fatty acids in plants: nitroalkylation. Plants (Basel):8

    Google Scholar 

  • Aranda-Caño L, Valderrama R, Chaki M, Begara-Morales JC, Melguizo M, Barroso JB (2022) Nitrated fatty-acids distribution in storage biomolecules during arabidopsis thaliana development. Antioxidants (Basel):11

    Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2019) A physiological perspective on targets of nitration in no-based signaling networks in plants. J Exp Bot 70:4379–4389

    PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucińska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwóźdź EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Izbiańska K, Gzyl J, Jelonek T (2016) Implication of peroxynitrite in defence responses of potato to phytophthora infestans. Plant Pathol 65:754–766

    Google Scholar 

  • Arc E, Galland M, Godin B, Cueff G, Rajjou L (2013) Nitric oxide implication in the control of seed dormancy and germination. Front Plant Sci 4:346

    PubMed  PubMed Central  Google Scholar 

  • Arfan M, Zhang DW, Zou LJ, Luo SS, Tan WR, Zhu T, Lin HH (2019) Hydrogen peroxide and nitric oxide crosstalk mediates brassinosteroids induced cold stress tolerance in Medicago Truncatula. Int J Mol Sci 20

    Google Scholar 

  • Arnaiz A, Rosa-Diaz I, Romero-Puertas MC, Sandalio LM, Diaz I (2020) Nitric oxide, an essential intermediate in the plant-herbivore interaction. Front Plant Sci 11:620086

    PubMed  Google Scholar 

  • Arruebarrena Di Palma A, Di Fino LM, Salvatore SR, D'ambrosio JM, García-Mata C, Schopfer FJ, Laxalt AM (2020) Nitro-oleic acid triggers ros production via nadph oxidase activation in plants: a pharmacological approach. J Plant Physiol 246–247:153128

    PubMed  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–15208

    PubMed  PubMed Central  Google Scholar 

  • Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:11

    Google Scholar 

  • Babbar R, Karpinska B, Grover A, Foyer CH (2020) Heat-induced oxidation of the nuclei and cytosol. Front Plant Sci 11:617779

    PubMed  Google Scholar 

  • Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 10:4349–4364

    PubMed  Google Scholar 

  • Baker LM, Baker PR, Golin-Bisello F, Schopfer FJ, Fink M, Woodcock SR, Branchaud BP, Radi R, Freeman BA (2007) Nitro-fatty acid reaction with glutathione and cysteine. kinetic analysis of thiol alkylation by a Michael addition reaction. J Biol Chem 282:31085–31093

    PubMed  Google Scholar 

  • Baker PR, Schopfer FJ, O’donnell VB, Freeman BA (2009) Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic Biol Med 46:989–1003

    PubMed  Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, Del Río LA (1999) Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    PubMed  Google Scholar 

  • Bartesaghi S, Radi R (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 14:618–625

    PubMed  Google Scholar 

  • Bartesaghi S, Ferrer-Sueta G, Peluffo G, Valez V, Zhang H, Kalyanaraman B, Radi R (2007) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32:501–515

    PubMed  Google Scholar 

  • Begara-Morales JC (2018) Gsnor regulates Vnd7-mediated xylem vessel cell differentiation. Plant Cell Physiol 59:5–7

    PubMed  Google Scholar 

  • Begara-Morales J, Loake G (2016) Protein denitrosylation in plant biology. Gasotransmitters in plants: the rise of a new paradigm in cell signaling, pp 201–215

    Google Scholar 

  • Begara-Morales JC, Chaki M, Sánchez-Calvo B, Mata-Pérez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–1134

    PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (Apx) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    PubMed  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996

    PubMed  PubMed Central  Google Scholar 

  • Begara-Morales J, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Corpas F, Barroso J (2016) Protein S-nitrosylation and S-glutathionylation as regulators of redox homeostasis during abiotic stress response. Redox state as a central regulator of plant-cell stress responses, pp 365–386

    Google Scholar 

  • Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB (2019) The function of S-nitrosothiols during abiotic stress in plants. J Exp Bot 70:4429–4439

    PubMed  Google Scholar 

  • Begara-Morales JC, Mata-Pérez C, Padilla MN, Chaki M, Valderrama R, Aranda-Caño L, Barroso JB (2021) Role of electrophilic nitrated fatty acids during development and response to abiotic stress processes in plants. J Exp Bot 72:917–927

    PubMed  Google Scholar 

  • Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel MH, Curien G, Mostefai HA, Andriantsitohaina R, Macherel D (2008) Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta 1777:1268–1275

    PubMed  Google Scholar 

  • Berger A, Boscari A, Frendo P, Brouquisse R (2019) Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. J Exp Bot 70:4505–4520

    PubMed  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    PubMed  Google Scholar 

  • Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL (2007) The arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Oxidative metabolism, ros and no under oxygen deprivation. Plant Physiol Biochem 48:359–373

    PubMed  Google Scholar 

  • Blume Y, Yemets A, Sulimenko V, Sulimenko T, Chan J, Lloyd C, Dráber P (2008) Tyrosine phosphorylation of plant tubulin. Planta 229:143–150

    PubMed  Google Scholar 

  • Borrowman S, Kapuganti JG, Loake GJ (2023) Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic Biol Med 194:357–368

    PubMed  Google Scholar 

  • Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A (2013) Expression dynamics of the medicago truncatula transcriptome during the symbiotic interaction with sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161:425–439

    PubMed  Google Scholar 

  • Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME (2010) Robotic mechanical wounding (Mecworm) versus herbivore-induced responses: early signaling and volatile emission in lima bean (Phaseolus Lunatus L.). Planta 232:719–729

    PubMed  Google Scholar 

  • Broniowska KA, Hogg N (2012) The chemical biology of S-nitrosothiols. Antioxid Redox Signal 17:969–980

    PubMed  PubMed Central  Google Scholar 

  • Buchan GJ, Bonacci G, Fazzari M, Salvatore SR, Gelhaus Wendell S (2018) Nitro-fatty acid formation and metabolism. Nitric Oxide 79:38–44

    PubMed  PubMed Central  Google Scholar 

  • Calvo-Begueria L, Rubio MC, Martínez JI, Pérez-Rontomé C, Delgado MJ, Bedmar EJ, Becana M (2018) Redefining nitric oxide production in legume nodules through complementary insights from electron paramagnetic resonance spectroscopy and specific fluorescent probes. J Exp Bot 69:3703–3714

    PubMed  PubMed Central  Google Scholar 

  • Cam Y, Pierre O, Boncompagni E, Hérouart D, Meilhoc E, Bruand C (2012) Nitric oxide (No): a key player in the senescence of medicago truncatula root nodules. New Phytol 196:548–560

    PubMed  Google Scholar 

  • Chadalavada K, Kumari BDR, Kumar TS (2021) Sorghum mitigates climate variability and change on crop yield and quality. Planta 253:113

    PubMed  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Corpas FJ, Barroso JB (2009) Protein targets of tyrosine nitration in sunflower (Helianthus Annuus L.) hypocotyls. J Exp Bot 60:4221–4234

    PubMed  Google Scholar 

  • Chaki M, Álvarez De Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015a) Ripening of pepper (Capsicum Annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647

    PubMed  PubMed Central  Google Scholar 

  • Chaki M, Shekariesfahlan A, Ageeva A, Mengel A, Von Toerne C, Durner J, Lindermayr C (2015b) Identification of nuclear target proteins for S-nitrosylation in pathogen-treated Arabidopsis Thaliana cell cultures. Plant Sci 238:115–126

    PubMed  Google Scholar 

  • Chaki M, Begara-Morales JC, Valderrama R, Aranda-Caño L, Barroso JB (2021) New insights into the functional role of nitric oxide and reactive oxygen species in plant response to biotic and abiotic stress conditions. Plant growth and stress physiology. Springer

    Google Scholar 

  • Chakraborty N, Sarkar A, Acharya K (2021) Biotic elicitor induced nitric oxide production in mitigation of fusarium wilt of tomato. J Plant Biochem Biotechnol 30:960–972

    Google Scholar 

  • Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41:1–31

    PubMed  Google Scholar 

  • Cooney RV, Harwood PJ, Custer LJ, Franke AA (1994) Light-mediated conversion of nitrogen dioxide to nitric oxide by carotenoids. Environ Health Perspect 102:460–462

    PubMed  PubMed Central  Google Scholar 

  • Corpas FJ (2017) Reactive nitrogen species (Rns) in plants under physiological and adverse environmental conditions: current view. Prog Bot 78:97–119

    Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (Onoo-) is endogenously produced in arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113:87–96

    PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2017) Nitric oxide synthase-like activity in higher plants. Nitric Oxide 68:5–6

    PubMed  Google Scholar 

  • Corpas FJ, Palma JM (2018) Nitric oxide on/off in fruit ripening. Plant Biol (Stuttg) 20:805–807

    PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, Del Río LA (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254

    PubMed  Google Scholar 

  • Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B, Mata-Pérez C, Barroso JB (2013) Inhibition of peroxisomal hydroxypyruvate reductase (Hpr1) by tyrosine nitration. Biochim Biophys Acta 1830:4981–4989

    PubMed  Google Scholar 

  • Corpas FJ, Del Río LA, Palma JM (2019) Plant peroxisomes at the crossroad of No and H(2) O(2) metabolism. J Integr Plant Biol 61:803–816

    PubMed  Google Scholar 

  • Correa-Aragunde N, Cejudo FJ, Lamattina L (2015) Nitric oxide is required for the auxin-induced activation of Nadph-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis. Ann Bot 116:695–702

    PubMed  PubMed Central  Google Scholar 

  • Costa-Broseta Á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J (2019) Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. J Exp Bot 70:3283–3296

    PubMed  PubMed Central  Google Scholar 

  • Creighton TE (1993) Proteins: structures and molecular properties. Macmillan

    Google Scholar 

  • Crow JP, Beckman JS (1996) The importance of superoxide in nitric oxide-dependent toxicity: evidence for peroxynitrite-mediated injury. Adv Exp Med Biol 387:147–161

    PubMed  Google Scholar 

  • Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of lupinus albus. FEBS Lett 398:159–164

    PubMed  Google Scholar 

  • Da-Silva CJ, Do Amarante L (2022) Nitric oxide signaling in plants during flooding stress. Nitric oxide in plant biology. Elsevier

    Google Scholar 

  • David A, Yadav S, Baluška F, Bhatla SC (2015) Nitric oxide accumulation and protein tyrosine nitration as a rapid and long distance signalling response to salt stress in sunflower seedlings. Nitric Oxide 50:28–37

    PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    PubMed  PubMed Central  Google Scholar 

  • Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N, Lombardo C, Ramirez L, Lamattina L (2019) The era of nitric oxide in plant biology: twenty years tying up loose ends. Nitric Oxide 85:17–27

    PubMed  Google Scholar 

  • Del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    PubMed  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis Thaliana. Proc Natl Acad Sci U S A 99:16314–16318

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    PubMed  Google Scholar 

  • Dong N, Li Y, Qi J, Chen Y, Hao Y (2018) Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Sci Hortic 230:68–77

    Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic Gmp, and cyclic Adp-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    PubMed  PubMed Central  Google Scholar 

  • Ederli L, Reale L, Madeo L, Ferranti F, Gehring C, Fornaciari M, Romano B, Pasqualini S (2009) No release by nitric oxide donors in vitro and in planta. Plant Physiol Biochem 47:42–48

    PubMed  Google Scholar 

  • Espinoza C, Liang Y, Stacey G (2017) Chitin receptor Cerk1 links salt stress and chitin-triggered innate immunity in arabidopsis. Plant J 89:984–995

    PubMed  Google Scholar 

  • Espunya MC, De Michele R, Gómez-Cadenas A, Martínez MC (2012) S-nitrosoglutathione is a component of wound- and salicylic acid-induced systemic responses in Arabidopsis Thaliana. J Exp Bot 63:3219–3227

    PubMed  PubMed Central  Google Scholar 

  • Fan J, Chen K, Amombo E, Hu Z, Chen L, Fu J (2015) Physiological and molecular mechanism of nitric oxide (No) involved in bermudagrass response to cold stress. PLoS One 10:E0132991

    PubMed  PubMed Central  Google Scholar 

  • Fang MY, Huang KH, Tu WJ, Chen YT, Pan PY, Hsiao WC, Ke YY, Tsou LK, Zhang MM (2021) Chemoproteomic profiling reveals cellular targets of nitro-fatty acids. Redox Biol 46:102126

    PubMed  PubMed Central  Google Scholar 

  • Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in arabidopsis. Biochem Biophys Res Commun 416:331–336

    PubMed  Google Scholar 

  • Fazzari M, Trostchansky A, Schopfer FJ, Salvatore SR, Sánchez-Calvo B, Vitturi D, Valderrama R, Barroso JB, Radi R, Freeman BA, Rubbo H (2014) Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PLoS One 9:E84884

    PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    PubMed  PubMed Central  Google Scholar 

  • Feigl G, Lehotai N, Molnár Á, Ördög A, Rodríguez-Ruiz M, Palma JM, Corpas FJ, Erdei L, Kolbert Z (2015) Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (Ros And Rns) in the roots of two brassica species with different sensitivity to zinc stress. Ann Bot 116:613–625

    PubMed  Google Scholar 

  • Feigl G, Kolbert Z, Lehotai N, Molnár Á, Ördög A, Bordé Á, Laskay G, Erdei L (2016) Different zinc sensitivity of brassica organs is accompanied by distinct responses in protein nitration level and pattern. Ecotoxicol Environ Saf 125:141–152

    PubMed  Google Scholar 

  • Feijó JA, Costa SS, Prado AM, Becker JD, Certal AC (2004) Signalling by tips. Curr Opin Plant Biol 7:589–598

    PubMed  Google Scholar 

  • Ferreira LA, Walczyk Mooradally A, Zaslavsky B, Uversky VN, Graether SP (2018) Effect of an intrinsically disordered plant stress protein on the properties of water. Biophys J 115:1696–1706

    PubMed  PubMed Central  Google Scholar 

  • Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118:1338–1408

    PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:E0166

    PubMed  PubMed Central  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    PubMed  PubMed Central  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: no generation from the green alga Ostreococcus Tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    PubMed  PubMed Central  Google Scholar 

  • Foresi N, Mayta ML, Lodeyro AF, Scuffi D, Correa-Aragunde N, García-Mata C, Casalongué C, Carrillo N, Lamattina L (2015) Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus Tauri increases tolerance to abiotic stresses and influences stomatal development in arabidopsis. Plant J 82:806–821

    PubMed  Google Scholar 

  • Freschi L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, Kaiser WM, Mercier H (2010) Nitric oxide mediates the hormonal control of crassulacean acid metabolism expression in young pineapple plants. Plant Physiol 152:1971–1985

    PubMed  PubMed Central  Google Scholar 

  • Fukudome M, Calvo-Begueria L, Kado T, Osuki K, Rubio MC, Murakami E, Nagata M, Kucho K, Sandal N, Stougaard J, Becana M, Uchiumi T (2016) Hemoglobin Ljglb1-1 is involved in nodulation and regulates the level of nitric oxide in the lotus japonicus-mesorhizobium loti symbiosis. J Exp Bot 67:5275–5283

    PubMed  PubMed Central  Google Scholar 

  • Fukudome M, Watanabe E, Osuki KI, Imaizumi R, Aoki T, Becana M, Uchiumi T (2019) Stably transformed lotus japonicus plants overexpressing phytoglobin Ljglb1-1 show decreased nitric oxide levels in roots and nodules as well as delayed nodule senescence. Plant Cell Physiol 60:816–825

    PubMed  Google Scholar 

  • Gabaldón C, Gómez Ros LV, Pedreño MA, Ros Barceló A (2005) Nitric oxide production by the differentiating xylem of zinnia elegans. New Phytol 165:121–130

    PubMed  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201

    PubMed  Google Scholar 

  • Gallego SM, Benavides MP (2019) Cadmium-induced oxidative and nitrosative stress in plants. Cadmium toxicity and tolerance in plants. Elsevier

    Google Scholar 

  • Gaupels F, Furch AC, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J (2016) Systemic induction of No-, redox-, and Cgmp signaling in the pumpkin extrafascicular phloem upon local leaf wounding. Front Plant Sci 7:154

    PubMed  PubMed Central  Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:425

    PubMed  PubMed Central  Google Scholar 

  • Geisler AC, Rudolph TK (2012) Nitroalkylation—a redox sensitive signaling pathway. Biochim Biophys Acta 1820:777–784

    PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R (2010) Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232:1397–1407

    PubMed  Google Scholar 

  • Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275:7757–7763

    PubMed  Google Scholar 

  • Grippo V, Mojovic M, Pavicevic A, Kabelac M, Hubatka F, Turanek J, Zatloukalova M, Freeman BA, Vacek J (2021) Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol 38:101756

    PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: no reductase. Mitochondrion 11:537–543

    PubMed  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    PubMed  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to no, in vitro and in situ. J Exp Bot 56:2601–2609

    PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, Van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    PubMed  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    PubMed  Google Scholar 

  • Gupta KJ, Hebelstrup KH, Kruger NJ, George Ratcliffe R (2014) Nitric oxide is required for homeostasis of oxygen and reactive oxygen species in barley roots under aerobic conditions. Mol Plant 7:747–750

    PubMed  Google Scholar 

  • Gupta KJ, Lee CP, Ratcliffe RG (2017) Nitrite protects mitochondrial structure and function under hypoxia. Plant Cell Physiol 58:175–183

    PubMed  Google Scholar 

  • Gupta KJ, Kumari A, Florez-Sarasa I, Fernie AR, Igamberdiev AU (2018) Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. J Exp Bot 69:3413–3424

    PubMed  Google Scholar 

  • Gupta KJ, Kolbert Z, Durner J, Lindermayr C, Corpas FJ, Brouquisse R, Barroso JB, Umbreen S, Palma JM, Hancock JT, Petrivalsky M, Wendehenne D, Loake GJ (2020) Regulating the regulator: nitric oxide control of post-translational modifications. New Phytol 227:1319–1325

    PubMed  Google Scholar 

  • Gupta KJ, Kaladhar VC, Fitzpatrick TB, Fernie AR, Møller IM, Loake GJ (2022) Nitric oxide regulation of plant metabolism. Mol Plant 15:228–242

    PubMed  Google Scholar 

  • Gzyl J, Izbiańska K, Floryszak-Wieczorek J, Jelonek T, Arasimowicz-Jelonek M (2016) Cadmium affects peroxynitrite generation and tyrosine nitration in seedling roots of soybean (Glycine Max L.). Environ Exp Bot 131:155–163

    Google Scholar 

  • Hageman R (1990) Historical perspectives of the enzymes of nitrate assimilation by crop plants and potential for biotechnological application. Inorganic nitrogen in plants and microorganisms: uptake and metabolism. Springer, pp 3–11

    Google Scholar 

  • Hancock JT, Neill SJ (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants (Basel) 8

    Google Scholar 

  • Hao GP, Xing Y, Zhang JH (2008) Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. J Integr Plant Biol 50:435–442

    PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (‘Triticum Aestivum’l.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    Google Scholar 

  • Hasanuzzaman M, Inafuku M, Nahar K, Fujita M, Oku H (2021) Nitric oxide regulates plant growth, physiology, antioxidant defense, and ion homeostasis to confer salt tolerance in the mangrove species, Kandelia Obovata. Antioxidants (Basel) 10

    Google Scholar 

  • Hayat S, Yadav S, Wani AS, Irfan M, Ahmad A (2011) Nitric oxide effects on photosynthetic rate, growth, and antioxidant activity in tomato. Int J Veg Sci 17:333–348

    Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the arabidopsis floral transition. Science 305:1968–1971

    PubMed  Google Scholar 

  • Hebelstrup KH, Van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Møller IM, Mur LA (2012) Haemoglobin modulates no emission and hyponasty under hypoxia-related stress in Arabidopsis Thaliana. J Exp Bot 63:5581–5591

    PubMed  PubMed Central  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    PubMed  Google Scholar 

  • Hichri I, Boscari A, Meilhoc E, Catalá M, Barreno E, Bruand C, Lanfranco L, Brouquisse R (2016) Nitric oxide: a multitask player in plant–microorganism symbioses. Gasotransmitters in plants: the rise of a new paradigm in cell signaling, pp 239–268

    Google Scholar 

  • Hoernes TP, Erlacher MD (2017) Translating the epitranscriptome. Wiley Interdiscip Rev Rna 8

    Google Scholar 

  • Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    PubMed  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in arabidopsis. Plant Physiol 167:1731–1746

    PubMed  PubMed Central  Google Scholar 

  • Hu J, Yang H, Mu J, Lu T, Peng J, Deng X, Kong Z, Bao S, Cao X, Zuo J (2017) Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell 67:702–710.E4

    PubMed  Google Scholar 

  • Hu Y, Lu L, Tian S, Li S, Liu X, Gao X, Zhou W, Lin X (2019) Cadmium-induced nitric oxide burst enhances Cd tolerance at early stage in roots of a hyperaccumulator sedum alfredii partially by altering glutathione metabolism. Sci Total Environ 650:2761–2770

    PubMed  Google Scholar 

  • Huang X, Von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in arabidopsis suspension cells. Planta 215:914–923

    PubMed  Google Scholar 

  • Huang Q, Farooq MA, Hannan F, Chen W, Ayyaz A, Zhang K, Zhou W, Islam F (2022) Endogenous nitric oxide contributes to chloride and sulphate salinity tolerance by modulation of ion transporter expression and reestablishment of redox balance in Brassica Napus cultivars. Environ Exp Bot 194:104734

    Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Google Scholar 

  • Iglesias MJ, Terrile MC, Correa-Aragunde N, Colman SL, Izquierdo-Álvarez A, Fiol DF, París R, Sánchez-López N, Marina A, Calderón Villalobos LIA, Estelle M, Lamattina L, Martínez-Ruiz A, Casalongué CA (2018) Regulation of Scf(Tir1/Afbs) E3 ligase assembly by S-nitrosylation of arabidopsis Skp1-Like1 impacts on auxin signaling. Redox Biol 18:200–210

    PubMed  PubMed Central  Google Scholar 

  • Ihara H, Sawa T, Nakabeppu Y, Akaike T (2011) Nucleotides function as endogenous chemical sensors for oxidative stress signaling. J Clin Biochem Nutr 48:33–39

    PubMed  Google Scholar 

  • Imran M, Khan Al K, Shahzad R, Bs K (2022) Nitric oxide modulates glycine max L. Growth and physio-molecular responses during flooding stress. Ann Agricul Crop Sci 7:1116

    Google Scholar 

  • Iqbal N, Umar S, Khan NA, Corpas FJ (2021) Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. Plant Cell Rep 40:1429–1450

    PubMed  Google Scholar 

  • Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M (2018) Rna and Mrna nitration as a novel metabolic link in potato immune response to phytophthora infestans. Front Plant Sci 9:672

    PubMed  PubMed Central  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:pl1

    PubMed  Google Scholar 

  • Jain P, Von Toerne C, Lindermayr C, Bhatla SC (2018) S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. Physiol Plant 162:49–72

    PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    PubMed  PubMed Central  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9:Re2

    PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (Sos) pathway: established and emerging roles. Mol Plant 6:275–286

    PubMed  Google Scholar 

  • Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5:572–578

    PubMed  PubMed Central  Google Scholar 

  • Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S (2013) Nitrated cyclic Gmp modulates guard cell signaling in arabidopsis. Plant Cell 25:558–571

    PubMed  PubMed Central  Google Scholar 

  • Jovanović AM, Durst S, Nick P (2010) Plant cell division is specifically affected by nitrotyrosine. J Exp Bot 61:901–909

    PubMed  Google Scholar 

  • Kaiser WM, Brendle-Behnisch E (1995) Acid-base-modulation of nitrate reductase in leaf tissues. Planta 196:1–6

    Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    PubMed  Google Scholar 

  • Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR (2018) An overview of the genetics of plant response to salt stress: present status and the way forward. Appl Biochem Biotechnol 186:306–334

    PubMed  Google Scholar 

  • Kaur S, Prakash P, Bak DH, Hong SH, Cho C, Chung MS, Kim JH, Lee S, Bai HW, Lee SY, Chung BY, Lee SS (2021) Regulation of dual activity of ascorbate peroxidase 1 from Arabidopsis Thaliana by conformational changes and posttranslational modifications. Front Plant Sci 12:678111

    PubMed  PubMed Central  Google Scholar 

  • Keisham M, Jain P, Singh N, Von Toerne C, Bhatla SC, Lindermayr C (2019) Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 88:10–26

    PubMed  Google Scholar 

  • Keszler A, Zhang Y, Hogg N (2010) Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radic Biol Med 48:55–64

    PubMed  Google Scholar 

  • Kolbert Z, Lindermayr C (2021) Computational prediction of no-dependent posttranslational modifications in plants: current status and perspectives. Plant Physiol Biochem 167:851–861

    PubMed  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced no synthesis is nitrate reductase-associated in Arabidopsis Thaliana root primordia. J Plant Physiol 165:967–975

    PubMed  Google Scholar 

  • Kolbert Z, Ortega L, Erdei L (2010) Involvement of nitrate reductase (Nr) in osmotic stress-induced no generation of Arabidopsis Thaliana L. Roots. J Plant Physiol 167:77–80

    PubMed  Google Scholar 

  • Kolbert Z, Feigl G, Bordé Á, Molnár Á, Erdei L (2017) Protein tyrosine nitration in plants: present knowledge, computational prediction and future perspectives. Plant Physiol Biochem 113:56–63

    PubMed  Google Scholar 

  • Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Loake GJ, Palma JM, Petřivalský M, Wendehenne D, Hancock JT (2019) A forty year journey: the generation and roles of no in plants. Nitric Oxide 93:53–70

    PubMed  Google Scholar 

  • Koutoulogenis GS, Kokotos G (2021) Nitro fatty acids (No(2)-Fas): an emerging class of bioactive fatty acids. Molecules 26

    Google Scholar 

  • Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C (2016) Ros-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front Plant Sci 7:1669

    PubMed  PubMed Central  Google Scholar 

  • Krasuska U, Ciacka K, Orzechowski S, Fettke J, Bogatek R, Gniazdowska A (2016) Modification of the endogenous no level influences apple embryos dormancy by alterations of nitrated and biotinylated protein patterns. Planta 244:877–891

    PubMed  Google Scholar 

  • Kubienová L, Tichá T, Jahnová J, Luhová L, Mieslerová B, Petřivalský M (2014) Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta 239:139–146

    PubMed  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) Snrk2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    PubMed  PubMed Central  Google Scholar 

  • Kumar D, Ohri P (2023) Say “No” to plant stresses: unravelling the role of nitric oxide under abiotic and biotic stress. Nitric Oxide 130:36–57

    PubMed  Google Scholar 

  • Kumar K, Saddhe AA (2018) Targeting aquaporins for conferring salinity tolerance in crops. Salinity responses and tolerance in plants, volume 1: targeting sensory, transport and signaling mechanisms, pp 65–84

    Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D (2014) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114

    PubMed  Google Scholar 

  • Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo Á, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    PubMed  Google Scholar 

  • Lea US, Ten Hoopen F, Provan F, Kaiser WM, Meyer C, Lillo C (2004) Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in high nitrite excretion and no emission from leaf and root tissue. Planta 219:59–65

    PubMed  Google Scholar 

  • Lecourieux D, Kappel C, Claverol S, Pieri P, Feil R, Lunn JE, Bonneu M, Wang L, Gomès E, Delrot S, Lecourieux F (2020) Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. J Integr Plant Biol 62:1132–1158

    PubMed  Google Scholar 

  • Lehotai N, Lyubenova L, Schröder P, Feigl G, Ördög A, Szilágyi K, Erdei L, Kolbert Z (2016) Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum Sativum L). Plant Soil 400:107–122

    Google Scholar 

  • León J, Castillo MC, Coego A, Lozano-Juste J, Mir R (2014) Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J Exp Bot 65:907–921

    PubMed  Google Scholar 

  • León J, Costa Á, Castillo MC (2016) Nitric oxide triggers a transient metabolic reprogramming in arabidopsis. Sci Rep 6:37945

    PubMed  PubMed Central  Google Scholar 

  • Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL (2009) A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in arabidopsis. Plant Physiol 150:114–124

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Huang W, Xiong C, Zhao J (2018) Transcriptome analysis reveals the role of nitric oxide in pleurotus eryngii responses to Cd(2+) stress. Chemosphere 201:294–302

    PubMed  Google Scholar 

  • Li J, Liu X, Wang Q, Huangfu J, Schuman MC, Lou Y (2019) A group D Mapk protects plants from autotoxicity by suppressing herbivore-induced defense signaling. Plant Physiol 179:1386–1401

    PubMed  PubMed Central  Google Scholar 

  • Li G, Yu Z, Cao J, Peng Y, Shi J (2020) Nitric oxide regulates multiple defense signaling pathways in peach fruit response to Monilinia Fructicola invasion. Sci Hortic 264:109163

    Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    PubMed  Google Scholar 

  • Lillo C, Meyer C, Lea US, Provan F, Oltedal S (2004) Mechanism and importance of post-translational regulation of nitrate reductase. J Exp Bot 55:1275–1282

    PubMed  Google Scholar 

  • Lima ES, Bonini MG, Augusto O, Barbeiro HV, Souza HP, Abdalla DS (2005) Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic Biol Med 39:532–539

    PubMed  Google Scholar 

  • Lin CC, Jih PJ, Lin HH, Lin JS, Chang LL, Shen YH, Jeng ST (2011) Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding. Plant Mol Biol 77:235–249

    PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    PubMed  Google Scholar 

  • Lindermayr C, Sell S, Müller B, Leister D, Durner J (2010) Redox regulation of the Npr1-Tga1 system of arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in arabidopsis. New Phytol 183:1030–1042

    PubMed  Google Scholar 

  • Liu S, Yang R, Pan Y, Ma M, Pan J, Zhao Y, Cheng Q, Wu M, Wang M, Zhang L (2015) Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium Repens L. Plants. Ecotoxicol Environ Saf 119:35–46

    PubMed  Google Scholar 

  • Liu H, Li C, Yan M, Zhao Z, Huang P, Wei L, Wu X, Wang C, Liao W (2022) Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. J Plant Res 135:337–350

    PubMed  Google Scholar 

  • Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B (2019) Polyamine induction in postharvest banana fruits in response to no donor snp occurs via L-arginine mediated pathway and not via competitive diversion of S-adenosyl-L-methionine. Antioxidants (Basel) 8

    Google Scholar 

  • Lombardo MC, Lamattina L (2012) Nitric oxide is essential for vesicle formation and trafficking in arabidopsis root hair growth. J Exp Bot 63:4875–4885

    PubMed  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis Thaliana. J Exp Bot 62:3501–3517

    PubMed  PubMed Central  Google Scholar 

  • Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T (2020) Nitric oxide enhances rice resistance to rice black-streaked Dwarf virus infection. Rice (N Y) 13:24

    PubMed  Google Scholar 

  • Lv X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y (2017) Crosstalk between nitric oxide and Mpk1/2 mediates cold acclimation-induced chilling tolerance in tomato. Plant Cell Physiol 58:1963–1975

    PubMed  Google Scholar 

  • Ma W, Xu W, Xu H, Chen Y, He Z, Ma M (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco By-2 cells. Planta 232:325–335

    PubMed  Google Scholar 

  • Mai VC, Drzewiecka K, Jeleń H, Narożna D, Rucińska-Sobkowiak R, Kęsy J, Floryszak-Wieczorek J, Gabryś B, Morkunas I (2014) Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci 221–222:1–12

    PubMed  Google Scholar 

  • Manafi H, Baninasab B, Gholami M, Talebi M (2021) Nitric oxide induced thermotolerance in strawberry plants by activation of antioxidant systems and transcriptional regulation of heat shock proteins. J Hortic Sci Biotechnol 96:783–796

    Google Scholar 

  • Manai J, Gouia H, Corpas FJ (2014) Redox and nitric oxide homeostasis are affected in tomato (Solanum Lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 171:1028–1035

    PubMed  Google Scholar 

  • Mandal M, Sarkar M, Khan A, Biswas M, Masi A, Rakwal R, Agrawal GK, Srivastava A, Sarkar A (2022) Reactive oxygen species (Ros) and reactive nitrogen species (Rns) in plants–maintenance of structural individuality and functional blend. Adva Redox Res:100039

    Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499

    PubMed  Google Scholar 

  • Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC (2019) Nitric oxide in plant-fungal interactions. J Exp Bot 70:4489–4503

    PubMed  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN (2009) The arabidopsis abscisic acid catabolic gene Cyp707a2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C, Spoel SH (2019) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33

    PubMed  Google Scholar 

  • Mata-Pérez C, Begara-Morales JC, Chaki M, Sánchez-Calvo B, Valderrama R, Padilla MN, Corpas FJ, Barroso JB (2016a) Protein tyrosine nitration during development and abiotic stress response in plants. Front Plant Sci 7:1699

    PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Carreras A, Padilla MN, Melguizo M, Valderrama R, Corpas FJ, Barroso JB (2016b) Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide 57:57–63

    PubMed  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Padilla MN, Valderrama R, Corpas FJ, Barroso JB (2016c) Nitric oxide release from nitro-fatty acids in arabidopsis roots. Plant Signal Behav 11:E1154255

    PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Luque F, Melguizo M, Jiménez-Ruiz J, Fierro-Risco J, Peñas-Sanjuán A, Valderrama R, Corpas FJ, Barroso JB (2016d) Nitro-fatty acids in plant signaling: nitro-linolenic acid induces the molecular chaperone network in arabidopsis. Plant Physiol 170:686–701

    PubMed  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB (2017) Nitro-fatty acids in plant signaling: new key mediators of nitric oxide metabolism. Redox Biol 11:554–561

    PubMed  PubMed Central  Google Scholar 

  • Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Aranda-Caño L, Moreno-González D, Molina-Díaz A, Barroso JB (2020) Endogenous biosynthesis of S-nitrosoglutathione from nitro-fatty acids in plants. Front Plant Sci 11:962

    PubMed  PubMed Central  Google Scholar 

  • Mattioli EJ, Rossi J, Meloni M, De Mia M, Marchand CH, Tagliani A, Fanti S, Falini G, Trost P, Lemaire SD, Fermani S, Calvaresi M, Zaffagnini M (2022) Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic Gapdh. Redox Biol 54:102387

    PubMed  PubMed Central  Google Scholar 

  • Mcinnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (Ssp) from Senecio squalidus (Asteraceae). J Exp Bot 57:1835–1846

    PubMed  Google Scholar 

  • Meilhoc E, Cam Y, Skapski A, Bruand C (2010) The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Mol Plant-Microbe Interact 23:748–759

    PubMed  Google Scholar 

  • Meyer C, Stöhr C (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism, pp 49–62

    Google Scholar 

  • Mfarrej MFB, Wang X, Hamzah Saleem M, Hussain I, Rasheed R, Arslan Ashraf M, Iqbal M, Sohaib Chattha M, Nasser Alyemeni M (2022) Hydrogen sulphide and nitric oxide mitigate the negative impacts of waterlogging stress on wheat (Triticum Aestivum L.). Plant Biol (Stuttg) 24:670–683

    PubMed  Google Scholar 

  • Moche M, Stremlau S, Hecht L, Göbel C, Feussner I, Stöhr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231:425–436

    PubMed  Google Scholar 

  • Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp meridionalis elicitor. Plant Physiol 130:1288–1297

    PubMed  PubMed Central  Google Scholar 

  • Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M (2020) Matrix redox physiology governs the regulation of plant mitochondrial metabolism through posttranslational protein modifications. Plant Cell 32:573–594

    PubMed  PubMed Central  Google Scholar 

  • Monreal JA, Arias-Baldrich C, Tossi V, Feria AB, Rubio-Casal A, García-Mata C, Lamattina L, García-Mauriño S (2013) Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. Planta 238:859–869

    PubMed  Google Scholar 

  • Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K (2013) Unraveling the heater: new insights into the structure of the alternative oxidase. Annu Rev Plant Biol 64:637–663

    PubMed  Google Scholar 

  • Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quilleré I, Leydecker MT, Kaiser WM, Morot-Gaudry JF (2002) Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta 215:708–715

    PubMed  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed  PubMed Central  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    PubMed  Google Scholar 

  • Nawrocka J, Gromek A, Małolepsza U (2019) Nitric oxide as a beneficial signaling molecule in trichoderma atroviride Trs25-induced systemic defense responses of cucumber plants against rhizoctonia solani. Front Plant Sci 10:421

    PubMed  PubMed Central  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    PubMed  Google Scholar 

  • Niu L, Yu J, Liao W, Yu J, Zhang M, Dawuda MM (2017) Calcium and calmodulin are involved in nitric oxide-induced adventitious rooting of cucumber under simulated osmotic stress. Front Plant Sci 8:1684

    PubMed  PubMed Central  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    PubMed  Google Scholar 

  • Onyekachi OG, Boniface OO, Gemlack NF, Nicholas N (2019) The effect of climate change on abiotic plant stress: a review. Abiotic Biotic Stress Plants 17

    Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-nitrosylated proteins in pea (Pisum Sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    PubMed  PubMed Central  Google Scholar 

  • Palmieri MC, Lindermayr C, Bauwe H, Steinhauser C, Durner J (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol 152:1514–1528

    PubMed  PubMed Central  Google Scholar 

  • Pandey S, Kumari A, Shree M, Kumar V, Singh P, Bharadwaj C, Loake GJ, Parida SK, Masakapalli SK, Gupta KJ (2019) Nitric oxide accelerates germination via the regulation of respiration in chickpea. J Exp Bot 70:4539–4555

    PubMed  PubMed Central  Google Scholar 

  • Patel RP, Mcandrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411:385–400

    PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Google Scholar 

  • Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and Gsh production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica Juncea L.). Nitric Oxide 68:111–124

    PubMed  Google Scholar 

  • Pérez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM (1999) Methionine adenosyltransferase s-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 274:17075–17079

    PubMed  Google Scholar 

  • Planchet E, Jagadis Gupta K, Sonoda M, Kaiser WM (2005) Nitric oxide emission from tobacco leaves and cell suspensions: rate limiting factors and evidence for the involvement of mitochondrial electron transport. Plant J 41:732–743

    PubMed  Google Scholar 

  • Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    PubMed  Google Scholar 

  • Praveen A, Pandey A, Gupta M (2019) Nitric oxide alters nitrogen metabolism and PIN gene expressions by playing protective role in arsenic challenged Brassica Juncea L. Ecotoxicol Environ Saf 176:95–107

    PubMed  Google Scholar 

  • Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to botrytis cinerea in Arabidopsis Thaliana. Plant Cell Environ 35:1483–1499

    PubMed  Google Scholar 

  • Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ (2009) Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro EA Jr, Cunha FQ, Tamashiro WM, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Lett 445:283–286

    PubMed  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, Van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus Japonicus. Plant Physiol 152:1501–1513

    PubMed  PubMed Central  Google Scholar 

  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM (2002) Regulation of nitric oxide (No) production by plant nitrate reductase in vivo and in vitro. J Exp Bot 53:103–110

    PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum Sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    PubMed  Google Scholar 

  • Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin Ii E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130

    PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Terron-Camero LC, Pelaez-Vico MA, Olmedilla A, Sandalio LM (2019) Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environ Exp Bot 161:107–119

    Google Scholar 

  • Roychoudhury A, Singh A, Aftab T, Ghosal P, Banik N (2021) Seedling priming with sodium nitroprusside rescues vigna radiata from salinity stress-induced oxidative damages. J Plant Growth Regul:1–11

    Google Scholar 

  • Rudolph TK, Freeman BA (2009) Transduction of redox signaling by electrophile-protein reactions. Sci Signal 2:Re7

    PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Google Scholar 

  • Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    PubMed  PubMed Central  Google Scholar 

  • Sabadashka M, Nagalievska M, Sybirna N (2021) Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 45:481–497

    PubMed  Google Scholar 

  • Saddhe AA, Malvankar MR, Karle SB, Kumar K (2019) Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants. Environ Exp Bot 161:86–97

    Google Scholar 

  • Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21

    Google Scholar 

  • Sako K, Van Ha C, Matsui A, Tanaka M, Sato A, Seki M (2021) Transcriptome analysis of arabidopsis thaliana plants treated with a new compound Natolen128, enhancing salt stress tolerance. Plants (Basel) 10

    Google Scholar 

  • Samalova M, Johnson J, Illes M, Kelly S, Fricker M, Gurr S (2013) Nitric oxide generated by the rice blast fungus magnaporthe oryzae drives plant infection. New Phytol 197:207–222

    PubMed  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, no crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    PubMed  Google Scholar 

  • Sánchez-Vicente I, Lorenzo O (2021) Nitric oxide regulation of temperature acclimation: a molecular genetic perspective. J Exp Bot 72:5789–5794

    PubMed  PubMed Central  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50:231–243

    PubMed  Google Scholar 

  • Santolini J, André F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    PubMed  Google Scholar 

  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O (2015) Nitric oxide (No) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868

    PubMed  Google Scholar 

  • Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277:2779–2784

    PubMed  Google Scholar 

  • Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:534–539

    PubMed  Google Scholar 

  • Schopfer FJ, Khoo NKH (2019) Nitro-fatty acid logistics: formation, biodistribution, signaling, and pharmacology. Trends Endocrinol Metab 30:505–519

    PubMed  PubMed Central  Google Scholar 

  • Schopfer FJ, Baker PR, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR Jr, Freeman BA (2005) Fatty acid transduction of nitric oxide signaling. nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem 280:19289–19297

    PubMed  Google Scholar 

  • Sehrawat A, Sougrakpam Y, Deswal R (2019) Cold modulated nuclear s-nitrosoproteome analysis indicates redox modulation of novel brassicaceae specific, myrosinase and napin in Brassica Juncea. Environ Exp Bot 161:312–333

    Google Scholar 

  • Seligman K, Saviani EE, Oliveira HC, Pinto-Maglio CA, Salgado I (2008) Floral transition and nitric oxide emission during flower development in arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant Cell Physiol 49:1112–1121

    PubMed  Google Scholar 

  • Senthil Kumar R, Shen CH, Wu PY, Suresh Kumar S, Hua MS, Yeh KW (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci Rep 6:35246

    PubMed  PubMed Central  Google Scholar 

  • Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A (2015) The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot 66:2869–2876

    PubMed  Google Scholar 

  • Serrato AJ, Romero-Puertas MC, Lázaro-Payo A, Sahrawy M (2018) Regulation by S-nitrosylation of the calvin-benson cycle fructose-1,6-bisphosphatase in Pisum Sativum. Redox Biol 14:409–416

    PubMed  Google Scholar 

  • Shao R, Zhang J, Shi W, Wang Y, Tang Y, Liu Z, Sun W, Wang H, Guo J, Meng Y, Kang G, Jagadish KS, Yang Q (2022) Mercury stress tolerance in wheat and maize is achieved by lignin accumulation controlled by nitric oxide. Environ Pollut 307:119488

    PubMed  Google Scholar 

  • Shi FM, Li YZ (2008) Verticillium dahliae toxins-induced nitric oxide production in arabidopsis is major dependent on nitrate reductase. BMB Rep 41:79–85

    PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    PubMed  Google Scholar 

  • Siddiqui M, Alamri SA, Mutahhar Y, Al-Khaishany M, Al-Qutami H, Nasir Khan M (2017) Nitric oxide and calcium induced physio-biochemical changes in tomato (Solanum Lycopersicum) plant under heat stress. Fresenius Environ Bull 26:1663–1672

    Google Scholar 

  • Simonin V, Galina A (2013) Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner. Biochem J 449:263–273

    PubMed  Google Scholar 

  • Simontacchi M, Jasid S, Puntarulo S (2004) Nitric oxide generation during early germination of sorghum seeds. Plant Sci 167:839–847

    Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592

    PubMed  PubMed Central  Google Scholar 

  • Skelly MJ, Malik SI, Le Bihan T, Bo Y, Jiang J, Spoel SH, Loake GJ (2019) A role for S-nitrosylation of the sumo-conjugating enzyme Sce1 in plant immunity. Proc Natl Acad Sci U S A 116:17090–17095

    PubMed  PubMed Central  Google Scholar 

  • Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration—functional alteration or just a biomarker? Free Radic Biol Med 45:357–366

    PubMed  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–765

    PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic Atp synthesis in barley and rice root mitochondria. Planta 226:465–474

    PubMed  Google Scholar 

  • Sun LR, Yue CM, Hao FS (2019) Update on roles of nitric oxide in regulating stomatal closure. Plant Signal Behav 14:E1649569

    PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of Ros signaling. Curr Opin Plant Biol 14:691–699

    PubMed  Google Scholar 

  • Szuba A, Kasprowicz-Maluśki A, Wojtaszek P (2015) Nitration of plant apoplastic proteins from cell suspension cultures. J Proteome 120:158–168

    Google Scholar 

  • Takahashi M, Shigeto J, Izumi S, Yoshizato K, Morikawa H (2016) Nitration is exclusive to defense-related Pr-1, Pr-3 and Pr-5 proteins in tobacco leaves. Plant Signal Behav 11:E1197464

    PubMed  PubMed Central  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    PubMed  Google Scholar 

  • Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A (2014) Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ 37:864–885

    PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LI, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the arabidopsis transport inhibitor response 1 auxin receptor. Plant J 70:492–500

    PubMed  PubMed Central  Google Scholar 

  • Tierney DL, Rocklin AM, Lipscomb JD, Que L Jr, Hoffman BM (2005) Endor studies of the ligation and structure of the non-heme iron site in Acc oxidase. J Am Chem Soc 127:7005–7013

    PubMed  Google Scholar 

  • Tischner R, Planchet E, Kaiser WM (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett 576:151–155

    PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (No) in arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    PubMed  Google Scholar 

  • Turrion-Gomez JL, Benito EP (2011) Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Mol Plant Pathol 12:606–616

    PubMed  PubMed Central  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Colmenero-Varea P, Del Río LA, Barroso JB (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    PubMed  Google Scholar 

  • Valderrama R, Begara-Morales J, Chaki M, Mata-Pérez C, Padilla M, Barroso J (2019) Hydrogen peroxide (H2O2)-and nitric oxide (No)-derived posttranslational modifications. Nitric oxide and hydrogen peroxide signaling in higher plants. Springer

    Google Scholar 

  • Valentovicová K, Halusková L, Huttová J, Mistrík I, Tamás L (2010) Effect of cadmium on diaphorase activity and nitric oxide production in Barley root tips. J Plant Physiol 167:10–14

    PubMed  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    PubMed  Google Scholar 

  • Vishwakarma A, Kumari A, Mur LAJ, Gupta KJ (2018) A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production. Free Radic Biol Med 122:40–51

    PubMed  Google Scholar 

  • Vitor SC, Duarte GT, Saviani EE, Vincentz MG, Oliveira HC, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of arabidopsis thaliana against Pseudomonas syringae. Planta 238:475–486

    PubMed  Google Scholar 

  • Vladkova R, Dobrikova AG, Singh R, Misra AN, Apostolova E (2011) Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. Nitric Oxide 24:84–90

    PubMed  Google Scholar 

  • Vollár M, Feigl G, Oláh D, Horváth A, Molnár Á, Kúsz N, Ördög A, Csupor D, Kolbert Z (2020) Nitro-oleic acid in seeds and differently developed seedlings of Brassica Napus L. Plants (Basel) 9

    Google Scholar 

  • Wang X, Komatsu S (2022) The role of phytohormones in plant response to flooding. Int J Mol Sci 23

    Google Scholar 

  • Wang Y, Chen T, Zhang C, Hao H, Liu P, Zheng M, Baluška F, Šamaj J, Lin J (2009) Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in pinus bungeana pollen tubes. New Phytol 182:851–862

    PubMed  Google Scholar 

  • Wang BL, Tang XY, Cheng LY, Zhang AZ, Zhang WH, Zhang FS, Liu JQ, Cao Y, Allan DL, Vance CP, Shen JB (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    PubMed  Google Scholar 

  • Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H, Gu Y (2015a) Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pollut Res Int 22:3489–3497

    PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015b) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of Ost1. Proc Natl Acad Sci U S A 112:613–618

    PubMed  Google Scholar 

  • Wang P, Killeen ME, Sumpter TL, Ferris LK, Falo LD Jr, Freeman BA, Schopfer FJ, Mathers AR (2021) Electrophilic nitro-fatty acids suppress psoriasiform dermatitis: Stat3 inhibition as a contributory mechanism. Redox Biol 43:101987

    PubMed  PubMed Central  Google Scholar 

  • Wany A, Foyer CH, Gupta KJ (2018) Nitrate, No And Ros signaling in stem cell homeostasis. Trends Plant Sci 23:1041–1044

    PubMed  Google Scholar 

  • Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wysłouch-Cieszynska A, Zareba-Kozioł M, Krzywinska E, Dadlez M, Dobrowolska G, Wendehenne D (2010) Regulation of nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner Gapdh by nitric oxide in response to salinity. Biochem J 429:73–83

    PubMed  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    PubMed  Google Scholar 

  • Wei L, Zhang J, Wei S, Wang C, Deng Y, Hu D, Liu H, Gong W, Pan Y, Liao W (2022) Nitric oxide alleviates salt stress through protein S-nitrosylation and transcriptional regulation in tomato seedlings. Planta 256:101

    PubMed  Google Scholar 

  • Weisslocker-Schaetzel M, André F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The Nos-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast No-producing enzyme. Plant Sci 265:100–111

    PubMed  Google Scholar 

  • Wilkins KA, Matthus E, Swarbreck SM, Davies JM (2016) Calcium-mediated abiotic stress signaling in roots. Front Plant Sci 7:1296

    PubMed  PubMed Central  Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate-resistant mutant of arabidopsis thaliana with mutations in both nitrate reductase structural genes Nia1 And Nia2. Mol Gen Genet 239:289–297

    PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    PubMed  Google Scholar 

  • Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D, Dancewicz K, Mai VC, Borowiak-Sobkowiak B, Floryszak-Wieczorek J, Gabryś B, Morkunas I (2017) The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int J Mol Sci 18

    Google Scholar 

  • Wünsche H, Baldwin IT, Wu J (2011) S-nitrosoglutathione reductase (Gsnor) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata. J Exp Bot 62:4605–4616

    PubMed  PubMed Central  Google Scholar 

  • Xiao D, Duan X, Zhang M, Sun T, Sun X, Li F, Liu N, Zhang J, Hou C, Wang D (2018) Changes in nitric oxide levels and their relationship with callose deposition during the interaction between soybean and soybean mosaic virus. Plant Biol (Stuttg) 20:318–326

    PubMed  Google Scholar 

  • Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W (2013) Roles of Nia/Nr/Noa1-dependent nitric oxide production and Hy1 expression in the modulation of arabidopsis salt tolerance. J Exp Bot 64:3045–3060

    PubMed  PubMed Central  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    PubMed  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Google Scholar 

  • Xu Y, Qu C, Sun X, Jia Z, Xue M, Zhao H, Zhou X (2020) Nitric oxide boosts Bemisia tabaci performance through the suppression of jasmonic acid signaling pathway in tobacco plants. Front Physiol 11:847

    PubMed  PubMed Central  Google Scholar 

  • Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond Ser B Biol Sci 355:1477–1488

    Google Scholar 

  • Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J (2020) Exogenous nitric oxide enhances disease resistance by nitrosylation and inhibition of S-nitrosoglutathione reductase in peach fruit. Front Plant Sci 11:543

    PubMed  PubMed Central  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in arabidopsis. Plant Cell Environ 39:120–135

    PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    PubMed  Google Scholar 

  • Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liao W (2019) Protein S-nitrosylation in plant abiotic stresses. Funct Plant Biol 47:1–10

    PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    PubMed  Google Scholar 

  • Zhang ZW, Fu YF, Zhou YH, Wang CQ, Lan T, Chen GD, Zeng J, Chen YE, Yuan M, Yuan S, Hu JY (2019) Nitrogen and nitric oxide regulate arabidopsis flowering differently. Plant Sci 284:177–184

    PubMed  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    PubMed  PubMed Central  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in arabidopsis. Plant Physiol 144:206–217

    PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Hong H, Chen L, Li J, Sheng J, Shen L (2014) Lemapk1, Lemapk2, And Lemapk3 are associated with nitric oxide-induced defense response against botrytis cinerea in the lycopersicon esculentum fruit. J Agric Food Chem 62:1390–1396

    PubMed  Google Scholar 

  • Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS (2021) Small signaling molecules in plant response to cold stress. J Plant Physiol 266:153534

    PubMed  Google Scholar 

  • Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L (2016) Arabidopsis Cam1 and Cam4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding. PLoS Genet 12:E1006255

    PubMed  PubMed Central  Google Scholar 

  • Zhou J, Mou H, Zhou J, Ali ML, Ye H, Chen P, Nguyen HT (2021) Qualification of soybean responses to flooding stress using Uav-based imagery and deep learning. Plant Phenomics 2021:9892570

    PubMed  PubMed Central  Google Scholar 

  • Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L (2021) Multifaceted roles of nitric oxide in tomato fruit ripening: no-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 72:941–958

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by ERDF grants cofinanced by the Spanish Ministry of Economy and Competitiveness (Project PGC2018-096405-B-I00), the Junta de Andalucía (group BIO286), the I + D + I project within the framework Programme of FEDER Andalucía 2014–2020 (Reference 1380901), the grants for I + D + I projects, on a competitive basis, within the scope of the Andalusian Plan for Research, Development and Innovation (Junta de Andalucía, PAIDI 2020, Reference: PY20_01002), and the funding for the recruitment of researchers according to Actions 9 and 10 of the Research Support Plan of the University of Jaén (2019–2020, R.02/10/2020; 2020–2021, R.01/01/2022) and a grant for the Recalibration of the Spanish University System (Margarita Salas 2021–2023, R.01/01/2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Barroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aranda-Caño, L., Valderrama, R., Chaki, M., Begara-Morales, J.C., Barroso, J.B. (2023). Reactive Nitrogen Species in Plant Metabolism. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 84. Progress in Botany, vol 84. Springer, Cham. https://doi.org/10.1007/124_2023_74

Download citation

Publish with us

Policies and ethics