Skip to main content

Molecular Regulation of Starch Metabolism

  • Chapter
  • First Online:
Progress in Botany Vol. 84

Part of the book series: Progress in Botany ((BOTANY,volume 84))

  • 117 Accesses

Abstract

Starch is the main storage carbohydrate in plants. Thus, when photosynthesis is inactive, plants are sprouting, and seeds are germinating, starch provides energy and carbon skeletons to fulfill plant growth requirements. Relatively few enzymatic activities are necessary for starch synthesis and degradation. However, starch metabolism is complex due to the high number of isoforms present for each enzymatic activity. The mechanisms of regulations of these isoforms are diverse, and in many cases, they depend on the organ or species analyzed. These mechanisms include allosteric regulation by metabolites, redox regulation, phosphorylation, and protein–protein interactions.

Communicated by Francisco M. Cánovas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt MR, Pfister B, Sharma M, Eicke S, Bürgy L, Neale I, Seung D, Zeeman SC (2020) Starch synthase 5, a noncanonical starch synthase-like protein, promotes starch granule initiation in Arabidopsis. Plant Cell 32:2543–2565

    PubMed  PubMed Central  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    PubMed  Google Scholar 

  • Ahmed Z, Tetlow IJ, Ahmed R, Morell MK, Emes MJ (2015) Protein-protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci 233:95–106

    PubMed  Google Scholar 

  • Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buléon A, Colonna P, Preiss J (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349352

    Google Scholar 

  • Ball SG, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62:1775–1801

    PubMed  Google Scholar 

  • Ball SG, Subtil A, Bhattacharya D, Moustafa A, Weber APM, Gehre L, Colleoni C, Arias MC, Cenci U, Dauvillée D (2013) Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell 25:7–21

    PubMed  PubMed Central  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynth Res 79:1–24

    PubMed  Google Scholar 

  • Baunsgaard L, Lütken H, Mikkelsen R, Glaring MA, Pham TT, Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J 41:595–605

    PubMed  Google Scholar 

  • Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7:56

    Google Scholar 

  • Biliaderis CG, Grant DR, Vose J (1981) Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem 58:502–507

    Google Scholar 

  • Blauth SL, Kim K, Kluciinec JD, Shannon JC, Thompson DB, Guiltinan MJ (2001) Identification of mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol 125:1396–1405

    PubMed  PubMed Central  Google Scholar 

  • Buléon A, Pontoire B, Riekel C, Chanzy H, Helbert W, Vuong R (1997) Crystalline structure of starch granules revealed by synchrotron radiation microdiffraction mapping. Macromolecules 30:3952–3954

    Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  • Cenci U, Nitschke F, Steup M, Minassian BA, Colleoni C, Ball SG (2014) Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Sci 19:18–28

    PubMed  Google Scholar 

  • Colleoni C, Suzuki E (2014) Storage polysaccharide metabolism in cyanobacteria. In: Tetlow I (ed) Starch: origins, structure and metabolism (essential reviews in experimental biology), vol 5. SEB, pp 217–253

    Google Scholar 

  • Comparot-Moss S, Kötting O, Stettler M, Edner C, Graf A, Weise SE, Streb S, Lue WL, MacLean D, Mahlow S, Ritte G, Steup M, Chen J, Zeeman SC, Smith AM (2010) A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves. Plant Physiol 152:685–697

    PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    PubMed  Google Scholar 

  • Crevillén P (2004) Caracterización funcional de las diferentes isoformas de la enzima ADP-glucosa pirofosforilasa de Arabidopsis thaliana. Doctoral thesis, University of Seville. https://idus.us.es/handle/11441/15666

  • Crevillén P, Ballicora MA, Mérida Á, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278:28508–28515

    PubMed  Google Scholar 

  • Crevillén P, Ventriglia T, Pinto F, Orea A, Mérida Á, Romero JM (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280:8142–8149

    Google Scholar 

  • Critchley JH, Zeeman SC, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant J 26:89–100

    PubMed  Google Scholar 

  • Crofts N, Abe N, Oitome NF, Matsushima R, Hayashi M, Tetlow EMJ, Nakamura Y, Fujita N (2015) Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J Exp Bot 66:4469–4482

    PubMed  PubMed Central  Google Scholar 

  • Crofts N, Sugimoto K, Oitome NF, Nakamura Y, Fujita N (2017) Differences in specificity and compensatory functions among three major starch synthases determine the structure of amylopectin in rice endosperm. Plant Mol Biol 94:399–417

    PubMed  Google Scholar 

  • Cuesta-Seijo JA, Ruzanski C, Krucewicz K, Meler S, Hagglund P, Svensson B, Palcic MM (2017) Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 12:e0175488

    PubMed  PubMed Central  Google Scholar 

  • Cuesta-Sejio JA, Nielsen MM, Ruzansli C, Krucewicz K, Beerren SR, Rydhal MG, Yoshimura Y, Striebeck A, Motawia MS, Willats WGT, Palcic MM (2016) In vitro biochemical characterization of all barley endosperm starch synthases. Front Plant Sci 5:e15552

    Google Scholar 

  • Delatte T, Trevisan M, Parker ML, Zeeman SC (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylases, which influences the branch point distribution of amylopectin during starch synthesis. Plant J 41:815–830

    PubMed  Google Scholar 

  • Delvallé D, Dumez S, Wattebled F, Roldán I, Planchot V, Berbezy P, Colonna P, Vyas D, Chatterjee M, Ball S, Mérida Á, D’Hulst C (2005) Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis leaves. Plant J 43:398–412

    PubMed  Google Scholar 

  • Denyer K, Barber LM, Burton R, Hedley CL, Hylton CM, Johnson S, Jones DA, Marshall J, Smith AM, Tatge H, Tomlinson K, Wang TL (1995) The isolation and characterization of novel low-amylose mutants of Pisum sativum L. Plant Cell Environ 18:1019–1026

    Google Scholar 

  • Deschamps P, Moreau H, Worden AZ, Dauvillee D, Ball SG (2008) Early gene duplication within Chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 178:2373–2387

    PubMed  PubMed Central  Google Scholar 

  • Dinges JR, Colleoni C, James MG, Myers AM (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15:666–680

    PubMed  PubMed Central  Google Scholar 

  • Espada J (1962) Enzymic synthesis of adenosine diphosphate glucose from glucose 1-phosphate and adenosine triphosphate. J Biol Chem 237:3577–3581

    Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Bol 40:305–346

    Google Scholar 

  • Fuentes C, Pérez-Re D, Gergenstahl B, Carballo S, Sjoo M, Nilsson L (2019) Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. Int J Biol Macromol 125:829–838

    PubMed  Google Scholar 

  • Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009–1023

    PubMed  PubMed Central  Google Scholar 

  • Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith AM, Smith SM, Zeeman SC (2008) Beta-amylase 4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058

    PubMed  PubMed Central  Google Scholar 

  • Gámez-Arjona FM, Mérida Á (2021) Interplay between the N-terminal domains of Arabidopsis starch synthase 3 determines the interaction of the enzyme with the starch granule. Front Plant Sci 12:704161

    PubMed  PubMed Central  Google Scholar 

  • Gámez-Arjona FM, Raynaud S, Ragel P, Mérida Á (2014) Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobules-associated proteins in Arabidopsis. Plant J 80:305–316

    PubMed  Google Scholar 

  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 107:9458–9463

    PubMed  PubMed Central  Google Scholar 

  • Grimaud F, Rogniaux H, James MG, Myers AM, Planchot V (2008) Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J Exp Bot 59:3395–3406

    PubMed  PubMed Central  Google Scholar 

  • Guan HP, Preiss J (1993) Differentiation of the properties of the branching isoenzymes from maize (Zea mays). Plant Physiol 102:1269–1273

    PubMed  PubMed Central  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX (2008) PhosPhat: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    PubMed  Google Scholar 

  • Hedman KD, Boyer CD (1982) Gene dosage at the Amylose-Extender locus of maize: effects on the levels of starch branching enzymes. Biochem Genet 20:483–492

    PubMed  Google Scholar 

  • Hedman KD, Boyer CD (1983) Allelic studies of the Amylose-Extender locus of Zea mays L: levels of the starch branching enzymes. Biochem Genet 21:1217–1222

    PubMed  Google Scholar 

  • Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849

    PubMed  PubMed Central  Google Scholar 

  • Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908

    PubMed  PubMed Central  Google Scholar 

  • Hussain H, Mant A, Seale R, Zeeman S, Hinchliffe E, Edwards A, Hylton C, Bornemann S, Smith AM, Martin C, Bustos R (2003) Three isoforms of isoamylases contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149

    PubMed  PubMed Central  Google Scholar 

  • Hwang SK, Koper K, Okita TW (2020) The plastid phosphorylase as a multiple-role player in plant metabolism. Plant Sci 290:110303

    PubMed  Google Scholar 

  • Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17:315–321

    PubMed  Google Scholar 

  • Jenkins PJ, Cameron RE, Donals AM (1993) A universal feature in the structure of starch granules from different botanical sources. Starch Stärtke 45:417–420

    Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392

    PubMed  Google Scholar 

  • Kobayashi T, Sasaki S, Utsumi Y, Fujita N, Umeda K, Sawada T, Kubo A, Abe JI, Colleoni C, Ball S, Nakamura Y (2016) Comparison of chain-length and glucan specificities of amylase-type α-glucan debranching enzymes from rice, cyanobacteria, and bacteria. PLoS One 11:e0157020

    PubMed  PubMed Central  Google Scholar 

  • Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137:242–252

    PubMed  PubMed Central  Google Scholar 

  • Kubo A, Colleoni C, Dinges JR, Lin Q, Lappe RR, Rivenbark G, Meyer AJ, Ball SG, James MG, Hennen-Bierwagen TA, Myers AM (2010) Functions of heteromeric and homomeric isoamylases-type starch debranching enzymes in developing maize endosperm. Plant Physiol 153:956–969

    PubMed  PubMed Central  Google Scholar 

  • Kuipers AGJ, Jacobsen E, Visser RGF (1994) Formation and deposition of amylose in the tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell 6:43–52

    PubMed  PubMed Central  Google Scholar 

  • Li J, Francisco P, Zhou W, Edner C, Steup M, Ritte G, Bond CS, Smith SM (2009) Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding protein. Arch Biochem Biophys 489:92–98

    PubMed  Google Scholar 

  • Lin T, Preiss J (1988) Characterization of D-enzyme (4-α-glucanotransferase) in Arabidopsis leaf. Plant Physiol 86:260–265

    PubMed  PubMed Central  Google Scholar 

  • Lin Q, Facon M, Putaux JL, Dinges JR, Wattebled F, D’Hulst C, Hennen-Biewagen T, Myers AM (2013) Function of isoamylases-type debranching enzymes ISA1 and ISA2 in the Zea mays leaf. New Phytol 200:10009–11121

    Google Scholar 

  • Lindeboom N, Chang PR, Tyler RT (2004) Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch Stärke 56:89–99

    Google Scholar 

  • Liu F, Makhmoudova A, Lee EA, Wait R, Emes MJ, Tetlow IJ (2009) The amylose extender of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot 60:4423–4444

    PubMed  Google Scholar 

  • Liu F, Romanova N, Lee E, Ahmed R, Evans M, Gilbert E, Morell M, Emes MJ, Tetlow IJ (2012) Glucan affinity of starch synthase IIa determines binding to starch granules. Biochem J 448:373–387

    PubMed  Google Scholar 

  • Lohmeier-Vogel EM, Kerk D, Nimick M, Wrobel S, Vickerman L, Muench DG, Moorhead GBG (2008) Arabidopsis At5g39790 encodes a chloroplast-localized carbohydrate-binding, coiled-coil domain-containing putative scaffold protein. BMC Plant Bio 8:120

    Google Scholar 

  • Lu Y, Steichen JM, Yao J, Sharkey TD (2006) The role of cytosolic α-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli. Plant Physiol 142:878–889

    PubMed  PubMed Central  Google Scholar 

  • Makhmoudova A, Williams D, Brewer D, Massey S, Patterson J, Silva A, Vassall KA, Liu F, Subedi S, Harauz G, Siu KWM, Tetlow IJ, Emes MJ (2014) Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. J Biol Chem 289:9233–9246

    PubMed  PubMed Central  Google Scholar 

  • Malinova I, Mahlow S, Alseekh S, Orawetz T, Fernie AR, Baumann O, Steup M, Fettke J (2014) Double knockout mutants of Arabidopsis grown under normal conditions reveal that the plastidial phosphorylase isoenzyme participates in transitory starch metabolism. Plant Physiol 164:907–921

    PubMed  Google Scholar 

  • Malinova I, Mahto H, Brandt F, Al-Rawi S, Qasim H, Brust H, Hejazi M, Fettke J (2018) EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases. Plant J 95:126–137

    PubMed  Google Scholar 

  • Mehrpouyan S, Menon U, Tetlow IJ, Emes MJ (2021) Protein phosphorylation regulates maize endosperm starch synthase IIa activity and protein-protein interactions. Plant J 105:1098–1112

    PubMed  Google Scholar 

  • Mérida Á, Fettke J (2021) Starch granule initiation in Arabidopsis thaliana chloroplasts. Plant J 107:688–697

    PubMed  Google Scholar 

  • Mérida Á, Rodríguez-Galán JM, Vincent C, Romero JM (1999) Expression of the granule-bound starch synthase I (waxy) gene from snapdragon is developmentally and circadian clock regulated. Plant Physiol 120:401–409

    PubMed  PubMed Central  Google Scholar 

  • Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci U S A 106:9908–9913

    PubMed  PubMed Central  Google Scholar 

  • Morell MT, Bloom M, Knowles V, Preiss J (1987) Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 85:182–187

    PubMed  PubMed Central  Google Scholar 

  • Mouille G, Maddelein ML, Libessart N, Talaga P, Decq A, Delrue B, Ball S (1996) Preamylopectin processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8:1353–1366

    PubMed  PubMed Central  Google Scholar 

  • Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress towards understanding the biogenesis of the amylopectin crystal. Plant Physiol 122:989–997

    PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 1:253–259

    Google Scholar 

  • Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S (2010) Characterization of the reactions of starch branching enzyme from rice endosperm. Plant Cell Physiol 51:776–794

    PubMed  Google Scholar 

  • Nakamura Y, Ono M, Sawada T, Crofts N, Fujita N, Steup M (2017) Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch synthesis. Plant Sci 264:83–95

    PubMed  Google Scholar 

  • Neuhaus HF, Stitt M (1990) Control analysis of photosynthate partitioning. Impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana. Planta 182:445–454

    Google Scholar 

  • Nishi A, Nakamura Y, Satoh H (2001) Biochemical and genetic analysis of amylose-extender mutations of rice endosperm. Plant Physiol 127:459–472

    PubMed  PubMed Central  Google Scholar 

  • Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol 93:785–790

    PubMed  PubMed Central  Google Scholar 

  • Raynaud S, Ragel P, Rojas T, Mérida Á (2016) The N-terminal part of Arabidopsis thaliana starch synthase 4 determines the localization and activity of the enzyme. J Biol Chem 291:10759–10771

    PubMed  PubMed Central  Google Scholar 

  • Ritte G, Lloyd JR, Eckermann N, Rottmann J, Steup M (2002) The starch-related R1 protein is an α-glucan, water dikinase. Proc Natl Acad Sci U S A 99:7166–7171

    PubMed  PubMed Central  Google Scholar 

  • Ritte G, Heydenreich M, Mahlow S, Haebel S, Kötting O, Steup M (2006) Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalyzed by distinct kinases. FEBS Lett 580:4872–4876

    PubMed  Google Scholar 

  • Roldán I, Wattebled F, Lucas MM, Delvallé D, Planchot V, Jiménez S, Pérez R, Ball S, D’Hulst C, Mérida Á (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    PubMed  Google Scholar 

  • Santelia D, Kötting O, Seung D, Schubert M, Thalmann M, Bischof S, Meekins DA, Lutz A, Patron N, Gentry MS, Allain FHT, Zeeman SC (2011) The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell 23:4096–4111

    PubMed  PubMed Central  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    PubMed  PubMed Central  Google Scholar 

  • Schreier TB, Umhang M, Lee SK, Lue WL, Shen Z, Silver D, Graf A, Müller A, Eicke S, Stadler-Waibel M, Seung D, Bischof S, Briggs SP, Kötting O, Moorhead GBG, Chen J, Zeeman SC (2019) LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell 31:2169–2186

    PubMed  PubMed Central  Google Scholar 

  • Seung D, Soyk S, Coiro M, Maier BA, Eicke S, Zeeman SC (2015) Protein targeting to starch is required for localizing granule-bound strach synthase to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol 13:e1002080

    PubMed  PubMed Central  Google Scholar 

  • Seung D, Boudet J, Monroe J, Schreier TB, David LC, Abt M, Lu KJ, Zanella M, Zeeman SC (2017) Homologs of protein yargeting to starch control starch granule initiation in Arabidopsis leaves. Plant Cell 29:1657–1677

    PubMed  PubMed Central  Google Scholar 

  • Smith AM, Zeeman SC (2020) Starch: a flexible, adaptable carbon store coupled to plant growth. Annu Rev Plant Biol 71:217–245

    PubMed  Google Scholar 

  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:2687–2699

    PubMed  PubMed Central  Google Scholar 

  • Smith-White BJ, Preiss J (1992) Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34:449–464

    PubMed  Google Scholar 

  • Sokolov LN, Domínguez-Solís JR, Allary AL, Buchanan BB, Luan S (2006) A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc Natl Acad Sci U S A 103:9732–9737

    PubMed  PubMed Central  Google Scholar 

  • Stinard PS, Robertson DS, Schnable PS (1993) Genetic isolation, cloning, and analysis of a mutator-induced, dominant antimorph of the maize amylose extender1 locus. Plant Cell 5:1555–1566

    PubMed  PubMed Central  Google Scholar 

  • Subasinghe RM, Liu F, Polack UC, Lee EA, Emes MJ, Tetlow IJ (2014) Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts. Plant Physiol Biochem 83:168–179

    PubMed  Google Scholar 

  • Szydlowski N, Ragel P, Hennen-Bierwagen TA, Planchot V, Myers AM, Mérida Á, D’Hulst C, Wattebled F (2011) Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. J Exp Bot 62:4547–4559

    PubMed  Google Scholar 

  • Takaha T, Critchley J, Okada S, Smith SM (1998) Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme. Planta 205:445–451

    Google Scholar 

  • Tenorio G, Orea A, Romero JM, Mérida Á (2003) Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle. Plant Mol Biol 51:949–958

    PubMed  Google Scholar 

  • Tetlow IJ, Bertoft E (2020) A review of starch biosynthesis in relation to the building block-backbone model. Int J Mol Sci 21:7011

    PubMed  PubMed Central  Google Scholar 

  • Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16:694–708

    PubMed  PubMed Central  Google Scholar 

  • Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ (2008) Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891

    PubMed  PubMed Central  Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    PubMed  PubMed Central  Google Scholar 

  • Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc B Biol Sci 268:1417–1422

    Google Scholar 

  • Walley JW, Shen Z, Sartor R, Wu KJ, Osborn J, Smith LG, Briggs SP (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc Natl Acad Sci U S A 110:E4808–E4817

    PubMed  PubMed Central  Google Scholar 

  • Waterschoot J, Gomand SV, Fierens E, Delcour JA (2015) Production, structure, physiochemical and functional properties of maize, casava, wheat, potato and rice starches. Starch Stärke 67:14–29

    Google Scholar 

  • Wattebled F, Planchot V, Dong Y, Szydlowski N, Pontoire B, Devin A, Ball S, D’Hulst C (2008) Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and overlapping functions of debranching enzymes in Arabidopsis leaves. Plant Physiol 148:1309–1323

    PubMed  PubMed Central  Google Scholar 

  • Xu SB, Yu HT, Yan LF, Wang T (2010) Integrated proteomic and cytological study of rice endosperm at the storage phase. J Prot Res 9:4906–4918

    Google Scholar 

  • Zabawinski C, Van den Koornhuyse N, D’Hulst C, Schlichting R, Giersch C, Celrue B, Lacroix JM, Preiss J, Ball S (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183:1069–1077

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Hamaker BR (2012) Banana starch structure and digestibility. Carbohydr Polym 87:1552–1558

    Google Scholar 

  • Zhang X, Colleoni C, Ratushna V, Sirghie-Colleoni M, James MG, Myers AM (2004) Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol Biol 54:865–879

    PubMed  Google Scholar 

  • Zhang X, Myers AM, James MG (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiol 138:663–674

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Szydlowski N, Delvallé D, D’Hulst C, James MG, Myers AM (2008) Overlapping functions of the starch synthases SSI and SSII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biol 8:96

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Mérida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mérida, Á. (2022). Molecular Regulation of Starch Metabolism. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 84. Progress in Botany, vol 84. Springer, Cham. https://doi.org/10.1007/124_2022_65

Download citation

Publish with us

Policies and ethics