Skip to main content

Pollen: A Key Tool for Understanding Climate, Vegetation, and Human Evolution

  • Chapter
  • First Online:
Progress in Botany Vol. 84

Part of the book series: Progress in Botany ((BOTANY,volume 84))

Abstract

The analysis of ancient pollen (and spores) preserved in sedimentary sequences is a classical approach used in paleoclimatology, paleoecology and archaeology since the beginning of the twentieth century. Yet, pollen analysis is the most powerful tool to reconstruct past vegetation changes affording more precise documentation of distribution, composition and land vegetation cover than geochemical tracers only providing the wet/dry-loving plants ratio through time. Ancient pollen from deep-sea cores has allowed the direct comparison of vegetation and atmospheric conditions on land with changes in ocean and ice sheet dynamics, identifying, for instance, a strong air-sea thermal contrast at orbital and millennial time scales in the European margin favouring moisture production and transport to northern hemisphere high latitudes and the last entering in glaciation. The study of ancient pollen along with plant macro remains and modern and ancient DNA has revealed the location of cryptic refugia for temperate and boreal trees during cold periods and reduced the original velocity estimations for tree migration highlighting the difficulty for certain trees to keep pace with the on-going climate change. Pollen-based vegetation changes are of most relevance to understand human evolution as past populations were tightly dependent on plant and animal resources. Repeated and strong savannah expansion in eastern Africa contemporaneous with the onset of large northern hemisphere glaciations provided enough animal resources that allowed hominin brain increase and the emergence of early Homo. In Europe, the successive and rapid steppe-dominated cold periods punctuating the last glacial period triggered repeated increases of ungulate biomass and human demography that may explain the increase and accumulation of innovations in Homo sapiens populations.

Communicated by Maria Carmen Risueño

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello LC, Antón SC (2012) Human biology and the origins of homo: an introduction to supplement 6. Curr Anthropol 53(S6):S269–S277

    Google Scholar 

  • Allen JRM, Brandt U, Brauer A, Hubberten H-W, Huntley B, Keller J, Kraml M, Mackensen A, Mingram J, Negendank JFW, Nowaczyk NR, Oberhänsli H, Watts WA, Wulf S, Zolitschka B (1999) Rapid environmental changes in southern Europe during the last glacial period. Nature 400:740–743

    Google Scholar 

  • Anderson PM, Bartlein PJ, Brubaker LB, Gajewski K, Ritchie JC (1989) Modern analogues of late-quaternary pollen spectra from the western interior of North America. J Biogeogr 16:573–596

    Google Scholar 

  • Bailey RG (1998) Ecoregions: the ecosystem geography of the oceans and continents. Springer, New York

    Google Scholar 

  • Banks WE, d'Errico F, Peterson AT, Kageyama M, Sima A, Sánchez-Goñi MF (2008) Neanderthal extinction by competitive exclusion. PLoS One 3(12):e3972

    PubMed  PubMed Central  Google Scholar 

  • Barker S, Knorr G, Edwards RL, Parrenin F, Putnam AE, Skinner LC, Wolff E, Ziegler M (2011) 800,000 years of abrupt climate variability. Science 334(6054):347–351

    PubMed  Google Scholar 

  • Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet Sci Lett 166(1):85–95

    Google Scholar 

  • Bar-Or R, Erlick C, Gildor H (2008) The role of dust in glacial–interglacial cycles. Quat Sci Rev 27(3):201–208

    Google Scholar 

  • Barth AM, Clark PU, Bill NS, He F, Pisias NG (2018) Climate evolution across the mid-Brunhes transition. Clim Past 14(12):2071–2087

    Google Scholar 

  • Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS, Gibbard PL, Stokes CR, Murton JB, Manica A (2019) The configuration of northern hemisphere ice sheets through the quaternary. Nat Commun 10(1):3713

    PubMed  PubMed Central  Google Scholar 

  • Bennett KD, Provan J (2008) What do we mean by ‘refugia’? Quat Sci Rev 27(27):2449–2455

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Google Scholar 

  • Berger A, Loutre MF (2004) Astronomical theory of climate change. J Phys IV France 121:1–35

    Google Scholar 

  • Bergström A, Stringer C, Hajdinjak M, Scerri EML, Skoglund P (2021) Origins of modern human ancestry. Nature 590(7845):229–237

    PubMed  Google Scholar 

  • Birks HJB (2019) Contributions of quaternary botany to modern ecology and biogeography. Plant Ecology & Diversity 12(3–4):189–385

    Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London

    Google Scholar 

  • Birks HH, Giesecke T, Hewitt GM, Tzedakis PC, Bakke J, Birks HJB (2012) Comment on "Glacial Survival of Boreal Trees in Northern Scandinavia". Science 338(6108):742–742

    PubMed  Google Scholar 

  • Blome MW, Cohen AS, Tryon CA, Brooks AS, Russell J (2012) The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J Hum Evol 62(5):563–592

    PubMed  Google Scholar 

  • Bocherens H, Drucker DG, Billiou D, Patou-Mathis M, Vandermeersch B (2005) Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J Hum Evol 49(1):71–87

    PubMed  Google Scholar 

  • Bond G, Lotti R (1995) Icebergs discharges into the North Atlantic on millenial time scales during the last glaciation. Science 267:1005–1009

    PubMed  Google Scholar 

  • Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Bonnefille R (2010) Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global Planet Change 72(4):390–411

    Google Scholar 

  • Bonnefille R, Potts R, Chalié F, Jolly D, Peyron O (2004) High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proc Natl Acad Sci U S A 101(33):12125–12129

    PubMed  PubMed Central  Google Scholar 

  • Bonny AP (1978) The effect of pollen recruitment processes on pollen distribution over the sediment surface of a small lake in Cumbria. J Ecol 66(3):721–737

    Google Scholar 

  • Bouttes N, Vazquez Riveiros N, Govin A, Swingedouw D, Sanchez-Goni MF, Crosta X, Roche DM (2020) Carbon 13 isotopes reveal limited ocean circulation changes between interglacials of the last 800 ka. Paleoceanogr Paleoclimatol 35(5):e2019PA003776

    Google Scholar 

  • Bradshaw RHV, Webb T III (1985) Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66(3):721–737

    Google Scholar 

  • Brandon M, Landais A, Duchamp-Alphonse S, Favre V, Schmitz L, Abrial H, Prié F, Extier T, Blunier T (2020) Exceptionally high biosphere productivity at the beginning of marine isotopic stage 11. Nat Commun 11(1):2112

    PubMed  PubMed Central  Google Scholar 

  • Braun-Blanquet J (1930) L’origine et le développement des Flores dans le massif central de France avec aperçu sur les migrations des Flores dans l’Europe sud-occidentale. Publ Société Linn Lyon 75:1–73

    Google Scholar 

  • Carre M, Cheddadi R (2017) Seasonality in long-term climate change. Quaternaire 28:173–177

    Google Scholar 

  • Cheddadi R, Henrot A-J, François L, Boyer F, Bush M, Carré M, Coissac E, De Oliveira PE, Ficetola F, Hambuckers A, Huang K, Lézine A-M, Nourelbait M, Rhoujjati A, Taberlet P, Sarmiento F, Abel-Schaad D, Alba-Sánchez F, Zheng Z (2017) Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front Ecol Evol 5

    Google Scholar 

  • Cheng Z, Weng C, Steinke S, Mohtadi M (2018) Anthropogenic modification of vegetated landscapes in southern China from 6,000 years ago. Nat Geosci 11(12):939–943

    Google Scholar 

  • Claussen M (2007) Introduction to climate forcing and climate feedbacks. In: Sirocko F, Claussen M, Sanchez Goñi MF, Litt T (eds) The climate of past interglacials developments in quaternary science. Elsevier, Amsterdam, pp 3–11

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL, Fan JX (2013) The ICS international chronostratigraphic chart. Int Union Geol Sci 36(3):199–204

    Google Scholar 

  • Collard I, Foley RA (2002) Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evol Ecol Res 4:371–383

    Google Scholar 

  • Combourieu Nebout N, Peyron O, Dormoy I, Desprat S, Beaudoin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25,000 years from high resolution pollen data. Clim Past 5:503–521

    Google Scholar 

  • Combourieu-Nebout N, Turon J-L, Zahn R, Capotondi L, Londeix L, Pahncke K (2002) Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 ky. Geology 30:863–866

    Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157(1):389–397

    PubMed  PubMed Central  Google Scholar 

  • Cowling SA, Cox PM, Jones CD, Maslin MA, Peros M, Spall SA (2008) Simulated glacial and interglacial vegetation across Africa: implications for species phylogenies and trans-African migration of plants and animals. Glob Chang Biol 14(4):827–840

    Google Scholar 

  • Crucifix M, Loutre MF (2002) Transient simulations over the last interglacial period (126-115 kyr BP): feedback and forcing analysis. Climate Dynam 19:417–433

    Google Scholar 

  • d’Errico F, Sánchez Goñi MF, Vanhaeren M (2006) 'L’impact de la variabilité climatique rapide des OIS3-2 sur le peuplement de l’Europe', L’homme face au climat. Odile Jacob, Paris

    Google Scholar 

  • d’Errico F, Pitarch Martí A, Shipton C, Le Vraux E, Ndiema E, Goldstein S, Petraglia MD, Boivin N (2020) Trajectories of cultural innovation from the middle to later stone age in eastern Africa: personal ornaments, bone artifacts, and ocher from Panga ya Saidi, Kenya'. J Hum Evol 141:102737

    PubMed  Google Scholar 

  • Dansgaard W, Johnsen S, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. American Geophysical Union, Washington, pp 288–298

    Google Scholar 

  • Davis BAS, Chevalier M, Sommer P, Carter VA, Finsinger W, Mauri A, Phelps LN, Zanon M, Abegglen R, Åkesson CM, Alba-Sánchez F, Anderson RS, Antipina TG, Atanassova JR, Beer R, Belyanina NI, Blyakharchuk TA, Borisova OK, Bozilova E, Bukreeva G, Bunting MJ, Clò E, Colombaroli D, Combourieu-Nebout N, Desprat S, Di Rita F, Djamali M, Edwards KJ, Fall PL, Feurdean A, Fletcher W, Florenzano A, Furlanetto G, Gaceur E, Galimov AT, Gałka M, García-Moreiras I, Giesecke T, Grindean R, Guido MA, Gvozdeva IG, Herzschuh U, Hjelle KL, Ivanov S, Jahns S, Jankovska V, Jiménez-Moreno G, Karpińska-Kołaczek M, Kitaba I, Kołaczek P, Lapteva EG, Latałowa M, Lebreton V, Leroy S, Leydet M, Lopatina DA, López-Sáez JA, Lotter AF, Magri D, Marinova E, Matthias I, Mavridou A, Mercuri AM, Mesa-Fernández JM, Mikishin YA, Milecka K, Montanari C, Morales-Molino C, Mrotzek A, Muñoz Sobrino C, Naidina OD, Nakagawa T, Nielsen AB, Novenko EY, Panajiotidis S, Panova NK, Papadopoulou M, Pardoe HS, Pędziszewska A, Petrenko TI, Ramos-Román MJ, Ravazzi C, Rösch M, Ryabogina N, Sabariego Ruiz S, Salonen JS, Sapelko TV, Schofield JE, Seppä H, Shumilovskikh L, Stivrins N, Stojakowits P, Svobodova Svitavska H, Święta-Musznicka J, Tantau I, Tinner W, Tobolski K, Tonkov S, Tsakiridou M, Valsecchi V, Zanina OG, Zimny M (2020) The Eurasian modern pollen database (EMPD), version 2. Earth Syst Sci Data 12(4):2423–2445

    Google Scholar 

  • de Beaulieu J-L, Reille M (1992) The last climatic cycle at La Grande Pile (Vosges, France). A new pollen profile. Quaternary Science Reviews 11:431–438

    Google Scholar 

  • De Vernal A, Hillaire-Marcel C (2008) Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320(1622–1625)

    Google Scholar 

  • deMenocal PB (2011) Climate and human evolution. Science 331(6017):540–542

    PubMed  Google Scholar 

  • d'Errico F, Banks WE (2015) Tephra studies and the reconstruction of middle-to-upper Paleolithic cultural trajectories. Quat Sci Rev 118:182–193

    Google Scholar 

  • d'Errico F, Sánchez Goñi MF (2003) Neandertal extinction and the millennial scale climatic variability of OIS 3. Quat Sci Rev 22:769–788

    Google Scholar 

  • Desprat S, Sánchez Goñi MF, Turon J-L, McManus JF, Loutre MF, Duprat J, Malaizé B, Peyron O, Peypouquet J-P (2005) Is vegetation responsible for glacial inception during periods of muted insolation changes? Quat Sci Rev 24:1361–1374

    Google Scholar 

  • Desprat S, Sánchez Goñi MF, Turon J-L, Duprat J, Malaizé B, Peypouquet J-P (2007) Climate variability of the last five isotopic interglacials from direct land-sea-ice correlation. In: Sirocko F, Claussen M, Sánchez Goñi MF, Litt T (eds) The climate of past interglacials. Elsevier, pp 375–386

    Google Scholar 

  • Desprat S, Diaz Fernandez PM, Coulon T, Ezzat L, Pessarossi-Langlois J, Gil L, Morales-Molino C, Sanchez Goñi MF (2015) Pinus nigra (European black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: a morphological study of modern and fossil pollen. J Biogeogr 42:1998–2009

    Google Scholar 

  • Dupont L (2011) Orbital scale vegetation change in Africa. Quat Sci Rev 30:3589–3602

    Google Scholar 

  • Duprat-Oualid F, Rius D, Bégeot C, Magny M, Millet L, Wulf S, Appelt O (2017) Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7k cal a BP: the Bergsee lacustrine record (Black Forest, Germany). J Quat Sci 32(7):1008–1021

    Google Scholar 

  • Dutton A, Carlson AE, Long AJ, Milne GA, Clark PU, DeConto R, Horton BP, Rahmstorf S, Raymo ME (2015) Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349(6244):aaa4019

    PubMed  Google Scholar 

  • Elliot M, Labeyrie L, Dokken T, Manthé S (2001) Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10-60 ka). Earth Planet Sci Lett 194:151–163

    Google Scholar 

  • EPICA (2004) Eigth glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  • Erdtman G (1969) Handbook of palynology. Munksgaard, Copenhagen

    Google Scholar 

  • Faegri K, Iversen J (1964) Textbook of pollen analysis. Munksgaard, Copenhagen

    Google Scholar 

  • Fawcett PJ, Werne JP, Anderson RS, Heikoop JM, Brown ET, Berke MA, Smith SJ, Goff F, Donohoo-Hurley L, Cisneros-Dozal LM, Schouten S, Sinninghe Damsté JS, Huang Y, Toney J, Fessenden J, WoldeGabriel G, Atudorei V, Geissman JW, Allen CD (2011) Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470(7335):518–521

    PubMed  Google Scholar 

  • Fletcher WJ, Sanchez Goñi MF (2008) Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70:451–464

    Google Scholar 

  • Fletcher WJ, Sánchez Goñi MF, Allen JRM, Cheddadi R, Combourieu-Nebout N, Huntley B, Lawson I, Londeix L, Magri D, Margari V, Müller UC, Naughton F, Novenko E, Roucoux K, Tzedakis PC (2010) Millennial-scale variability during the last glacial in vegetation records from Europe. Quat Sci Rev 29(21–22):2839–2864

    Google Scholar 

  • Follieri M, Magri D, Sadori L (1988) 250,000-year pollen record from valle di Castiglione (Roma). Pollen Spores 30(3/4):329–356

    Google Scholar 

  • Ganopolski A, Winkelmann R, Schellnhuber HJ (2016) Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529(7585):200–203

    PubMed  Google Scholar 

  • Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JL, Carstens BC, Davis EB, de Lafontaine G, Edwards ME, Fernandez M, Henne PD, Herring EM, Holden ZA, Kong W-S, Liu J, Magri D, Matzke NJ, McGlone MS, Saltré F, Stigall AL, Tsai Y-HE, Williams JW (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204(1):37–54

    PubMed  Google Scholar 

  • Gouveia C, Trigo RM, DaCamara CC, Libonati R, Pereira JMC (2008) The North Atlantic Oscillation and European vegetation dynamics. Int J Climatol 28:1835–1847

    Google Scholar 

  • Groot JJ, Groot CR (1966) Marine palynology: possibilities, limitations, problems. Mar Geol 4(6):387–395

    Google Scholar 

  • Guiot J (1990) Methodology of the last climatic cycle reconstruction from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 80:49–69

    Google Scholar 

  • Harris NL, Gibbs DA, Baccini A, Birdsey RA, de Bruin S, Farina M, Fatoyinbo L, Hansen MC, Herold M, Houghton RA, Potapov PV, Suarez DR, Roman-Cuesta RM, Saatchi SS, Slay CM, Turubanova SA, Tyukavina A (2021) Global maps of twenty-first century forest carbon fluxes. Nat Clim Chang 11(3):234–240

    Google Scholar 

  • Hays JD, Imbrie J, Shackelton NJ (1976) Variations in the Earth’s orbit pacemaker of the ice ages. Science 194(4270):1121–1132

    PubMed  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Quatern Res 29:142–152

    Google Scholar 

  • Helmens KF (2014) The Last Interglacial–Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat Sci Rev 86:115–143

    Google Scholar 

  • Hes G, Sánchez Goñi MF, Bouttes N (2021) Impact of terrestrial biosphere on the atmospheric CO2 concentration across termination V. Climate Past Discuss 2021:1–29

    Google Scholar 

  • Heusser LE, Balsam WL (1977) Pollen distribution in the N.E. Pacific ocean. Quatern Res 7:45–62

    Google Scholar 

  • Hodell DA (2016) The smoking gun of the ice ages. Science 354(6317):1235–1236

    PubMed  Google Scholar 

  • Hooghiemstra H, Lézine A-M, Leroy SAG, Dupont L, Marret F (1988) Late quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat Int 148:29–44

    Google Scholar 

  • Hooghiemstra H, Stalling H, Agwu COC, Dupont LM (1992) Vegetational and climatic changes at the northern fringe of the Sahara 250,000-5000 years BP: evidence from 4 marine pollen records located between Portugal and the Canary Islands. Rev Palaeobot Palynol 74:1–53

    Google Scholar 

  • Hughes PD, Gibbard PL, Ehlers J (2013) Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci Rev 125:171–198

    Google Scholar 

  • Huntley B (1990) Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quatern Res 33:360–376

    Google Scholar 

  • Huntley B, Birks HJB (1983) An atlas of past and present Pollenmaps for Europe: 0–13.000 B.P. years ago. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson GL, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796

    PubMed  Google Scholar 

  • Knutti R, Flückiger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856

    PubMed  Google Scholar 

  • Koreneva EV (1966) Marine palynological researches in the U.S.S.R. Mar Geol 4(6):565–574

    Google Scholar 

  • Krapp M, Beyer R, Edmundson SL, Valdes PJ, Manica A (2019) A comprehensive history of climate and habitat stability of the last 800 000 years. Clim Past Discuss 2019:1–29

    Google Scholar 

  • Landais A, Barnola JM, Masson-Delmotte V, Jouzel J, Chappellaz J, Caillon N, Huber C, Leuenberger M, Johnsen S (2004) A continuous record of temperature evolution over a whole sequence of Dansgaard-Oeschger during marine isotopic stage 4 (76 to 62 kyr BP). Geophys Res Lett 31(L22211):101–113

    Google Scholar 

  • Langgut D, Almogi-Labin A, Bar-Matthews M, Weinstein-Evron M (2011) Vegetation and climate changes in the south eastern Mediterranean during the last glacial-interglacial cycle (86 ka): new marine pollen record. Quat Sci Rev 30(27):3960–3972

    Google Scholar 

  • Li F-S, Phyo P, Jacobowitz J, Hong M, Weng J-K (2019) The molecular structure of plant sporopollenin. Nat Plants 5(1):41–46

    PubMed  Google Scholar 

  • Lisiecki L, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20:PA1003

    Google Scholar 

  • Litt T, Pickarski N, Heumann G, Stockhecke M, Tzedakis PC (2014) A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quat Sci Rev 104:30–41

    Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000[thinsp]years. Nature 453(7193):383–386

    PubMed  Google Scholar 

  • Lutgerink RHP, Swertz CA, Janssen CR (1989) Regional pollens assemblages versus landscape regions in the Monts du Forez, Massif Central, France. Pollen Spores 31((1–2)):45–60

    Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000[thinsp]years before present. Nature 453(7193):379–382

    PubMed  Google Scholar 

  • Lynch-Stieglitz J (2017) The Atlantic meridional overturning circulation and abrupt climate change. Ann Rev Mar Sci 9:83–104

    PubMed  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, Van Der Knaap WO, Petit RJ, De Beaulieu J-L (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171(1):199–221

    PubMed  Google Scholar 

  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16(24):5259–5266

    PubMed  Google Scholar 

  • Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P (2017) Quaternary disappearance of tree taxa from southern Europe: timing and trends. Quat Sci Rev 163:23–55

    Google Scholar 

  • Margari V, Skinner LC, Tzedakis PC (2010) The nature of millennial-scale climate variability during the past two glacial periods. Nat Geosci 3:127–133

    Google Scholar 

  • Martrat B, Grimalt JO, Shackleton NJ, De Abreu L, Hutterli MA, Stocker TF (2007) Four cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317:502–507

    PubMed  Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate changes. Ecology 86(8):2088–2098

    Google Scholar 

  • McManus JF, Bond GC, Broecker WS, Johnsen S, Labeyrie L, Higgins S (1994) High-resolution climate records from the North Atlantic during the last interglacial. Nature 371:326–329

    Google Scholar 

  • McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    PubMed  Google Scholar 

  • Melles M, Brigham-Grette J, Minyuk PS, Nowaczyk NR, Wennrich V, DeConto RM, Anderson PM, Andreev AA, Coletti A, Cook TL, Haltia-Hovi E, Kukkonen M, Lozhkin AV, Rosén P, Tarasov P, Vogel H, Wagner B (2012) 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337(6092):315–320

    PubMed  Google Scholar 

  • Milankovitch MM (1941) Kanon der Erdbestrahlung. Köninglich Serbische Akademie, Beograd

    Google Scholar 

  • Morales-Molino C, Devaux L, Georget M, Hanquiez V, Sánchez Goñi MF (2020) Modern pollen representation of the vegetation of the Tagus Basin (Central Iberian Peninsula). Rev Palaeobot Palynol 276:104193

    Google Scholar 

  • Mudie PJ, McCarthy FMG (2006) Marine palynology: potentials for onshore–offshore correlation of Pleistocene–Holocene records. Trans R Soc S Afr 61(2):139–157

    Google Scholar 

  • Müller UC, Pross J, Tzedakis PC, Gamble C, Kotthoff U, Schmiedl G, Wulf S, Christanis K (2011) The role of climate in the spread of modern humans into Europe. Quat Sci Rev 30(3):273–279

    Google Scholar 

  • Naughton F, Sanchez Goñi MF, Desprat S, Turon J-L, Duprat J, Malaizé B, Joli C, Cortijo E, Drago T, Freitas MC (2007) Present-day and past (last 25000 years) marine pollen signal off western Iberia. Mar Micropaleontol 62:91–114

    Google Scholar 

  • Naughton F, Sanchez Goñi MF, Kageyama M, Bard E, Duprat J, Cortijo E, Desprat S, Malaizé B, Joly C, Rostek F (2009) Wet to dry climatic trend in north western Iberia within Heinrich events. Earth Planet Sci Lett 284:329–342

    Google Scholar 

  • Nehrbass-Ahles C, Shin J, Schmitt J, Bereiter B, Joos F, Schilt A, Schmidely L, Silva L, Teste G, Grilli R, Chappellaz J, Hodell D, Fischer H, Stocker TF (2020) Abrupt CO(2) release to the atmosphere under glacial and early interglacial climate conditions. Science 369(6506):1000–1005

    PubMed  Google Scholar 

  • Nettle D (1998) Explaining global patterns of language diversity. J Anthropol Archaeol 17:354–374

    Google Scholar 

  • Nieto-Lugilde D, Maguire KC, Blois JL, Williams JW, Fitzpatrick MC (2015) Close agreement between pollen-based and forest inventory-based models of vegetation turnover. Glob Ecol Biogeogr 24(8):905–916

    Google Scholar 

  • North Greenland Ice-Core Project (NorthGRIP) Members (2004) High resolution climate record of the northern hemisphere reaching into the last glacial interglacial period. Nature 431:147–151

    Google Scholar 

  • Oliveira D, Desprat S, Rodrigues T, Naughton F, Hodell D, Trigo R, Rufino M, Lopes C, Abrantes F, Sánchez Goñi MF (2016) The complexity of millennial-scale variability in southwestern Europe during MIS 11. Quatern Res 86(3):373–387

    Google Scholar 

  • Oliveira D, Desprat S, Yin Q, Naughton F, Trigo R, Rodrigues T, Abrantes F, Sánchez Goñi MF (2018) Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynam 51:667–686

    Google Scholar 

  • Oppo DW, McManus JF, Cullen JL (2006) Evolution and demise of the last interglacial warmth in the subpolar North Atlantic. Quat Sci Rev 25:3268–3277

    Google Scholar 

  • Overpeck JT, Webb T III, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quatern Res 23:87–108

    Google Scholar 

  • Parducci L, Edwards ME, Bennett KD, Alm T, Elverland E, Tollefsrud MM, Jørgensen T, Houmark-Nielsen M, Krog Larsen N, Kjær KH, Fontana SL, Greve Alsos I, Willerslev E (2012a) Response to comment on “Glacial Survival of Boreal Trees in Northern Scandinavia”. Science 338(6108):742–742

    Google Scholar 

  • Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, Bennett KD, Haile J, Matetovici I, Suyama Y, Edwards ME, Andersen K, Rasmussen M, Boessenkool S, Coissac E, Brochmann C, Taberlet P, Houmark-Nielsen M, Krog Larsen N, Orlando L, Gilbert MTP, Kjær KH, Greve Alsos I, Willerslev E (2012b) Glacial survival of boreal trees in northern Scandinavia. Science 335(6072):1083–1086

    PubMed  Google Scholar 

  • Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21(3):111–113

    PubMed  Google Scholar 

  • Pini R, Ravazzi C, Reimer PJ (2010) The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern alpine foreland, N-Italy). Quat Sci Rev 29(23):3115–3137

    Google Scholar 

  • Pons A, Reille M (1988) The Holocene-and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeogr Palaeoclimatol Palaeoecol 66:243–263

    Google Scholar 

  • Prentice IC (1978) Modern pollen spectra from lake sediments in Finland and Finnmark, north Norway. Boreas 7:131–153

    Google Scholar 

  • Prentice IC (1992) Climatic change and long-terme vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession: theory and prediction. Chapman and Hall, London, pp 293–339

    Google Scholar 

  • Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG, Toucanne S (2015) An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat Sci Rev 111:94–106

    Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28

    Google Scholar 

  • Ratmeyer V, Balzer W, Begametti G, Chiapello I, Fischer G, Wyputta U (1999) Seasonal impact of mineral dust on deep-ocean particle flux in the eastern subtropical Atlantic Ocean. Mar Geol 159:241–252

    Google Scholar 

  • Reille M, de Beaulieu J-L (1990) Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France). Palaeogeogr Palaeoclimatol Palaeoecol 80:35–48

    Google Scholar 

  • Richerson PJ, Bettinger RL, Boyd R (2005) Evolution on a restless planet: were environmental variability and environmental change major drivers of human evolution. In: Weinheim W-VVG (ed) Handbook of evolution. Wiley-VCH Verlag GmbH, pp 223–242

    Google Scholar 

  • Risebrobakken B, Dokken T, Ottera OH, Jansen E, Gao Y, Drange H (2007) Inception of the northern European ice shhet due to contrasting ocean and insolation forcing. Quat Res 67:128–135

    Google Scholar 

  • Rossignol-Strick M (1983) African monsoons, an immediate climate response to orbital insolation. Nature 304:46–49

    Google Scholar 

  • Roucoux KH, Shackleton NJ, de Abreu L, Schönfeld J, Tzedakis PC (2001) Combined marine proxy and pollen analyses reveal rapid Iberian vegetation response to North Atlantic millennial-scale climate oscillations. Quat Res 56:128–132

    Google Scholar 

  • Roucoux KH, Tzedakis PC, de Abreu L, Shackleton NJ (2006) Climate and vegetation changes 180,000 to 345,000 years ago recorded in a deep-sea core off Portugal. Earth Planet Sci Lett 249(3–4):307–325

    Google Scholar 

  • Ruddiman WF (2001) Earth’s climate: past and future. W.H. Freeman & Sons, New York

    Google Scholar 

  • Ruddiman WF, McIntyre A (1979) Warmth of the subpolar North Atlantic Ocean during northern hemisphere ice-sheet growth. Science 204:173–175

    PubMed  Google Scholar 

  • Sadori L, Koutsodendris A, Panagiotopoulos K, Masi A, Bertini A, Combourieu-Nebout N, Francke A, Kouli K, Joannin S, Mercuri AM, Peyron O, Torri P, Wagner B, Zanchetta G, Sinopoli G, Donders TH (2016) Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences 13(5):1423–1437

    Google Scholar 

  • Sanchez Goñi MF (2020) Regional impacts of climate change and its relevance to human evolution. Evol Hum Sci:1–28

    Google Scholar 

  • Sanchez Goñi MF, Harrison S (2010) Millennial-scale climate variability and vegetation changes during the last glacial: concepts and terminology. Quat Sci Rev 29:2823–2827

    Google Scholar 

  • Sánchez Goñi MF, J.-L. Turon, F. Eynaud, N.J. Shackleton (1999) High resolution palynological record off the Iberian margin: direct land–sea correlation for the Last Interglacial complex, Earth Planet Sci Lett 171:123–137

    Google Scholar 

  • Sánchez Goñi MF, Turon J-L, Eynaud F, Gendreau S (2000) European climatic response to millenial-scale climatic changes in the atmosphere-ocean system during the last glacial period. Quatern Res 54:394–403

    Google Scholar 

  • Sánchez Goñi MF, Cacho I, Turon J-L, Guiot J, Sierro FJ, Peypouquet J-P, Grimalt JO, Shackleton NJ (2002) Synchroneity between marine and terrestrial responses to millennial escale climatic variability during the last glacial period in the Mediterranean region. Climate Dynam 19:95–105

    Google Scholar 

  • Sánchez Goñi MF, Loutre MF, M., C., Peyron, O., Santos, L., Duprat, J., Malaizé, B., Turon, J.-L. and Peypouquet, J.-P. (2005) Increasing vegetation and climate gradient in Western Europe over the last glacial inception (122-110 ka): data-model comparison. Earth Planet Sci Lett 231:111–130

    Google Scholar 

  • Sanchez Goñi MF, Landais A, Fletcher WJ, Naughton F, Desprat S, Duprat J (2008) Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quat Sci Rev 27:1136–1151

    Google Scholar 

  • Sanchez Goñi MF, Bard E, Landais A, Rossignol L, d'Errico F (2013) Air-sea temperature decoupling in western Europe during the last interglacial-glacial transition. Nat Geosci 6:837–841

    Google Scholar 

  • Sánchez Goñi MF, Rodrigues T, Hodell DA, Polanco-Martínez JM, Alonso-García M, Hernández-Almeida I, Desprat S, Ferretti P (2016) Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial. Earth Planet Sci Lett 448:81–93

    Google Scholar 

  • Sanchez Goñi MF, Desprat S, Fletcher WJ, Morales del Molino C, Naughton F, Oliveira D, Urrego DH, Zorzi C (2018) Pollen from the deep-sea: a breakthrough in the mystery of the Ice Ages. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00038

  • Sánchez Goñi MF, Ferretti P, Polanco-Martínez JM, Rodrigues T, Alonso-García M, Rodríguez-Tovar FJ, Dorador J, Desprat S (2019) Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth Planet Sci Lett 511:117–129

    Google Scholar 

  • Sánchez Goñi MF, Fourcade T, Salonen S, Lesven J, Frigola J, Swingedouw D, Sierro FJ (2021) Muted cooling and drying of NW Mediterranean in response to the strongest last glacial north American ice surges. GSA Bull 133:451–460

    Google Scholar 

  • Scerri EML, Thomas MG, Manica A, Gunz P, Stock JT, Stringer C, Grove M, Groucutt HS, Timmermann A, Rightmire GP, d’Errico F, Tryon CA, Drake NA, Brooks AS, Dennell RW, Durbin R, Henn BM, Lee-Thorp J, deMenocal P, Petraglia MD, Thompson JC, Scally A, Chikhi L (2018) Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol Evol 33(8):582–594

    PubMed  PubMed Central  Google Scholar 

  • Schmidt I, Bradtmöller M, Kehl M, Pastoors A, Tafelmaier Y, Weninger B, Weniger G-C (2012) Rapid climate change and variability of settlement patterns in Iberia during the late Pleistocene. Quat Int 274:179–204

    Google Scholar 

  • Seppä H, Bennett KD (2003) Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Prog Phys Geogr Earth Environ 27(4):548–579

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes s. Quat Res 3:39–55

    Google Scholar 

  • Shackleton NJ, Fairbanks RG, Chiu T, Parrenin F (2004) Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Delta C-14. Quat Sci Rev 23:1513–1523

    Google Scholar 

  • Siddall M, Rohling EJ, Almogi-Labin A, Hemleben C, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    PubMed  Google Scholar 

  • Spahni R, Chappellaz J, Stocker TF, Loulergue L, Hausammann G, Kawamura K, Flückiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science 310:1317–1321

    PubMed  Google Scholar 

  • Stanley E (1966) The application of palynology to oceanology with reference to the northwestern Atlantic. Deep-Sea Res II 13:921–939

    Google Scholar 

  • Stojakowits P, Mayr C, Lücke A, Wissel H, Hedenäs L, Lempe B, Friedmann A, Diersche V (2020) Impact of climatic extremes on alpine ecosystems during MIS 3. Quat Sci Rev 239:106333

    Google Scholar 

  • Sugita S (2007) Theory of quantitative reconstruction of veegtation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17:229–241

    Google Scholar 

  • Taberlet P, Cheddadi R (2002) Quaternary refugia and persistence of biodiversity. Science 297(5589):2009–2010

    PubMed  Google Scholar 

  • Tauber H (1965) 'Differential pollen deposition and the interpretation of pollen diagrams. Danm Geol Unders København 89:1–69

    Google Scholar 

  • Tauber H (1967) Investigations of the mode of pollen transfer in forested areas. Rev Palaeobot Palynol 3(1):277–286

    Google Scholar 

  • Timmermann A, Friedrich T (2016) Late Pleistocene climate drivers of early human migration. Nature 538(7623):92–95

    PubMed  Google Scholar 

  • Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93(5):936–947

    Google Scholar 

  • Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29(6):551–554

    Google Scholar 

  • Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JRM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83(4):419–439

    Google Scholar 

  • Traverse A, Ginsburg RN (1966) Palynology of the surface sediments of great Bahama Bank, as related to water movement and sedimentation. Mar Geol 4(6):417–459

    Google Scholar 

  • Turon J-L (1984) Direct land/sea correlations in the last interglacial complex. Nature 309:673–676

    Google Scholar 

  • Tzedakis PC (1993) Long-term tree populations in Northwest Greece through multiple quaternary cycles. Nature 364:437–440

    Google Scholar 

  • Tzedakis PC, Andrieu V, de Beaulieu J-L, Crowhurst S, Follieri M, Hooghiemstra H, Magri D, Reille M, Sadori L, Shackleton NJ, Wijmstra TA (1997) Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet Sci Lett 150:171–176

    Google Scholar 

  • Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes iin a quaternary refugium: evolutionary implications. Science 297:2044–2047

    PubMed  Google Scholar 

  • Tzedakis PC, Emerson BC, Hewitt GM (2013) Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol 28(12):696–704

    PubMed  Google Scholar 

  • Van Campo E (1982) Climatic conditions deduced from a 150-kyr oxygen isotope-pollen record from the Arabian Sea. Nature 296:56–59

    Google Scholar 

  • Van Campo MM (1984) Relations entre la végétation de l'Europe et les températures de surface océaniques après le dernier maximum glaciaire. Pollen et Spores XXVI(3–4):497–518

    Google Scholar 

  • Vidal CM, Lane CS, Asrat A, Barfod DN, Mark DF, Tomlinson EL, Tadesse AZ, Yirgu G, Deino A, Hutchison W, Mounier A, Oppenheimer C (2022) Age of the oldest known Homo sapiens from eastern Africa. Nature 601:579–583

    PubMed  PubMed Central  Google Scholar 

  • Voelker AHL et al (2002) Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quat Sci Rev 21:1185–1212

    Google Scholar 

  • von Post L (1916) Mötet den 2 november 1916. Geol Fören Stockh Förh 38:383–394

    Google Scholar 

  • Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305

    Google Scholar 

  • Wagner B, Vogel H, Francke A, Friedrich T, Donders T, Lacey JH, Leng MJ, Regattieri E, Sadori L, Wilke T, Zanchetta G, Albrecht C, Bertini A, Combourieu-Nebout N, Cvetkoska A, Giaccio B, Grazhdani A, Hauffe T, Holtvoeth J, Joannin S, Jovanovska E, Just J, Kouli K, Kousis I, Koutsodendris A, Krastel S, Lagos M, Leicher N, Levkov Z, Lindhorst K, Masi A, Melles M, Mercuri AM, Nomade S, Nowaczyk N, Panagiotopoulos K, Peyron O, Reed JM, Sagnotti L, Sinopoli G, Stelbrink B, Sulpizio R, Timmermann A, Tofilovska S, Torri P, Wagner-Cremer F, Wonik T, Zhang X (2019) Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature 573(7773):256–260

    PubMed  Google Scholar 

  • Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson AC (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29:2828–2838

    Google Scholar 

  • Yin QZ, Berger A (2012) Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynam 38:709–734

    Google Scholar 

  • Zagwijn WH, Veenstra HJ (1966) A pollen-analytical study of cores from the outer silver pit, North Sea. Mar Geol 4(6):539–551

    Google Scholar 

  • Zanon M, Davis BAS, Marquer L, Brewer S, Kaplan JO (2018) European forest cover during the past 12,000 years: a palynological reconstruction based on modern analogs and remote sensing. Frontiers in Plant Sci. https://doi.org/10.3389/fpls.2018.00253

Download references

Acknowledgements

I am grateful to Donatella Magri for the critical reading of the manuscript and Gabriel Hes for useful comments. I also thank Vincent Hanquiez for drawing Figs. 4, 5, and 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Sanchez Goñi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez Goñi, M.F. (2022). Pollen: A Key Tool for Understanding Climate, Vegetation, and Human Evolution. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 84. Progress in Botany, vol 84. Springer, Cham. https://doi.org/10.1007/124_2022_63

Download citation

Publish with us

Policies and ethics