Skip to main content

Global Forest Biodiversity: Current State, Trends, and Threats

  • Chapter
  • First Online:
Progress in Botany Vol. 83

Part of the book series: Progress in Botany ((BOTANY,volume 83))

Abstract

Human activities, especially forest conversion and degradation, are causing global declines in forest biodiversity. This review quantifies the current extent of the major forest biomes on earth and their area losses in historical and recent time. The importance of global forests for the earth’s terrestrial biodiversity is explored and the role of forest degradation, fragmentation, defaunation, and forest fires for forest biodiversity analyzed based on the comparison of managed and unmanaged forests and reported forest biodiversity trends. The outstanding role of the remaining primary forests for global forest biodiversity is highlighted, the imprint of millenia of forest use on forest biodiversity explored using Germany’s forests as an example, and a brief assessment of the impact of climate change on forest biodiversity given. We conclude that conserving the last remaining primary forests is of paramount importance for the future of biodiversity on earth. When a substantial part of the earth’s forest-related biodiversity is to be inherited to future generations, a global effort to establish at least ten effectively managed forest mega-reserves in the tropical and boreal forest biomes is urgently needed.

Communicated by Christoph Leuschner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achard F, Eva H, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    CAS  PubMed  Google Scholar 

  • Achard F, Mollicone D, Stibig H-J, Aksenov D, Laestadius L, Li Z, Popatov P, Yaroshenko A (2006) Areas of rapid forest cover change in boreal Eurasia. For Ecol Manag 237:322–334

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(article 129):1–55

    Google Scholar 

  • Alroy J (2017) Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci U S A 114:6056–6061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LD (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36

    Google Scholar 

  • Anderegg WRL, Hicke JA, Fisher RA et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    PubMed  Google Scholar 

  • Antonelli A, Sanmartín I (2011) Why are there so many plant species in the Neotropics? Taxon 60:403–414

    Google Scholar 

  • Aragao LEOC, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science 328:1275–1278

    CAS  PubMed  Google Scholar 

  • Armenteras D, González TM, Retana J (2013) Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol Conserv 159:73–79

    Google Scholar 

  • Asner GP, Rudel TK, Aide TM, DeFries R, Emerson R (2009) A contemporary assessment of change in humid tropical forests. Conserv Biol 23:1386–1395

    PubMed  Google Scholar 

  • Badiou P, Baldwin R, Carson M, Darveau M, Drapeau P et al (2013) Conserving the world’s last great forest is possible: here’s how. International Boreal Conservation Science Panel

    Google Scholar 

  • Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ et al (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562

    Google Scholar 

  • Balslev H, Valencia R, Paz y Miño G, Christensen H, Nielsen I (1998) Species count of vascular plants in one hectare of humid lowland forest in Amazonian Ecuador. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring. UNESCO, Paris, pp 585–594

    Google Scholar 

  • Barlow J, Peres CA (2004) Avifaunal responses to single and recurrent wildfires in Amazonan forests. Ecol Appl 14:1358–1373

    Google Scholar 

  • Barlow J, Peres CA (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil Trans Roy Soc B 363:1787–1794

    Google Scholar 

  • Barlow J, Gardner TA, Araujo IS, Ávila-Pires TC, Bonaldo AB, Costa JE et al (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci U S A 104:18555–18560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes AD, Allen K, Kreft H, Corre MD, Jochum M, Veldkamp E, Clough Y, Daniel R et al (2017) Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat Ecol Evol 1:1511–1517

    PubMed  Google Scholar 

  • Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopold NF 92:61–83

    Google Scholar 

  • Barua SK, Lehtonen P, Pahkasalo T (2014) Plantation vision: potentials, challenges and policy options for global industrial forest plantation development. Int For Rev 16:117–127

    Google Scholar 

  • Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    CAS  PubMed  Google Scholar 

  • Bastin J-F, Berrahmouni N, Grainger A, Maniatis D, Mollicone D, Moore R et al (2017) The extent of forest in dryland biomes. Science 356:635–638

    CAS  PubMed  Google Scholar 

  • Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain For 36:454–489

    Google Scholar 

  • Bello C, Galetti M, Pizo MA, Magnago LFS, Rocha MF, Lima RA et al (2015) Defaunation affects carbon storage in tropical forests. Sci Adv 1(11):e1501105

    PubMed  PubMed Central  Google Scholar 

  • Benchimol M, Peres CA (2015) Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. J Ecol 103:408–420

    Google Scholar 

  • Benítez-López A, Santini L, Schipper AM, Busana M, Huijbregts MAJ (2019) Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLoS Biol 17(5):e3000247

    PubMed  PubMed Central  Google Scholar 

  • Berrnhardt-Römermann M, Baeten L, Craven D, de Frenne P, Hédl R, Lenoir J, Bert D, Brunet J et al (2015) Drivers of temporal changes in temperate forest plant diversiy vary across spatial scales. Glob Change Biol 21:3726–3737

    Google Scholar 

  • Bicknell JE, Struebig MJ, Edwards DP, Davies ZG (2014) Improved timber harvest techniques maintain biodiversity in tropical forests. Curr Biol 24:1119–1120

    Google Scholar 

  • Billington C, Kapos V, Edwards MS, Blyth S, Iremonger S (1996) Estimated original forest cover map - first attempt. WCMC, Cambridge

    Google Scholar 

  • BMEL (2012) 3rd National forest inventory. Federal Ministry for Nutrition and Agriculture, Berlin

    Google Scholar 

  • Bollmann K, Bergamini A, Senn-Irlet B, Nobis M, Duelli P, Scheidegger C (2009) Konzepte, Instrumente und Herausforderungen bei der Förderung der Biodiversität im Wald. Schweiz Z Forstwes 160:53–67

    Google Scholar 

  • Bond-Lamberty B, Rocha AV, Calvin K, Holmes B, Wang C, Goulden ML (2014) Disturbance legacies and climate jointly drive tree growth and mortality in an intesntively studied boreal forest. Glob Change Biol 20:216–227

    Google Scholar 

  • Bongers F, Chazdon RL, Poorter L, Pena-Claros M (2015) The potential of secondary forests. Science 348:642–643

    CAS  PubMed  Google Scholar 

  • Bork H-R (2001) Landnutzung in Deutschland. Petermanns Geogr Mitt 145:36–37

    Google Scholar 

  • Braun S, Hopf S-E, Tresch S, Remund J, Schindler C (2021) 37 years of forest monitoring in Switzerland: Drought effects on Fagus sylvatica. Front For Glob Change 4:765782

    Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348

    CAS  PubMed  Google Scholar 

  • Brinck K, Fischer R, Groeneveld J, Lehmann S, De Paula MD, Pütz S et al (2017) High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat Commun 8:14855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann N, Schneider D, Sahner J, Ballauf J, Edy N et al (2019) Intensive tropical land use massively shifts soil fungal communities. Sci Rep 9:3403

    PubMed  PubMed Central  Google Scholar 

  • Bryant D, Nielsen D, Tangley L (1997) The last frontier forests: ecosystems and economies on the edge. What is the status of the world’s remaining large, natural forest ecosystems? World Resources Institute

    Google Scholar 

  • Buchhorn M, Smets B, Bertels L, De Roo B, Lesiv M, Tsendbazar N-E, Herold M, Fritz S (2020) Copernicus global land service: land cover 100m: collection 3: epoch 2019: Globe 2020

    Google Scholar 

  • Burivalova Z, Sekercioglu CH, Koh LP (2014) Thresholds of logging intensity to maintain tropical forest biodiversity. Curr Biol 24:1893–1898

    CAS  PubMed  Google Scholar 

  • Burrascano S, Ripullone F, Bernardo L, Borghetti M, Carli E, Colangelo M, Gangale C et al (2018) It’s a long way to the top: Plant species diversity in the transition from managed to old-growth forests. J Veg Sci 29:98–109

    Google Scholar 

  • Butt N, Malhi Y, New M, Macia MJ, Lewis SL, Lopez-Gonzalez G, Laurance WF, Laurance S et al (2014) Shifting dynamics of climate-functional groups in old-growth Amazonian forests. Plant Ecol Divers 7:267–279

    Google Scholar 

  • Carlson M, Wells J, Jacobson M (2015) Balancing the relationship between protection and sustainable management in Canada’s boreal forest. Conserv Soc 13:13–22

    Google Scholar 

  • Ceccherini G, Duveiller G, Grassi G, Lemoine G, Avitabile V, Pilli R, Cescatti A (2020) Abrupt increase in harvested forest area over Europe after 2015. Nature 583:72–77

    CAS  PubMed  Google Scholar 

  • Chazdon RL, Peres CA, Dent D, Sheil D, Lugo AE, Lamb D et al (2009) The potential for species conservation in tropical secondary forests. Conserv Biol 23:1406–1417

    PubMed  Google Scholar 

  • Chazdon RL, Brancalion PHS, Laestadius L et al (2016) When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45:538–550

    PubMed  PubMed Central  Google Scholar 

  • Clark CJ, Poulsen JR, Malonga R, Elkan PW (2009) Logging concessions can extend the conservation estate for Central African Tropical Forests. Conserv Biol 23:1281–1293

    CAS  PubMed  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rainforest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759

    Google Scholar 

  • Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM, Siregar P, Caniogo I, Kasischke E (2004) Lowland forest loss in protected areas of Indonesian Borneo. Science 303:1000–1003

    CAS  PubMed  Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111

    CAS  PubMed  Google Scholar 

  • DDA (2017). Dachverb and Deutscher Avifaunisten e.V.. Münster/W

    Google Scholar 

  • De Frenne P, Rodriguez-Sanchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, Bernhardt-Römermann M, Brown CD et al (2013) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci U S A 110:18561–18565

    PubMed  PubMed Central  Google Scholar 

  • DeFries RS, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15:19–26

    Google Scholar 

  • DeFries RS, Rudel T, Uriarte M, Hansen MC (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181

    CAS  Google Scholar 

  • Department for Environment Food & Rural Affairs UK (2020) Wild bird populations in England, 1970 to 2019. York. https://www.gov.uk/government/statistics/wild-bird-populations-in-england

  • Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68:295–323

    Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    CAS  PubMed  Google Scholar 

  • Dolman HAJ, Shvidenko A, Schepaschenko D, Ciais P, Tchebakova NM, Chen T, van der Molen MK et al (2012) An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy-covariance and inversion methods. Biogeosciences 9:5323–5340

    CAS  Google Scholar 

  • Dörfelt H (2007) Biodiversität von Buchenwäldern unter mykologischen Gesichtspunkten. BfN-Skripten (Bonn-Bad Godesberg) 222:91–93

    Google Scholar 

  • Dorow WHO, Blick T, Kopelke J-P (2010) Zoologische Forschung in hessischen Naturwaldreservation – Exemplarische Ergebnisse und Perspektiven. Forstarchiv 81:61–68

    Google Scholar 

  • Doughty CE, Metcalfe DB, Girardin CAJ, Amézquita FF, Cabrera DG, Huasco WH, Silva-Espejo JE (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519:78–82

    CAS  PubMed  Google Scholar 

  • Doyle A, Roche A (2017) Nineteen nations say they’ll use more bioenergy to scale up the low carbon bioeconomy and develop sustainable biofuels targets. https://www.reuters.com/article/us-climatechange-accord-biofuels/nineteen-nations-say-theyll-use-more-bioenergy-to-slow-climate-change-idUSKBN1DG2DO

  • Duivenvoorden JF (1994) Vascular plant species counts in the rain forests of the middle Caquetá area, Columbian Amazonia. Biodivers Conserv 3:685–715

    Google Scholar 

  • Dulamsuren C, Wommelsdorf T, Zhao F, Xue Y, Zhumadilov BZ, Leuschner C, Hauck M (2013) Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems 16:1391–1403

    Google Scholar 

  • Dvorák D, Vasutova M, Hofmeister J, Beran M, Hosek J et al (2017) Macrofungal diversity patterns in central European forests affirm the key importance of old-growth forests. Fungal Ecol 27:145–154

    Google Scholar 

  • Edwards DP, Larsen TH, Docherty TDS, Ansell FA, Hsu WW et al (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proceed Roy Soc B 278:82–90

    Google Scholar 

  • EEA (2017) Renewable energy in Europe – 2017 update. Recent growth and knock-on effects. European Environment Agency, Copenhagen

    Google Scholar 

  • Effiom EO, Nunez-Iturri G, Smith HG, Ottosson U, Olsson O (2013) Bushmeat hunting changes regeneration of African rainforests. Proceed Roy Soc B 280:20130246

    Google Scholar 

  • Ellis EC, Gauthier N, Goldewijk KK, Bird RB, Boivin N, Díaz S, Fuller DQ, Gill JL, Kaplan JO, Kingston N (2021) People have shaped most of terrestrial nature for at least 12,000 years. Proc Natl Acad Sci USA 118:e2023483118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel F (2019) Vorhaben NWePP. Natürliche Waldentwicklung in Deutschland: Perspektiven und Potenziale für die Entwicklung eines kohärenten NEW-Systems. Presentation, April 4, 2019. Berlin

    Google Scholar 

  • Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR et al (2018) Compositional response of Amazon forests to climate change. Glob Change Biol 25:39–56

    Google Scholar 

  • Fadrique B, Baéz S, Duque A, Malizia A, Blundo C, Carilla J, Osinaga-Acosta O, Malizia L et al (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature 564:207–212

    CAS  PubMed  Google Scholar 

  • FAO (2012) Global ecological zones for FAO forest reporting: 2010 update. In: Forest resources assessment working paper, Rome, p 179

    Google Scholar 

  • FAO (2021) Forest product statistics. https://www.fao.org/forestry/statistics/80570/en/

  • FAO and UNEP (2020) The state of the world’s forests 2020. Forests, Biodiversity and People, Rome. https://doi.org/10.4060/ca8642en

    Book  Google Scholar 

  • Feraz FG, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE (2003) Rates of species loss from Amazonian forest fragments. Proc Natl Acad Sci U S A 100:14069–14073

    Google Scholar 

  • Fine PVA, Ree RH, Burnham RJ (2008) The disparity in tree species richness among tropical, temperate, and boreal biomes: The geographic area and age hypothesis. In: Carson W, Schnitzer SA (eds) Tropical forest community ecology. Wiley-Blackwell, Oxford, pp 31–45

    Google Scholar 

  • Finer M, Jenkins CN, Pimm SL, Keane B, Ross C (2008) Oil and gas projects in the western Amazon: threats to wilderness, biodiversity, and indigenous peoples. PLoS One 3(8):e2932

    PubMed  PubMed Central  Google Scholar 

  • Förster A, Becker T, Gerlach A, Meesenburg H, Leuschner C (2017) Long-term change in understorey plant communities of conventionally-managed temperate deciduous forests: effects of nitrogen deposition and forest management. J Veg Sci 28:747–761

    Google Scholar 

  • Forzieri G, Girardello M, Ceccherini G, Spinoni J, Feyen L, Hartmann H, Beck PSA, Camps-Valls G, Chirici G, Mauri A, Cescatti A (2021) Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun 12:1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • FRA (2020) (Forest Resoures Assessment 2020) Main report. FAO, Rome

    Google Scholar 

  • Friedel A, v Oheimb G, Dengler J, Härdtle W (2006) Species diversity and species composition of epiphytic bryophytes and lichens – a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repert 117:172–185

    Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2008) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Google Scholar 

  • Galeano G, Suárez S, Balslev H (1998) Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers Conserv 7:1563–1575

    Google Scholar 

  • Galetti M, Moléon M, Jordano P, Pires MM, Guimarães PR Jr, Pape T et al (2018) Ecological and evolutionary legacy of megafauna extinctions. Biol Rev Camb Philos Soc 93:845–862

    PubMed  Google Scholar 

  • Gardner CJ, Bicknell JE, Baldwin-Cantello W, Struebig MJ, Davies ZG (2019) Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat Commun 10:4590

    PubMed  PubMed Central  Google Scholar 

  • Gerlach B, Dröschmeister R, Langgemach T, Borkenhagen K, Busch M, Hauswirth M, Heinicke T et al (2019) Vögel in Deutschland – Übersichten zur Bestandssituation. DDA, BfN, LAG VSW, Münster

    Google Scholar 

  • Giam X, Scheffers BR, Sodhi NS, Wilcove DS, Ceballos G, Ehrlich PR (2012) Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc R Soc B 279:67–76

    PubMed  Google Scholar 

  • Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–383

    CAS  PubMed  Google Scholar 

  • Gibson L, Lynam AJ, Bradshaw CJ, He F, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013) Near-complete extinction of native small mammal fauna after 25 years after forest fragmentation. Science 341:1508–1510

    CAS  PubMed  Google Scholar 

  • Glaser FF, Hauke U (2004) Historisch alte Waldstandorte und Hudewälder in Deutschland. Angew Landschaftsökol (Bonn-Bad Godesb) 61:193p

    Google Scholar 

  • Glatthorn J, Feldmann E, Pichler V, Hauck M, Leuschner C (2017) Biomass stock and productivity of primeval and production beech forests. Ecosystems 21:704–722

    Google Scholar 

  • Global Forest Watch (2021) Global forest monitoring designed for action. https://www.globalforestwatch.org

  • Grantham HS, Duncan A, Evans TD, Jones KR, Beyer HL, Schuster R et al (2020) Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat Commun 11:5978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grendelmeier A, Pasinelli G, Mollet P, Feller K, Graf R, Lanz M, Strebel N, Sattler T, Knaus P (2020) Entwicklung der Brutvögel im Schweizer Wald: Gewinner und Verlierer. Forum für Wissen (Birmensdorf) 2020:89–97

    Google Scholar 

  • Groombridge B, Jenkins MD (2003) World atlas of biodiversity. Univ of California Press, Berkeley

    Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Cook WM (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    PubMed  PubMed Central  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. Plos One 12:e0185809

    PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Novotný V, Waters EK, Basset Y, Benke KK, Grimbacher PS et al (2013) Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia 171:357–365

    PubMed  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA et al (2013) High-resolution gobal maps of 21st-century forest cover change. Science 342:850–853

    CAS  PubMed  Google Scholar 

  • Hansen MC, Wang L, Song XP, Tyukavina A, Turubanova S, Potapov PV et al (2020) The fate of tropical forest fragments. Sci Adv 6:eaax8574

    PubMed  PubMed Central  Google Scholar 

  • Härdtle W, von Oheimb G (2013) Ökologische Bedeutung von Wildnisgebieten – das Beispiel Buchenwald-Ökosysteme. In: Lehrke S et al (eds) Natura 2000 im Wald. Lebensraumtypen, Erhaltungszustand, Management. Naturschutz u. Biologische Vielfalt (Bonn), vol 131, pp 51–64

    Google Scholar 

  • Harrison RD, Tan S, Plotkin JB, Slik F, Detto M, Brenes T et al (2013) Consequences of defaunation for a tropical tree community. Ecol Lett 16:687–694

    PubMed  Google Scholar 

  • Hauck M, de Bryun U, Leuschner C (2013) Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol Conserv 157:136–145

    Google Scholar 

  • Hauck M, Leuschner C, Homeier J (2019) Klimawandel und vegetation. Eine globale Übersicht. Springer Spektrum

    Google Scholar 

  • Heilmann-Clausen J, Christensen M (2003) Fungal diversity on decaying beech logs – implications for sutstainable forestry. Biodivers Conserv 12:953–973

    Google Scholar 

  • Heinrichs S, Schmidt W (2017) Biotic homogenization of herb layer composition between two contrasting beech forest communities on limestone over 50 years. Appl Veg Sci 20:271–281

    Google Scholar 

  • Hill SL, Arnell A, Maney C, Butchart SH, Hilton-Taylor C, Ciciarelli C et al (2019) Measuring forest biodiversity status and changes globally. Front For Glob Change 2:70

    Google Scholar 

  • Hofmeister J, Hosek J, Holá E, Novozamska E (2015) Decline in bryophyte diversity in predominant types of central European managed forests. Biodivers Conserv 24:1391–1402

    Google Scholar 

  • Homeier J, Báez S, Hertel D, Leuschner C (eds) (2017) Tropical forest ecosystem responses to increasing nutrient availability. Front Media. https://doi.org/10.3389/978-2-88945-227-9

  • Hosonuma N, Herold M, De Sy V, deFries RS, Brockhaus M, Verchot L, Angelsen A, Romijn E (2012) An assessment of deforestation and forest degradation drivers in developing countries. Environ Res Lett 7:044009

    Google Scholar 

  • Ibisch PL, Hoffmann MT, Kreft S, Pe’er G, Kati V, Biber-Freudenberger L et al (2016) A global map of roadless areas and their conservation status. Science 354:1423–1427

    CAS  PubMed  Google Scholar 

  • ITTO (International Tropical Timber Organsizaton) (2002) ITTO guidelines for the restoration, management and rehabilitation of degraded and secondary tropical forests. ITTO policy development series 13. ITTO, Yokohama. http://www.itto.int/direct/topics/topics_pdf_download/topics_id=154000&no=l&disp=inline

    Google Scholar 

  • IUCN (2018) IUCN spatial data. http://www.iucnredlist.org/techical-documents/spatial-data

  • Jacobsen RM, Burner RC, Olsen SL, Skarpaas O, Sverdrup-Thygeson A (2020) Near-natural forests harbor richer saproxylic beetle communities than those in intensively managed forests. For Ecol Manag 466:118124

    Google Scholar 

  • Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Adad Sci USA 110:E2602–E2610

    CAS  Google Scholar 

  • Jenkins LH, Jenkins MA, Webster CR, Zollner PA, Shields JM (2014) Herbaceous layer response to 17 years of controlled deer hunting in forested natural areas. Biol Conserv 175:119–128

    Google Scholar 

  • Kaufmann S, Hauck M, Leuschner C (2017) Comparing the plant diversity of paired beech primeval and production forests: management reduces cryptogam, but not vascular plant species richness. For Ecol Manag 400:58–67

    Google Scholar 

  • Knapp H (2007) Buchenwälder als spezifisches Naturerbe Europas. In: Knapp H, Spangenberg A (eds) Europäische Buchenwaldinitiative. BfN-Skripten, vol 222. Bundesamt für Naturschutz (BfN), pp 13–40

    Google Scholar 

  • Knutzen F, Dulamsuren C, Meier IC, Leuschner C (2017) Recent climate warming-related growth decline impairs European beech in the center of its distribution range. Ecosystems 20:1494–1511

    CAS  Google Scholar 

  • Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64

    Google Scholar 

  • Kurten EL (2013) Cascading effects of contemporaneous defaunation on tropical forest communities. Biol Conserv 163:22–32

    Google Scholar 

  • Kurten EL, Wright SJ, Carson WP (2015) Hunting alters seedling functional trait composition in a Neotropical forest. Ecology 96:1923–1932

    PubMed  Google Scholar 

  • Kuusela K (1992) The boreal forest: An overview. Unasylva 43:3–13

    Google Scholar 

  • Lakatos F, Molnár M (2009) Mass mortality of beech (Fagus sylvatica L) in south-west Hungary. Acta Silv Lignaria Hung 5:75–82

    Google Scholar 

  • Laporte NT, Stabach JA, Grosch RG, Lin TS, Goetz SJ (2007) Expansion of industrial logging in Central Africa. Science 316:1451

    CAS  PubMed  Google Scholar 

  • Laurance WF, Arrea IB (2017) Roads to riches or ruin? Science 358:442–444

    CAS  PubMed  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014a) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116

    PubMed  Google Scholar 

  • Laurance WF, Andrade AS, Magrach A, Camargo JL, Campbell M, Fearnside PM et al (2014b) Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology 95:3018–3026

    Google Scholar 

  • Laurance WF, Campbell MJ, Alamgir M, Mahmoud MI (2017) Road expansion and the fate of Africa’s tropical forests. Front Ecol Evol 5:75

    Google Scholar 

  • Lee PG, Gysbers JD, Stanojevic Z (2006) Canada’s forest landscape fragments: a first approximation. Global Forest Watch Canada, Edmonton

    Google Scholar 

  • Lelli C, Bruun HH, Chiarucci A, Donati D, Frascaroli F, Örjan F, Goldberg I et al (2019) Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For Ecol Manag 432:707–717

    Google Scholar 

  • Leuschner C (2020) Drought response of European beech (Fagus sylvatica L.) – a review. Perspect Plant Ecol Evol Syst 47:125576

    Google Scholar 

  • Leuschner C, Ellenberg H (2017) Ecology of Central European Forests. Springer Nature, Cham

    Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL et al (2009) Increasing carbon storage in intact African tropical forests. Nature 457:969–970

    Google Scholar 

  • Lindenmeier DB, Franklin JF, Lohmus A, Baker SC, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J, Martinez Pastur G et al (2012) A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conserv Lett 5:421–431

    Google Scholar 

  • Lund HG (2018) Definitions of forest, deforestation, afforestation, and reforestation. Forest Informations Services, Gainesville

    Google Scholar 

  • Mackey B, Kormos CF, Keith H, Moomaw WR, Houghton RA, Mittermeier RA, Hugh S (2020) Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig Adapt Strateg Glob Chang 25:763–787

    Google Scholar 

  • Magnago LFS, Magrach A, Barlow J, Schaefer CEGR, Laurance WF, Martins SV, Edwards DP (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct Ecol 31:542–552

    Google Scholar 

  • Maia VA, Santos ABM, de Aguiar-Campos N, de Souza CR, de Oliveira MCF, Coelho PA et al (2020) The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci Adv 6:eabd4548

    CAS  PubMed  Google Scholar 

  • Malevsky-Malevich SP, Molkentin EK, Nadyoshina ED, Shklyarevich OG (2008) An assessment of potential change in wildfire activity in the Russioan boreal forest zone induced by climate warming during the twenty-first century. Clim Chang 86:463–474

    Google Scholar 

  • Malhi Y, Doughty CE, Galetti M, Smith FA, Svenning J-C, Terborgh JW (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc Natl Acad Sci U S A 113:838–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhi Y, Girardin C, Metcalfe DB, Doughty CE, Aragão LE, Rifai SW et al (2021) The global ecosystems monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol Conserv 253:108889

    Google Scholar 

  • Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC (2014) Primary forest cover loss in Indonesia over 2000-2012. Nature Clim Change 4:730–735

    Google Scholar 

  • Martin C (2015) On the edge. The state and fate of the world’s tropical rainforests. Report to the club of Rome, vol vol 34. Greystone Books

    Google Scholar 

  • Martínez-Ramos M, Ortiz-Rodríguez IA, Piñero D, Dirzo R, Sarukhán J (2016) Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc Natl Acad Sci U S A 113:5323–5328

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Vilalta J, Lloret F (2014) Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob Planet Change 144:94–108

    Google Scholar 

  • McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B et al (2018) Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol 219:851–869

    PubMed  Google Scholar 

  • MEA - Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington

    Google Scholar 

  • Mercer B (2015) Tropical forests: a review. International Sustainability Unit, London

    Google Scholar 

  • Meyer P, Aljes M, Culmsee H, Feldmann E, Glatthorn J, Leuschner C, Schneider H (2021) Quantifying old-growthness of lowland European beech forests by a multivariate indicator for forest structure. Ecol Indic 125:107575

    Google Scholar 

  • Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559:527–534

    CAS  PubMed  Google Scholar 

  • Morales-Hidalgo D, Oswalt SN, Somanathan E (2015) Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For Ecol Manag 352:68–77

    Google Scholar 

  • Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992

    Google Scholar 

  • Nascimbene J, Thor G, Nimis PL (2013) Effects of forest management on epiphytic lichens in temperate deciduous forest of Europe – a review. For Ecol Manag 298:27–38

    Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    CAS  PubMed  Google Scholar 

  • Nordén B, Götmark F, Ryberg M, Paltto H, Allmér J (2008) Partial cutting reduces species richness of fungi on woody debris in oak-rich forests. Can J For Res 38:1807–1816

    Google Scholar 

  • Olano JM, Palmer MW (2003) Stand dynamics of an Appalachian old-growth forest during a severe drought episode. For Ecol Manag 174:139–148

    Google Scholar 

  • Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413

    Google Scholar 

  • Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S et al (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1:467–471

    Google Scholar 

  • Penuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837

    Google Scholar 

  • Peres CA, Barlow J, Laurance WF (2006) Detecting anthropogenic disturbance in tropical forests. Trends Ecol Evol 21:227–229

    PubMed  Google Scholar 

  • Peres CA, Emilio T, Schietti J, Desmoulière SJ, Levi T (2016) Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc Natl Acad Sci U S A 113:892–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer M, Lefebvre V, Peres CA, Banks-Leite C, Wearn OR, Marsh CJ et al (2017) Creation of forest edges has a global impact on forest vertebrates. Nature 551(7679):187

    Google Scholar 

  • Phillips OL, Martinez RV, Arroyo L, Baker TR, Killeen TJ, Lewis S, Malhi Y, Monteagudo A et al (2002) Increasing dominance of large lianas in Amazonian forests. Nature 418:770–774

    CAS  PubMed  Google Scholar 

  • Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Miss Bot Gard 100:170–176

    Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845

    CAS  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752

    CAS  PubMed  Google Scholar 

  • Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, Insarov G, Kiessling W, Leadley P, Leemans R, Levin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman E, Pandit R, Pascual U, Pires APF, Popp A, Reyes-García V, Sankaran M, Settele J, Shin YJ, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, Val AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz S, Fischer M, Hashimoto S, Lavorel S, Wu N, Ngo HT (2021) Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. IPBES Secretariat, Bonn. https://doi.org/10.5281/zenodo.4659158

    Book  Google Scholar 

  • Potapov P, Hansen M, Stehman V, Loveland TR, Pittman K (2008) Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss. Remote Sens Environ 112:3708–3717

    Google Scholar 

  • Potapov P, Turubanova S, Hansen MC (2011) Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens Environ 115:548–561

    Google Scholar 

  • Potapov P, Hansen MC, Laestadius L et al (2017) The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci Adv 3:e1600821

    PubMed  PubMed Central  Google Scholar 

  • Prach J, Kopecky M (2018) Landscape-scale vegetation homogenization in Central European sub-montane forests over the past 50 years. Appl Veg Sci 21:373–384

    Google Scholar 

  • Putz FE, Redford KH (2010) The importance of defining ‘forest’: tropical forest degradation, deforestation, long-term phase shifts, and future transitions. Biotropica 42:10–20

    Google Scholar 

  • Putz FE, Zuidema PA, Synnott T, Peña-Claros M, Pinard MA, Sheil D et al (2012) Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv Lett 5:296–303

    Google Scholar 

  • Qaim M, Sibhatu KT, Siregar H, Grass I (2020) Environmental, economic, and social consequences of the oil palm boom. Ann Rev Res Econ 12:321–344

    Google Scholar 

  • Qie L, Lewis SL, Sullivan MJ, Lopez-Gonzalez G, Pickavance GC, Sunderland T, Ashton P et al (2017) Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat Commun 8:1966

    PubMed  PubMed Central  Google Scholar 

  • Régnier C, Achaz G, Lambert A, Cowle RH, Bouchet P, Fontaine B (2015) Mass extinction in poorly known taxa. Proc Natl Acad Sci U S A 112:7761–7766

    PubMed  PubMed Central  Google Scholar 

  • Ribeiro MC, Metger JP, Martensen AM, Ponzoni FJ, HIrota MM (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Mayer P, Ginzler C, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19:229–240

    PubMed  Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M et al (2015) Collapse of the world’s largest herbivores. Sci Adv 1(4):e1400103

    PubMed  PubMed Central  Google Scholar 

  • Rivers MC, Beech E, Bazos I, Bogunic F, Buira A, Cakovic D, Carapeto A et al (2019) European red list of trees. IUCN, Cambridge

    Google Scholar 

  • Rodriguez-Caton M, Villalba R, Morales M, Srur A (2016) Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7:e01390

    Google Scholar 

  • Sabatini FM, Burrascano S, Keeton WS, Levers C, Lindner M, Pötzschner F, Verkerk PJ et al (2018) Where are Europe’s last primary forests? Divers Distrib 24:1426–1439

    Google Scholar 

  • Sabatini FM, Keeton WS, Lindner M, Svoboda M, Verkerk PJ, Bauhus J et al (2020) Protection gaps and restoration opportunities for primary forests in Europe. Divers Distrib 26:1646–1662

    Google Scholar 

  • Scheidegger C, Bergamini A, Bürgi M, Holderegger R, Lachat T et al (2010) Waldwirtschaft. In: Lachat T, Pauli D, Gonseth Y et al (eds) Wandel der Biodiversität in der Schweiz seit 1900. Haupt Verlag, Bern

    Google Scholar 

  • Schindler DW, Lee PG (2010) Comprehensive conservation planning to protect biodiversity and ecosystem services in Canadian boreal regions under a warming climate and increasing exploitation. Biol Conserv 143:1571–1586

    Google Scholar 

  • Schneider-Maunoury L, Lefebvre V, Ewers RM, Medina-Rangel GF, Peres CA, Somarriba E et al (2016) Abundance signals of amphibians and reptiles indicate strong edge effects in Neotropical fragmented forest landscapes. Biol Conserv 200:207–215

    Google Scholar 

  • Schnitzer S, Bongers F (2011) Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecol Lett 14:397–406

    PubMed  Google Scholar 

  • Schuch S, Bock J, Krause B, Wesche K, Schaefer M (2012) Long-term populations trends in three grassland insect groups: a comparative analysis of 1951 and 2009. J Appl Entomol 136:321–331

    Google Scholar 

  • Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, Gharun M, Grams TEE et al (2020) A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl Ecol 45:86–103

    Google Scholar 

  • Schultz J (1995) Die Ökozonen der Erde, 2. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Searchinger TD, Beringer T, Holtsmark B, Kammen DM, Lambin EF, Lucht W, Raven P, van Ypersele J-P (2018) Europe’s renewable energy directive poised to harm global forests. Nat Commun 9:3741

    PubMed  PubMed Central  Google Scholar 

  • Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarli D, Ammer C et al (2019) Arthropod decline in grassland and forests is associated with landscape-level drivers. Nature 574:671–674

    CAS  PubMed  Google Scholar 

  • Sekercioglu CH (2012) Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Orn 153:153–161

    Google Scholar 

  • Seymour F, Harris NL (2019) Reducing tropical deforestation. Science 365:756–757

    CAS  PubMed  Google Scholar 

  • Silva CHL Jr, Pessoa ACM, Carvalho NS, Reis JBC, Anderson LO, Aragao LEOC (2020) The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-01368-x

  • Slik JWF, Arroyo-Rodríguez V, Aiba SI, Alvarez-Loayza P, Alves LF, Ashton P, Balvanera P, Bastian ML, Bellingham PJ, van den Berg E, Bernacci L, da Conceição BP, Blanc L, Böhning-Gaese K, Boeckx P et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci U S A 112:7472–7477

    PubMed  PubMed Central  Google Scholar 

  • Sloan S, Sayer JA (2015) Forest Resources Assessment of 2015 shows positive global trends but forest and degradation persist in poor tropical countries. For Ecol Manag 352:134–145

    Google Scholar 

  • Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29:1695–1703

    PubMed  PubMed Central  Google Scholar 

  • Staude IR, Waller DM, Bernhardt-Römermann B, Bjorkman AD, Brunet J, de Frenne P, Hédl R, Jandt U, Lenoir J et al (2020) Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-1176-8

  • Stouffer PC, Jirinec V, Rutt CL, Bierregard RO Jr, Hernandez-Palma A, Johnson EI, Midway SR, Powell LL, Wolfe JD, Lovejoy TE (2021) Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol Lett 24:186–195

    PubMed  Google Scholar 

  • Stuart S, Chanson J, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of Amphibian declines and extinctions worldwide. Science 306:1783–1786

    CAS  PubMed  Google Scholar 

  • Suck R, Bushart M, Hofmann G, Schröder L (2014) Karte der Potentiellen Natürlichen Vegetation Deutschlands. Band III. Erläuterungen, Auswertungen, Anwendungsmöglichkeiten, Vegetationstabellen. BfN-Skripten 377. BfN, Bonn

    Google Scholar 

  • Sullivan MLP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Cuni Sanchez A, Ewango CEN et al (2020) Long-term thermal sensitivity of Earth’s tropical forests. Science 368:869–874

    CAS  PubMed  Google Scholar 

  • Tapia-Armijos MF, Homeier J, Espinosa CI, Leuschner C, de la Cruz M (2015) Deforestation and forest fragmentation in South Ecuador since the 1970s – losing a hotspot of biodiversity. PLoS One 10(9):e0133701

    PubMed  PubMed Central  Google Scholar 

  • Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E et al (2018) Global patterns of tropical forest fragmentation. Nature 554(7693):519

    CAS  PubMed  Google Scholar 

  • Ter Steege H, Pitman NC, Sabatier D et al (2013) Hyperdominance in the Amazonian tree flora. Science 342:1–9

    Google Scholar 

  • Ter Steege H, Pitman NC, Killeen TJ, Laurance WF, Peres CA, Guevara JE et al (2015) Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci Adv 1(10):e1500936

    PubMed  PubMed Central  Google Scholar 

  • Tomao A, Bonet JA, Castaño C, de-Miguel S (2020) How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For Ecol Manag 457:117678

    Google Scholar 

  • Tyukavina A, Hansen MC, Potapov PV, Krylov AM, Goetz SJ (2016) Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob Ecol Biogeogr 25:151–163

    Google Scholar 

  • Tyukavina A, Hansen MC, Potapov PV, Stehman SV, Smith-Rodriguez K, Okpa C, Aguilar R (2017) Types and rates of forest disturbance in Brazilian Legal Amazon, 2000-2013. Sci Adv 3:e1601047

    PubMed  PubMed Central  Google Scholar 

  • Tyukavina A, Hansen MC, Potapov PV, Parker D, Okpa C et al (2018) Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv 4:eaat2993

    PubMed  PubMed Central  Google Scholar 

  • Unwin M (2012) Atlas der Vögel. Artenvielfalt, Verhalten, Schutz. Haupt Verlag, Bern

    Google Scholar 

  • Valencia R, Balslev H, Miño GPY (1994) High tree alpha-diversity in Amazonian Ecuador. Biodivers Conserv 3:21–28

    Google Scholar 

  • van der Heijden GMF, Powers JS, Schnitzer SA (2015) Lianas reduce carbon accumulation and storage in tropical forests. Proc Natl Acad Sci U S A 112:13267–13271

    PubMed  PubMed Central  Google Scholar 

  • Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME et al (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    PubMed  Google Scholar 

  • Vera FWM (2000) Grazing ecology and forest history. CAB International, Wallingford

    Google Scholar 

  • Verheyen K, Baeten I, de Frenne P et al (2012) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–365

    Google Scholar 

  • Wallenius T, Niskanen L, Virtanen T, Hottola J, Brumelis G, Angervuon A, Julkunen J, Pihlström M (2010) Loss of habitats, naturalness and species diversity in Eurasian forest landscapes. Ecol Indic 10:1093–1101

    Google Scholar 

  • Watson JEM, Evans T, Venter O, Williams B, Tulloch A, Stewart C et al (2018) The exceptional value of intact forest ecosystems. Nat Ecol Evol 2:599–610

    PubMed  Google Scholar 

  • Whitmore TC, Peralta R, Brown K (1985) Total species count in a Costa Rican tropical rain forest. J Trop Ecol 1:375–378

    Google Scholar 

  • Wilcove DS, Giam X, Edwards DP, Fisher B, Koh LP (2013) Navjot’s nightmare revisited: logging agriculture, and biodiversity in Southeast Asia. Trends Ecol Evol 28:531–540

    PubMed  Google Scholar 

  • Wilkie DS, Bennett EL, Peres CA, Cunningham AA (2011) The empty forest revisited. Ann N Y Acad Sci 1223:120–128

    PubMed  Google Scholar 

  • Wilson EO (ed) (1988) Biodiversity. National Academies Press, Washington

    Google Scholar 

  • Woodcock P, Halme P, Edwards DP (2015) The ecological impacts of logging, and approaches to mitigating impacts. In: Peh K, Corlett P, Bergeron Y (eds) Routledge Handbook of Forest Ecology. Routledge, pp 424–437

    Google Scholar 

  • World Resources Institute (2020) We lost a football pitch of pirmary rainforest every 6 seconds in 2019. https://www.wri.org/blog/2020/06/global-tree-cover-loss-data-2019

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    PubMed  Google Scholar 

  • Wright SJ (2010) The future of tropical forest species. Ann N Y Acad Sci 1195:1–27

    PubMed  Google Scholar 

  • WWF (2018) Below the canopy. Plotting global trends in forest wildlife populations. WWF.Org.UK

    Google Scholar 

  • Zimmerman BL, Kormos CF (2012) Prospects of sustainable logging in tropical forests. Bioscience 62:479–487

    Google Scholar 

  • Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18:560–572

    CAS  Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic plants in a changing world: global change effects on vascular and non-vascular epiphytes. Progr Bot 70:147–170

    CAS  Google Scholar 

  • Zotz G, Weigelt P, Kessler M, Kreft H, Taylor A (2021) EpiList 1.0: a global checklist of vascular epiphytes. Ecology 102:e03326

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Holger Kreft (Göttingen) for his very helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leuschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leuschner, C., Homeier, J. (2022). Global Forest Biodiversity: Current State, Trends, and Threats. In: Lüttge, U., Cánovas, F.M., Risueño, MC., Leuschner, C., Pretzsch, H. (eds) Progress in Botany Vol. 83. Progress in Botany, vol 83. Springer, Cham. https://doi.org/10.1007/124_2022_58

Download citation

Publish with us

Policies and ethics