Skip to main content

Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

Abstract

Climate change in combination with increasing urbanization is a major challenge for our cities. Ecosystem services from the urban green play a significant role in mitigating the negative effects. Urban tree growth models are appropriate tools for the quantification of ecosystem services in some cases in dependence of the plant growth dynamics and of the changing environment. We report about the state of the art in modelling urban tree growth and ecosystem services and describe the background of urban tree growth and the provision of ecosystem services. Furthermore, we present basic growth model principles and describe and compare existing urban tree growth models. Finally we discuss the use of urban tree growth models, uncover advantages and disadvantages of the single urban tree growth models and indicate current limitations and future venues in modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguaron E, McPherson EG (2012) Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest. In: Lal R, Augustin B (eds) Carbon sequestration in urban ecosystems. Springer, New York, pp 43–71

    Google Scholar 

  • Altimir N, Kolari P, Tuovinen JP, Vesala T, Bäck J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3:209–228

    CAS  Google Scholar 

  • Alvem B-M, Bennerscheidt C (2009) Baumstandortoptimierung und Regenwasserbewirtschaftung – Chancen für ein gemeinsames Vorgehen. In: Dujesiefken D (ed) Jahrbuch der Baumpflege 2009. Taspo Fachbuchservice, Braunschweig, pp 70–78

    Google Scholar 

  • American Forests (2002) Regional ecosystem analysis Roswell. Georgia, Washington, p 8

    Google Scholar 

  • Armson D, Stringer P, Ennos AR (2013a) The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For Urban Green 12:282–286

    Google Scholar 

  • Armson D, Rahman MA, Ennos AR (2013b) A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboricult Urban Forests 39:157–164

    Google Scholar 

  • Artmann M (2013) Spatial dimensions of soil sealing management in growing and shrinking cities – a systemic multi-scale analysis in Germany. Erdkunde 67:249–264

    Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005) Evans review no. 2: the hot and the cold: unravelling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    PubMed  Google Scholar 

  • Bartelink HH (1996) Allometric relationships on biomass and needle area of Douglas-fir. For Ecol Manage 86:193–203

    Google Scholar 

  • Bartens J, Day SD, Harris JR, Wynn TM, Dove JE (2009) Transpiration and root development of urban trees in structural soil Stormwater reservoirs. Environ Manag 44:646–657

    Google Scholar 

  • Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27:1035–1047

    Google Scholar 

  • Bayer D, Reischl A, Rötzer T, Pretzsch H (2018) Structural response of black locust (Robinia pseudoacacia L.) and small leaved lime (Tilia cordata mill.) to varying urban environments analyzed by terrestrial laser scanning: implications for ecological functions and services. Urban For Urban Green 35:129–138

    Google Scholar 

  • Beatty RA, Heckman CT (1981) Survey of urban tree programs in the United States. Urban Ecol 5:81–102

    Google Scholar 

  • Beck I, Jochner S, Gilles S, McIntyre M, Buters JTM, Schmidt-Weber C, Behrendt H, Ring J, Menzel A, Traidl-Hoffmann C (2013) High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One 8

    Google Scholar 

  • Berland A, Shiflett SA, Shuster WD, Garmestani AS, Goddard HC, Herrmann DL, Hopton ME (2017) The role of trees in urban stormwater management. Landsc Urban Plan 162:167–177

    PubMed  PubMed Central  Google Scholar 

  • Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 36:1641–1657

    CAS  PubMed  Google Scholar 

  • Bodnaruk EW, Kroll CN, Yang Y, Hirabayashi S, Nowak DJ, Endreny TA (2017) Where to plant urban trees? A spatially explicit methodology to explore ecosystem service tradeoffs. Landsc Urban Plan 15:457–467

    Google Scholar 

  • Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301

    Google Scholar 

  • Bossel H (1996) TREEDYN3 forest simulation model. Ecol Model 90:187–227

    Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155

    Google Scholar 

  • Brantley HL, Hagler GSW, Deshmukh PJ, Baldauf RW (2014) Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci Total Environ 468-469:120–129

    CAS  PubMed  Google Scholar 

  • Bridgeman H, Warner R, Dodson J (1995) Urban biophysical environments. Oxford University Press, Oxford

    Google Scholar 

  • Broadbent AM, Coutts AM, Nice KA, Demuzere M, Krayenhoff ES, Tapper NJ, Wouters H (2019) The air-temperature response to green/blue-infrastructure evaluation tool (TARGET v1. 0): an efficient and user-friendly model of city cooling. Geosci Model Dev 12:785–803

    Google Scholar 

  • Bruns DA, Fetcher N (2008) CITYgreen watershed analysis of Toby Creek: an American Heritage River tributary. J Contemp Water Res Educ 138:29–37

    Google Scholar 

  • Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Software 13:373–384

    Google Scholar 

  • Buccolieri R, Santiago JL, Rivas E, Sanchez B (2018) Review on urban tree modelling in CFD simulations: aerodynamic, deposition and thermal effects. Urban For Urban Green 31:212–220

    Google Scholar 

  • Budhathoki CB, Lynch TB, Guldin JM (2008) A mixed-effects model for the dbh–height relationship of shortleaf pine (Pinus echinata mill.). South J Appl For 32:5–11

    Google Scholar 

  • Bühler O, Nielsen CN, Kristoffersen P (2006) Growth and phenology of established Tilia cordata street trees in response to different irrigation regimes. Arboric Urban For 32:3–9

    Google Scholar 

  • Burschel P, Kürsten E, Larson BC (1993) Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Forstl Forschungsber München 126:135

    Google Scholar 

  • Cadenasso ML, Pickett STA, Schwarz K (2007) Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Front Ecol Environ 5:80–88

    Google Scholar 

  • Calfapietra C, Fares S, Manes F, Morani A, Sgrigna G, Loreto F (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80

    CAS  PubMed  Google Scholar 

  • Canetti A, de Mattos PP, Braz EM, Netto SP (2017) Life pattern of urban trees: a growth-modelling approach. Urban Ecosyst 20:1057–1068

    Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modelling the components of plant respiration: some guiding principles. Ann Bot 85:45–54

    CAS  Google Scholar 

  • Causton DR (1985) Biometrical, structural and physiological relationships among tree parts. In: Cannel MGR, Jackson JE (eds) Attributes of trees as crop plants. Institute of Terrestrial Ecology, Huntingdon, pp 137–159

    Google Scholar 

  • Chiba Y (1998) Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecol Model 108:219–225

    Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Google Scholar 

  • Cienciala E, Černý M, Apltauer J, Exnerová Z (2005) Biomass functions applicable to European beech. J For Sci 51:147–154

    Google Scholar 

  • Clark JR, Matheny N (2010) The research foundation to tree pruning: a review of the literature. Arboricult Urban For 36:110–120

    Google Scholar 

  • Cleugh, H.A., Bui, E., Simon, D., Xu, J., Mitchell, V.G., 2005. The impact of suburban design on water use and microclimate

    Google Scholar 

  • Comeau PG, Kimmins JP (1989) Above- and below-ground biomass and production of Lodgepole pine on sites with differing soil moisture regimes. Can J For Res 19:447–454

    Google Scholar 

  • Constable JVH, Friend AL (2000) Suitability of process-based tree-growth models for addressing tree response to climate change. Environ Pollut 110:47–59

    CAS  PubMed  Google Scholar 

  • Dahlhausen J, Biber P, Rötzer T, Uhl E, Pretzsch H (2016) Tree species and their space requirements in six urban environments worldwide. Forests 7:19

    Google Scholar 

  • Dahlhausen J, Rötzer T, Biber P, Uhl E, Pretzsch H (2017) Urban climate modifies tree growth in Berlin. Int J Biometeorol 62:795–808

    PubMed  Google Scholar 

  • Dale VH, Doyle TW, Shugart HH (1985) A comparison of tree growth models. Ecol Model 29:145–169

    Google Scholar 

  • Däßler H-G (1991) Einfluß von Luftverunreinigungen auf die Vegetation. Ursachen – Wirkungen – Gegenmaßnahmen. Fischer Verlag, Jena

    Google Scholar 

  • Denman L, May PB, Moore GM (2016) The potential role of urban forests in removing nutrients from Stormwater. J Environ Qual 45:207–214

    CAS  PubMed  Google Scholar 

  • Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energ Buildings 35:69–76

    Google Scholar 

  • Dobson MC (1991) De-icing salt damage to trees and shrubs. For Comm Bull 101:64

    Google Scholar 

  • DWA (2018) Ermittlung der Verdunstung von Land- undWasserflächen. Merkblatt DWAM 504–1. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall, Hennef, p 142

    Google Scholar 

  • Dzierzanowski K, Popek R, Gawrońska H, Saebø A, Gawroński SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation 13:1,037–1,046

    CAS  Google Scholar 

  • Elliott RM, Adkins ER, Culligan PJ, Palmer MI (2018) Stormwater infiltration capacity of street tree pits: Quantifying the influence of different design and management strategies in New York City. Ecol Eng 111:157–166

    Google Scholar 

  • Ennos AR, Armson A, Rahman MA (2014) How useful are urban trees: the lessons of the Manchester research project, trees, people and the built environment II. Institute of Chartered Foresters, pp 62–70

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    CAS  PubMed  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    CAS  Google Scholar 

  • EPA UEPA (2003) Cooling summertime temperatures. Strategies to reduce urban heat islands. www.epa.gov/heatisland/resources/pdf/BasicsCompendium.pdf

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087

    CAS  PubMed  Google Scholar 

  • Fini A, Frangi P, Faoro M, Piatti R, Amoroso G, Ferrini F (2015) Effects of different pruning methods on an urban tree species: a four-year-experiment scaling down from the whole tree to the chloroplasts. Urban For Urban Green 14:664–674

    Google Scholar 

  • Fini A, Frangi P, Moria J, Donzellic D, Ferrinia F (2017) Nature based solutions to mitigate soil sealing in urban areas: results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ Res 156:443–454

    CAS  PubMed  Google Scholar 

  • Fisher JB, Badgley G, Blyth E (2012) Global nutrient limitation in terrestrial vegetation. Global Biogeochem Cycles 26:GB3007

    Google Scholar 

  • Fleming LE (1988) Growth estimates of street trees in Central New Jersey. Rutgers University, New Brunswick, p 143

    Google Scholar 

  • Fogel R (1983) Root turnover and productivity of coniferous forests. Plant and Soil 71:75–85

    Google Scholar 

  • Fontes L, Bontemps J-D, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. For Syst 19:8–29

    Google Scholar 

  • Franceschini T, Martin-Ducup O, Schneider R (2016) Allometric exponents as a tool to study the influence of climate on the trade-off between primary and secondary growth in major north-eastern American tree species. Ann Bot 117:551–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32:648–666

    CAS  PubMed  Google Scholar 

  • GALK eV (2019) In: Gartenamtsleiterkonferenz D (ed) GALK-Straßenbaumliste

    Google Scholar 

  • Gao F, Calatayud V, García-Breijo F, Reig-Armiñana J, Feng Z (2016) Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol Indic 67:367–379

    Google Scholar 

  • Gebert LL, Coutts AM, Tapper NJ (2019) The influence of urban canyon microclimate and contrasting photoperiod on the physiological response of street trees and the potential benefits of water sensitive urban design. Urban For Urban Greening 40:152–164

    Google Scholar 

  • Georgi JN, Dimitriou D (2010) The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build Environ 45:1,401–1,414

    Google Scholar 

  • Georgi NJ, Zafiriadis K (2006) The impact of park trees on microclimate in urban areas. Urban Ecosyst 9:195–209

    Google Scholar 

  • Gessler A, Schaub M, McDowell NG (2017) The role of nutrients in drought-induced tree mortality and recovery. New Phytol 214:513–520

    CAS  PubMed  Google Scholar 

  • Gill S, Handley J, Pauleit S, Ennos R, Theuray N, Lindley S (2008) Characterising the urban environment of UK cities and towns: a template for landscape planning in a changing climate. Landsc Urban Plan 87:210–222

    Google Scholar 

  • Gillner S, Vogt J, Tharang A, Dettmann S, Roloff A (2015) Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc Urban Plan 143:33–42

    Google Scholar 

  • Girardin MP, Raulier F, Bernier PY, Tardif JC (2008) Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches. Ecol Model 213:209–228

    Google Scholar 

  • Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl 16:555–571

    PubMed  Google Scholar 

  • Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424:183–187

    CAS  PubMed  Google Scholar 

  • Grote R, Haas E (2013) Modelling potential impacts of land-use change on BVOC-emissions by bioenergy production in Germany, impacts world 2013. Potsdam Institute for Climate Impact Research, Potsdam, pp 425–432

    Google Scholar 

  • Grote R, Samson R, Alonso R, Amorim JH, Cariñanos P, Churkina G, Fares S, Thiec DL, Niinemets Ü, Mikkelsen TN, Paoletti E, Tiwary A, Calfapietra C (2016) Functional traits of urban trees: air pollution mitigation potential. Front Ecol Environ 14:543–550

    Google Scholar 

  • Gunderson CA, Edwards NT, Walker AV, O’Hara KH, Campion CM, Hanson PJ (2012) Forest phenology and a warmer climate – growing season extension in relation to climatic provenance. Glob Chang Biol 18:2008–2025

    Google Scholar 

  • Haase D (2009) Effects of urbanisation on the water balance – a long-term trajectory. Environ Impact Assess Rev 29:211–219

    Google Scholar 

  • Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Google Scholar 

  • Hewitt CN, Ashworth K, MacKenzie AR (2019) Using green infrastructure to improve urban air quality (GI4AQ). Ambio First Online

    Google Scholar 

  • Hofman J, Stokkaer I, Snauwaert L, Samson R (2013) Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ Pollut 183:123–132

    CAS  PubMed  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Lincoln Mac Veagh, Dial Press, New York

    Google Scholar 

  • Illgen M (2011) Hydrology of urban environments. In: Niemelä J, Breuste JH, Elmqvist T, Guntenspergen G, James P, McIntyre M (eds) Urban ecology: patterns, processes, and applications. Oxford University Press, Oxford, pp 59–70

    Google Scholar 

  • i-Tree (2019). www.itreetools.org

  • Janhäll S (2015) Review on urban vegetation and particle air pollution – deposition and dispersion. Atmos Environ 105:130–137

    Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology IV. Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, pp 233–280

    Google Scholar 

  • Jeet Chaudhary I, Rathore D (2019) Dust pollution: its removal and effect on foliage physiology of urban trees. Sustain Cities Soc 51

    Google Scholar 

  • Jim CY (1998) Urban soil characteristics and limitations for landscape planting in Hong Kong. Landsc Urban Plan 40:235–249

    Google Scholar 

  • Jochner SC, Sparks TH, Estrella N, Menzel A (2012) The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). J Biometeorol 56:387–394

    Google Scholar 

  • Keyes MR, Grier CC (1981) Above-and below-ground net production in 40-years-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605

    Google Scholar 

  • Kikuzawa K, Seiwa K, Lechowicz MJ (2013) Leaf longevity as a normalization constant in allometric predictions of plant production. PLoS One 8

    Google Scholar 

  • Kimmins JP (1993) Scientific foundations for the simulation of ecosystem function and management in FORCYTE-11. Forestry Canada, Northern Forestry Centre, Edmonton, p 88

    Google Scholar 

  • Kjelgren RK, Clark JR (1992) Microclimates and tree growth in tree urban spaces. J Environ Hortic 10:139–145

    Google Scholar 

  • Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    CAS  PubMed  Google Scholar 

  • Konarska J, Uddling J, Holmer B, Lutz M, Lindberg F, Pleijel H, Thorsson S (2016) Transpiration of urban trees and its cooling effect in a high latitude city. Int J Biometeorol 60:159–172

    PubMed  Google Scholar 

  • Kramer JK, Kozlowski TT (1979) Physiology of woody plants. Academic Press, London

    Google Scholar 

  • Kramer H, Oldengarm J (2010) UrbTree: a tree growth model for the urban environment. Int Arch Photogramm Remote Sens Spat Inf Sci 38:4

    Google Scholar 

  • Krayenhoff ES, Christen A, Martilli A, Oke TR (2014) A multi-layer radiation model for urban neighbourhoods with trees. Bound-Lay Meteorol 151:139–178

    Google Scholar 

  • Kuyah S, Öborn I, Jonsson M (2017) Regulating ecosystem services delivered in agroforestry systems. In: Dagar JC, Tewari VP (eds) Agroforestry: anecdotal to modern science. Springer, Singapore, pp 797–815

    Google Scholar 

  • Lahr EC, Dunn RR, Frank SD (2018) Getting ahead of the curve: cities as surrogates for global change. Proc R Soc B Biol Sci 285:1–9

    Google Scholar 

  • Landsberg J (2003) Physiology in forest models: history and the future. For Biometry Modell Inf Sci 1:49–63

    Google Scholar 

  • Landsberg J, Sands P (2010) Physiological ecology of forest production. Terrestrial ecology, 1st edn. Academic Press

    Google Scholar 

  • Larondelle N, Hamstead ZA, Kremer P, Haase D, McPhearson T (2014) Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Appl Geogr 53:427–437

    Google Scholar 

  • Le Roux X, Lacointe A, Escobar-Gutierrez A, Le Dizes S (2001) Carbon-based models of individual tree growth: a critical appraisal. Ann For Sci 58:469–506

    Google Scholar 

  • Lee S-H, Park S-U (2008) A vegetated urban canopy model for meteorological and environmental modelling. Bound-Lay Meteorol 126:73–102

    Google Scholar 

  • Lin J, Kroll CN, Nowak DJ, Greenfield EJ (2019) A review of urban forest modeling: implications for management and future research. Urban For Urban Greening 46:126–366

    Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Chang Biol 13:2089–2119

    Google Scholar 

  • Livesley SJ, Baudinette B, Glover D (2014) Rainfall interception and stem flow by eucalypt street trees – The impacts of canopy density and bark type. Urban For Urban Green 13:192–197

    Google Scholar 

  • Locosselli GM, de Camargo EP, Moreira TCL, Todesco E, de Fátima Andrade M, de André CDS, de André PA, Singer JM, Ferreira LS, Saldiva PHN, Buckeridge MS (2019) The role of air pollution and climate on the growth of urban trees. Sci Total Environ 666:652–661

    CAS  PubMed  Google Scholar 

  • Longcore T, Li C, Wilson JP (2004) Applicability of citygreen urban ecosystem analysis software to a densely built urban neighborhood. Urban Geogr 25:173–186

    Google Scholar 

  • MA (2005) Millennium ecosystem assessment, ecosystems and human wellbeing. Synthesis, Washington

    Google Scholar 

  • Maco SE, McPherson EG, Simpson JR, Peper PJ, Xiao Q (2003) City of San Francisco, California street tree resource analysis. In: CUFR-3, C.f.U.F.R., Pacific Southwest Research Station (ed) United States Forest Service, Davies

    Google Scholar 

  • Mäkelä A (1990) Modelling structural-functional relationships in whole-tree growth; resource allocation. In: Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) Process modelling of forest growth responses to environmental stress. Timber Press, Portland, pp 81–95

    Google Scholar 

  • Mäkelä A (2003) Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res 33:398–409

    Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    CAS  PubMed  Google Scholar 

  • McCarthy MC, Enquist JB (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720

    Google Scholar 

  • McHale MR, Burke IC, Lefsky MA, Peper PJ, McPherson EG (2009) Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst 12:95–113

    Google Scholar 

  • McPherson EG (1998) Atmospheric carbon dioxide reduction by Sacramento’s urban forest. J Arboricul 24:215–223

    Google Scholar 

  • McPherson EG, Peper PJ (2012) Urban tree growth modeling. Arboricult Urban For 38:172–180

    Google Scholar 

  • McPherson EG, Simpson JR (2001) Potential energy savings in buildings by an urban tree planting programme in California. Urban For Urban Green 2:73–86

    Google Scholar 

  • McPherson EG, van Doorn NS, Peper PJ (2016) Urban tree database and allometric equations. US Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, p 86

    Google Scholar 

  • Meineke EK, Dunn RR, Sexton JO, Frank SD (2013) Urban warming drives insect pest abundance on street trees. PLoS One 8:e59687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgenroth J, Buchan GD (2009) Soil moisture and aeration beneath pervious and impervious pavements. Arboric Urban For 35:135–141

    Google Scholar 

  • Moser A, Roetzer T, Pauleit S, Pretzsch H (2015) Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban For Urban Green 14:1110–1121

    Google Scholar 

  • Moser A, Rotzer T, Pauleit S, Pretzsch H (2016) The urban environment can modify drought stress of small-leaved lime (Tilia cordata Mill.) and Black Locust (Robinia pseudoacacia L.). Forests 7

    Google Scholar 

  • Moser A, Rahman MA, Pretzsch H, Pauleit S, Rotzer T (2017) Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int J Biometeorol 61:1095–1107

    PubMed  Google Scholar 

  • Moser-Reischl A, Uhl E, Rötzer T, Biber P, van Con T, Tan NT, Pretzsch H (2018) Effects of the urban heat island and climate change on the growth of Khaya senegalensis in Hanoi, Vietnam. For Ecosyst 5:37

    Google Scholar 

  • Moser-Reischl A, Rahman MA, Pauleit S, Pretzsch H, Rötzer T (2019a) Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landsc Urban Plan 183:88–99

    Google Scholar 

  • Moser-Reischl A, Rötzer T, Biber P, Ulbricht M, Uhl E, Qu L, Koike T, Pretzsch H (2019b) Growth of Abies sachalinensis along an urban gradient affected by environmental pollution in Sapporo, Japan. Forests 10:707

    Google Scholar 

  • Müller N, Kuttler W, Barlag A-B (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theor Appl Climatol 115:243–257

    Google Scholar 

  • My City’s Trees (2019)

    Google Scholar 

  • Nielsen CN, Bühler O, Kristoffersen P (2007) Soil water dynamics and growth of street and park trees. Arboric Urban For 33:231–245

    Google Scholar 

  • Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Google Scholar 

  • Niklas KJ (1994) Plant allometry. University of Chicago Press, The scaling of form and process

    Google Scholar 

  • Nowak DJ (1993) Atmospheric carbon reduction by urban trees. J Environ Manage 37:207–217

    Google Scholar 

  • Nowak DJ (1994) Air pollution removal by Chicago’s urban forest. In: McPherson EG, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project. USDA Forest Service, Radnor, pp 63–82

    Google Scholar 

  • Nowak DJ (1996) Estimating leaf area and leaf biomass of open-grown deciduous urban trees. For Sci 42:504–507

    Google Scholar 

  • Nowak DJ, Crane DE (2000) The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions. In: Hansen M, Burk T (eds) Integrated tools for natural resources inventories in the twenty-first century. US Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, pp 714–720

    Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    CAS  PubMed  Google Scholar 

  • Nowak DJ, Dwyer JF (2007) Understanding the benefits and costs of urban forest ecosystems. In: Kuser JE (ed) Urban and community forestry in the northeast. Springer, Berlin

    Google Scholar 

  • Nowak DJ, Greenfield EJ (2012) Tree and impervious cover change in U.S. cities. Urban For Urban Green 11:21–30

    Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Hoehn RE (2003) The urban forest effects (UFORE) model: Field data collection manual. US Department of Agriculture Forest Service, Northeastern Research Station, Syracuse, pp 4–11

    Google Scholar 

  • Nowak DJ, Kuroda M, Crane DE (2004) Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For Urban Green 2(3):139–147

    Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, Bond J (2008) A ground-based method of assessing urban forest structure and ecosystem services. Arboric Urban For 36:347–358

    Google Scholar 

  • Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236

    CAS  PubMed  Google Scholar 

  • Oke TR (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond Ser B Biol Sci 324:335–349

    Google Scholar 

  • Oke TR (2011) Urban heat islands. In: Douglas I, Goode D, Houck M, Wang R (eds) The Routledge handbook of urban ecology. Routledge, London, pp 120–131

    Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University Press, Cambridge

    Google Scholar 

  • Pataki DE, Bowling DR, Ehleringer JR, Zobitz JM (2006) High resolution atmospheric monitoring of urban carbon dioxide sources. Geophys Res Lett 33:1–5

    Google Scholar 

  • Pauleit S (2003) Towards successful urban street tree plantings: identifying the key requirements. Municipal Eng 156:43–56

    Google Scholar 

  • Pauleit S, Breuste JH (2011) Land use and surface cover as urban ecological indicators. In: Niemelä J, Breuste JH, Elmqvist T, Guntenspergen G, James P, McIntyre M (eds) Urban ecology: patterns, processes, and applications

    Google Scholar 

  • Pauleit S, Duhme F (2000) GIS assessment of Munich’s urban forest structure for urban planning. J Arboricult 23:133–141

    Google Scholar 

  • Pauleit S, Zölch T, Hansen R, Randrup TB, Konijnendijk van den Bosch CC (2017) Nature-based solutions and climate change – four shades of green. In: Kabisch S, Korn H, Stadler J, Bonn A (eds) Theory and practice of urban sustainability transitions. Nature-based solutions to climate change adaptation in urban areas. Linkages between science, policy and practice. Springer, Berlin

    Google Scholar 

  • Peng L, Chen S, Liu Y, Wang J (2008) Application of CITYgreen model in benefit assessment of Nanjing urban green space in carbon fixation and runoff reduction. Front For China 3:177–182

    Google Scholar 

  • Peper PJ, McPherson EG (1998) Comparison of five methods for estimating leaf area index of open grown deciduous trees. J Arboricult 24:98–111

    Google Scholar 

  • Peper PJ, Alzate CP, McNeil JW, Hashemi J (2014a) Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada. Urban For Urban Green 13:175–183

    Google Scholar 

  • Peper PJ, Alzate CP, McNeil JW, Hashemi J (2014b) Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada. Urban For Urban Green 13:175–183

    Google Scholar 

  • Poorter L (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer Verlag, Berlin

    Google Scholar 

  • Pretzsch H (2010a) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin

    Google Scholar 

  • Pretzsch H (2010b) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, pp 339–369

    Google Scholar 

  • Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264

    Google Scholar 

  • Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of norway spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639

    CAS  PubMed  Google Scholar 

  • Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162:3–21

    Google Scholar 

  • Pretzsch H, Dieler J, Seifert T, Rötzer T (2012a) Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns. Trees Struct Funct 24

    Google Scholar 

  • Pretzsch H, Matthew C, Dieler J (2012b) Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Matyssek REA (ed) Growth and defence in plants. Springer, Berlin

    Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Dahlhausen J, Rötzer T, Caldentey J, Koike T, van Con T, Chavanne A, Seifert T, du Toit B, Farnden C, Pauleit S (2015) Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For Urban Green 14:466–479

    Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Dahlhausen J, Schütze G, Perkins D, Rötzer T, Caldentey J, Koike T, van Con T, Chavanne A, du Toit B, Foster K, Lefer B (2017) Climate change accelerates growth of urban trees in metropolises worldwide. Sci Rep 7:10

    Google Scholar 

  • Pugh TAM, MacKenzie AR, Whyatt JD, Hewitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street Canyons. Environ Sci Technol 46:4692–7699

    Google Scholar 

  • Rahman MA, Smith JG, Stringer P, Ennos AR (2011) Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban For Urban Green 10:185–192

    Google Scholar 

  • Rahman MA, Stringer P, Ennos AR (2013) Effect of pit design and soil composition on performance of Pyrus calleryana street trees in the establishment period. Arboric Urban For 39:256–266

    Google Scholar 

  • Rahman MA, Armson D, Ennos AR (2014) Effect of urbanization and climate change in the rooting zone on the growth and physiology of Pyrus calleryana. Urban For Urban Green 13:325–335

    Google Scholar 

  • Rahman MA, Armson D, Ennos AR (2015) A comparison of the growth and cooling effectiveness of five commonly planted urban tree species. Urban Ecosyst 18:371–389

    Google Scholar 

  • Rahman MA, Moser A, Rötzer T, Pauleit S (2017) Below-canopy surface and air cooling effect of two contrasting tree species in urban street conditions. Landsc Urban Plan In Begutachtung

    Google Scholar 

  • Rahman MA, Moser A, Rötzer T, Pauleit S (2017a) Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric For Meteorol 232:443–456

    Google Scholar 

  • Rahman MA, Moser A, Rötzer T, Pauleit S (2017b) Within canopy temperature differences and cooling ability of Tilia cordata trees grown in urban conditions. Build Environ 114:118–128

    Google Scholar 

  • Rahman MA, Moser A, Gold A, Rötzer T, Pauleit S (2018) Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Sci Total Environ 633:100–111

    CAS  PubMed  Google Scholar 

  • Rahman MA, Moser A, Rötzer T, Pauleit S (2019a) Comparing the transpirational and shading effects of two contrasting urban tree species. Urban Ecosyst

    Google Scholar 

  • Rahman MA, Moser A, Anderson M, Zhang C, Rötzer T, Pauleit S (2019b) Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For Urban Green 38:22–32

    Google Scholar 

  • Rahman MA, Hartmann C, Moser-Reischl A, von Strachwitz MF, Paeth H, Pretzsch H, Pauleit S, Rötzer T (2020) Tree cooling effects and human thermal comfort under contrasting species and sites. Agric For Meteorol 287:107947

    Google Scholar 

  • Randrup TC (1997) Soil compaction on construction sites. J Arboricult 23:207–210

    Google Scholar 

  • Redon EC, Lemonsu A, Masson V, Morille B, Musy M (2017) Implementation of street trees within the solar radiative exchange parameterization of TEB in SURFEX v8.0. Geosci Model Dev 10:385–411

    Google Scholar 

  • Rodríguez Martín JA, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163

    PubMed  Google Scholar 

  • Roloff A (2013) Bäume in der Stadt. Besonderheiten – Funktion – Nutzen – Arten – Risiken. Ulmer, Stuttgart

    Google Scholar 

  • Roloff A, Korn S, Gillner S (2009) The climate-species-matrix to select tree species for urban habitats considering climate change. Urban For Urban Green 8:295–308

    Google Scholar 

  • Roman LA, Scatena FN (2011) Street tree survival rates: meta-analysis of previous studies and application to a field survey in Philadelphia, PA, USA. Urban For Urban Green 10(4):269–274

    Google Scholar 

  • Rötzer T, Pretzsch H (2018) Stadtbäume im Klimawandel II. Wuchsverhalten, Umweltleistungen und Perspektiven. TU München, Chair of Forest Growth and Yield Science, Freising

    Google Scholar 

  • Rötzer T, Wittenzeller M, Häckel H, Nekovar J (2000) Phenology in central Europe – differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66

    Google Scholar 

  • Rötzer T, Seifert T, Pretzsch H (2009) Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J Forest Res 128:171–182

    Google Scholar 

  • Rötzer T, Dieler J, Mette T, Moshammer R, Pretzsch H (2010) Productivity and carbon dynamics in managed Central-European Forests depending on site conditions and thinning regimes. Forestry 83:483–496

    Google Scholar 

  • Rötzer T, Häberle KH, Kallenbach C, Matyssek R, Schütze G, Pretzsch H (2017) Tree species and size drive water consumption of beech/spruce forests – a simulation study highlighting growth under water limitation. Plant and Soil 418:337–356

    Google Scholar 

  • Rötzer T, Rahman MA, Moser-Reischl A, Pauleit S, Pretzsch H (2019) Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Sci Total Environ 676:651–664

    PubMed  Google Scholar 

  • Rubner M (1931) Die Gesetze des Energieverbrauchs bei der Ernährung. Wien, Berlin

    Google Scholar 

  • Saebo A, Benedikz T, Randrup TB (2003) Selection of trees for urban forestry in the Nordic countries. Urban For Urban Green 2:101–114

    Google Scholar 

  • Santantonio D, Hermann RK, Overton WS (1977) Root biomass studies in forest ecosystems. Pedobiologia 17:1–31

    CAS  Google Scholar 

  • Sauerwein M (2011) Urban soils – characterization, pollution, and relevance in urban ecosystems. In: Niemelä J, Breuste JH, Elmqvist T, Guntenspergen G, James P, McIntyre M (eds) Urban ecology: patterns, processes, and applications. Oxford University Press, Oxford

    Google Scholar 

  • Saunders SM, Dade E, Niel K (2011) An urban forest effects (UFORE) model study of the integrated effects of vegetation on local air pollution in the Western Suburbs of Perth, WA. In: 19th international congress on modelling and simulation (MODSIM2011). Modelling and Simulation Society of Australia and New Zealand, Perth, Australia

    Google Scholar 

  • Scalenghe R, Marsan FA (2009) The anthropogenic sealing of soils in urban areas. Landsc Urban Plan 90:1–10

    Google Scholar 

  • Schenk HJ (1996) Modeling the effects of temperature on growth and persistence of tree species: a critical review of tree population models. Ecol Model 92:1–32

    Google Scholar 

  • Schooling JT, Carlyle-Moses DE (2015) The influence of rainfall depth class and deciduous tree traits on stemflow production in an urban park. Urban Ecosyst 18:1261–1284

    Google Scholar 

  • Schwarz N (2010) Urban form revisited – selecting indicators for characterising European cities. Landsc Urban Plan 96:29–47

    Google Scholar 

  • Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100

    Google Scholar 

  • Shashua-Bar L, Hoffman ME (2002) The Green CTTC model for predicting the air temperature in small urban wooded sites. Build Environ 37:1279–1288

    Google Scholar 

  • Shashua-Bar L, Pearlmutter D, Erell E (2009) The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc Urban Plan 92:179–186

    Google Scholar 

  • Shinozaki KK, Nozumi YK, Kira T (1964a) A quantitative analysis of plant form-the pipe model theory. I. Basic analysis. Jpn J Ecol 14:97–105

    Google Scholar 

  • Shinozaki KK, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form-Pipe model theory. II. Further evidences of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  • Sjöman H, Gunnarsson A, Pauleit S, von Bothmer R (2012) Selection approach of urban trees for inner-city environments: learning from nature. Arboric Urban For 38:194–204

    Google Scholar 

  • Smithers RJ, Doick KJ, Burton A, Sibille R, Steinbach D, Harris R, Groves L, Blicharska M (2018) Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst

    Google Scholar 

  • Soares AL, Rego FC, McPherson EG, Simpson JR, Peper PJ, Xiao Q (2011) Benefits and costs of street 980 trees in Lisbon, Portugal. Urban For Urban Greening 10:69–78

    Google Scholar 

  • Soil Conservation Service (1986) Urban hydrology for small watersheds. TR-55. United States Department of Agriculture

    Google Scholar 

  • Stewart DI, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900

    Google Scholar 

  • Stoffberg GH, van Rooyen MW, van der Linde MJ, Groeneveld HT (2008) Predicting the growth in tree height and crown size of three street tree species in the City of Tshwane, South Africa. Urban For Urban Green 7:259–264

    Google Scholar 

  • Stratopoulos LMF, Duthweiler S, Haberle KH, Pauleit S (2018) Effect of native habitat on the cooling ability of six nursery-grown tree species and cultivars for future roadside plantings. Urban For Urban Green 30:37–45

    Google Scholar 

  • Stratopoulos LMF, Zhang C, Duthweiler S, Häberle KH, Rötzer T, Xu C, Pauleit S (2019a) Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Int J Biometeorol

    Google Scholar 

  • Stratopoulos LMF, Zhang C, Häberle K-H, Pauleit S, Duthweiler S, Pretzsch H, Rötzer T (2019b) Effects of drought on the phenology, growth, and morphological development of three urban tree species and cultivars. Sustainability 11:5117

    Google Scholar 

  • Szota C, Coutts AM, Thom JK, Virahsawmy HK, Fletcher TD, Livesley SJ (2019) Street tree stormwater control measures can reduce runoff but may not benefit established trees. Landsc Urban Plan 182:144–155

    Google Scholar 

  • Taha H, Douglas S, Haney J (1997) Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energ Buildings 25:169–177

    Google Scholar 

  • Takashima A, Kume A, Yoshida S, Murakami T, Kajisa T, Mizoue N (2009) Discontinuous DBH–height relationship of Cryptomeria japonica on Yakushima Island: effect of frequent typhoons on the maximum height. Ecol Res 24:1003–1011

    Google Scholar 

  • Tavares R, Calmet I, Dupont S (2015) Modelling the impact of green infrastructures on local microclimate within an idealized homogeneous urban canopy. In: 9th international conference on urban climate (ICUC9), Toulouse (France), pp 1–6

    Google Scholar 

  • TEEB (2011) The economics of ecosystems and biodiversity. TEEB manual for cities: ecosystem services in urban management

    Google Scholar 

  • Teissier G (1934) Dysharmonies et discontinuités dans la Croissance. Hermann, Paris

    Google Scholar 

  • Timilsina N, Beck J, Eames MS, Hauer R, Werner L (2017) A comparison of local and general models of leaf area and biomass of urban trees in USA. Urban For Urban Greening 24:157–163

    Google Scholar 

  • Tiwary A, Williams ID, Heidrich O, Namdeo A, Bandaru V, Calfapietra C (2016) Development of multi-functional streetscape green infrastructure using a performance index approach. Environ Pollut 208:209–220

    CAS  PubMed  Google Scholar 

  • TreePlotter (2019)

    Google Scholar 

  • Troxel B, Piana M, Ashton MS, Murphy-Dunning C (2013) Relationships between bole and crown size for young urban trees in the northeastern USA. Urban For Urban Greening 12:144–153

    Google Scholar 

  • Viswanathan B, Volder A, Watson WT, Aitkenhead-Peterson JA (2011) Impervious and pervious pavements increase soil CO2 concentrations and reduce root production of American sweetgum (Liquidambar styraciflua). Urban For Urban Greening 10:133–139

    Google Scholar 

  • Volder A, Viswanathan B, Watson WT (2014) Pervious and impervious pavements reduce root production and decrease lifespan of fine roots of mature sweetgum trees. Urban Ecosyst 17:445–453

    Google Scholar 

  • von Bertalanffy L (1951) Theoretische Biologie: II. Band, Stoffwechsel, Wachstum. A Francke AG, Bern

    Google Scholar 

  • von Gadow K (2003) Waldstruktur und Wachstum. Universitätsdrucke Göttingen, University Press, Göttingen

    Google Scholar 

  • Watson GW, Kelsey P (2006) The impact of soil compaction on soil aeration and fine root density of Quercus palustris. Urban For Urban Greening 4:69–74

    Google Scholar 

  • Watson GW, Hewitt AM, Custic M, Lo M (2014) The management of tree root systems in urban and suburban settings II: a review of soil influence on root growth. Arboric Urban For 40:249–271

    Google Scholar 

  • Watt MS, Kirschbaum MUF (2011) Moving beyond simple linear allometric relationships between tree height and diameter. Ecol Model 222:3910–3916

    Google Scholar 

  • Weltecke K, Gaertig T (2012) Influence of soil aeration on rooting and growth of the Beuys-trees in Kassel, Germany. Urban For Urban Greening 11:329–338

    Google Scholar 

  • Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    CAS  PubMed  Google Scholar 

  • West GB, Enquist BJ, Brown JH (2009) A general quantitative theory of forest structure and dynamics. Proc Natl Acad Sci 106:7040–7045

    CAS  PubMed  Google Scholar 

  • WHO (2018) WHO ambient (outdoor) air quality database Summary results, update 2018. https://www.who.int/airpollution/data/AAP_database_summary_results_2018_final2.pdf?ua=1

  • Woldegerima T, Yeshitela K, Lindley S (2016) Characterizing the urban environment through urban morphology types (UMTs) mapping and land surface cover analysis: the case of Addis Ababa, Ethiopia. Urban Ecosystems

    Google Scholar 

  • Xiao Q, McPherson EG, Ustin SL, Grismer ME, Simpson JR (2000a) A new approach to modeling tree rainfall interception. J Geophys Res 105:29–173

    Google Scholar 

  • Xiao Q, McPherson EG, Ustin SL, Grismer ME, Simpson JR (2000b) Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol Process 14:763–784

    Google Scholar 

  • Xiao QF, McPherson EG, Ustin SL, Grismer ME (2000c) A new approach to modeling tree rainfall interception. J Geophys Res Atmos 105:29173–29188

    Google Scholar 

  • Yoon TK, Park C-W, Lee SJ, Ko S, Kim KN, Son Y, Lee K-H, Oh S, Lee W-K, Son Y (2013) Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For Urban Green 12:344–349

    Google Scholar 

  • Zölch T, Henze L, Keilholz P, Pauleit S (2017) Regulating urban surface runoff through nature-based solutions – an assessment at the micro-scale. Environ Res 157:135–144

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Bavarian State Ministry of the Environment and Consumer Protection for funding the projects TUF01UF-64971 ‘Urban trees under climate change: growth, functions & services, and perspectives’ and TKP01KPB-71924 ‘Climate experience Würzburg: Influence of trees on the micro climate of the city of Würzburg’. We would also like to thank the German Research Foundation (DFG) for funding the project ‘Impact of trees on the urban microclimate under climate change: Mechanisms and eco-system services of urban tree species in temperate, Mediterranean and arid major cities’ (PR 292/21-1 and PA 2626/3-1). Our thanks also go the municipal authorities of Munich, Würzburg, Hof, Kempten, Bayreuth and Nuremberg, who supported the study and permitted tree sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rötzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rötzer, T., Moser-Reischl, A., Rahman, M.A., Grote, R., Pauleit, S., Pretzsch, H. (2020). Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_46

Download citation

Publish with us

Policies and ethics