Skip to main content

How Can We Interpret the Large Number and Diversity of ABA Transporters?

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

Abstract

Abscisic acid (ABA) is generally known as the plant stress hormone. Functioning in a wide range of environmental responses, ABA plays a major role in drought tolerance. In addition to inducing stomatal closure during drought stress, ABA promotes suberization of the exodermis and endodermis, which reduces water loss from the root. Furthermore, ABA increases freezing tolerance and has a complex, but not completely understood, role in plant–pathogen interactions. ABA also functions in plant development; for example, ABA is a central player in maintaining seed dormancy. Whereas the enzymatic steps of ABA biosynthesis have been known for some time, our knowledge of ABA receptors and transporters is quite recent. This is due, at least partially, to redundancy among members of both the ABA receptor and transporter families. Many transporters from different transporter families cooperate to transport ABA. The weak but distinct phenotypes described for the different loss-of-function mutants indicate that each of these transporters plays a specific role and, at least under a given condition or in a specific tissue, they are not completely redundant. However, for each function described so far, delivery of ABA at the target site requires the activity of several different ABA transporters. This strategy may ensure that ABA is transported to the correct target even if one of the transporters is nonfunctional or that plants can transport ABA under a given condition via several routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABA-GE:

ABA glucose ester

ABC:

ATP-binding cassette

AIT:

ABA-importing transporters

AtBG1:

Arabidopsis thaliana β-glucosidase

AWPM-19:

ABA-induced wheat plasma membrane polypeptide-19

Cvi:

Cape Verde islands

DTX/MATE:

Detoxification efflux carriers/multidrug and toxic compound extrusion

GUS:

β-Glucosidase

LATD/NIP:

Lateral root defective/numerous infection threads, polyphenolics

Lr34res:

The resistant Lr34 allele

Lr34sus:

The susceptible Lr34 allele

NBF:

Nucleotide binding fold

nced3 :

Nine-cis-epoxycarotenoid dioxygenase 3

NPF:

Nitrate transporter1/peptide transporter family

OE:

Overexpression

ost1 :

Open stomata 1

PM1:

Plasma membrane protein1

PP2C:

Phosphatase 2C

PYR/PYL/RCAR:

Pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor

TMD:

Transmembrane domain

References

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KA, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57

    CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, Chung Y-Y, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackman PG, Davies WJ (1985) Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot 36:39–48

    Google Scholar 

  • Bray EA, Zeevaart JAD (1985) The compartmentation of abscisic acid and β-d-glucopyranosyl abscisate in mesophyll cells. Plant Physiol 79:719–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E (2013) Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol 163:1446–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao FY, Yshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    CAS  PubMed  Google Scholar 

  • Chen H, Lan H, Huang P, Zhang Y, Yuan X, Huang X, Huang J, Zhang H (2015) Characterization of OsPM19L1 encoding an AWPM-19-like family protein that is dramatically induced by osmotic stress in rice. Genet Mol Res 14:11994–12005

    CAS  PubMed  Google Scholar 

  • Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M (2015) Identification of Arabidopsis thaliana NRT1/PTR family (NPF) proteins capable of transporting plant hormones. J Plant Res 128:679–686

    CAS  PubMed  Google Scholar 

  • Cho CH, Jang S, Choi BY, Hong D, Choi DS, Choi S, Kim H, Han SK, Kim S, Kim MS, Palmgren M, Sohn KH, Yoon HS, Lee Y (2019) Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens. Physiol Plant. https://doi.org/10.1111/ppl.13052

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    CAS  PubMed  Google Scholar 

  • Cooke JE, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728

    CAS  PubMed  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D, Foyer CH, Zhang H (2003) An Abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    PubMed  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    CAS  PubMed  Google Scholar 

  • Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Hauter K (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491

    PubMed  PubMed Central  Google Scholar 

  • Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae T-W, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, de Veylder L, Takahashi H, Bennett MJ (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 3:17057

    CAS  PubMed  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez AA, Agbévénou K, Herrbach V, Gough C, Bensmihen S (2015) Abscisic acid promotes pre-emergence stages of lateral root development in Medicago truncatula. Plant Signal Behav 10:e977741

    PubMed  Google Scholar 

  • González EM, Gálvez L, Arrese-lgor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293. https://doi.org/10.1093/jexbot/52.355.285

    Article  PubMed  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo F, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to Abscisic acid. Plant Cell 24:2483–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    CAS  PubMed  Google Scholar 

  • Harris JM (2015) Abscisic acid: hidden architect of root system structure. Plants (Basel) 4:548–572

    CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    CAS  PubMed  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable Apoplastic barrier. J Exp Bot 52:2245–2264

    CAS  PubMed  Google Scholar 

  • Huang NC, Liu KH, Lo HJ, Tsay YF (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell 11:1381–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Song W-Y, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355

    CAS  PubMed  Google Scholar 

  • Inuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Google Scholar 

  • Jackson MB (1993) Are plant hormones involved in root to shoot communication? Adv Bot Res 19:103–187

    CAS  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153

    PubMed  PubMed Central  Google Scholar 

  • Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113

    PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109:9653–9658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoia E, Sohn KH, Paek K-Y, Lee Y (2017) Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci U S A 114:E5712–E5720. https://doi.org/10.1073/pnas.1702259114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koike M, Takezawa D, Arakawa K, Yoshica S (1997) Accumulation of 19-kDa plasma membrane polypeptide during induction of freezing tolerance in wheat suspension-culture cells by abscisic acid. Plant Cell Physiol 38:707–716

    CAS  PubMed  Google Scholar 

  • Krattinger SG, Jordan DR, Mace ES, Raghavan C, Luo MC, Keller B, Lagudah ES (2013) Recent emergence of the wheat Lr34 multi-pathogen resistance: insights from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor Appl Genet 126:663–672

    CAS  PubMed  Google Scholar 

  • Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223:853–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67:885–894

    CAS  PubMed  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23:513–522

    CAS  PubMed  Google Scholar 

  • Lee KH, Piao HL, Kim H-Y, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee I-J, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of Abscisic acid. Cell 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Lee KP, Piskurewicz U, Turecková V, Strnad M, Lopez-Molina L (2010) A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci U S A 107:19108–19113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Mas P, Seo PJ (2016) MYB96 shapes the circadian gating of ABA signaling in Arabidopsis. Sci Rep 6:17754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang M, Coruzzi G, Lacombe B (2014) A unified nomenclature of nitrate transporter 1/PEPTIDE transporter family members in plants. Trends Plant Sci 19:5–9

    PubMed  Google Scholar 

  • Li J, Xu Y, Niu Q, He L, Teng Y, Bai S (2018) Abscisic acid (ABA) promotes the induction and maintenance of pear (Pyrus pyrifolia White Pear Group) flower bud endodormancy. Int J Mol Sci 19:E310

    PubMed  Google Scholar 

  • Liu G, Stirnemann M, Gübeli C, Egloff S, Courty P-E, Aubry S, Vandenbussche M, Morel P, Reinhardt D, Martinoia E, Borghi L (2019) Strigolactones play an important role in shaping exodermal morphology via a KAI2-dependent pathway. iScience 17:144–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longo A, Miles NW, Dickstein R (2018) Genome mining of plant NPFs reveals varying conservation of signature motifs associated with the mechanism of transport. Front Plant Sci 9:1668

    PubMed  PubMed Central  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua N-H (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Dittgen J, PiÅ›lewska-Bednarek M, Molina A, Schneider B, SvatoÅ¡ A, Doubskỳ J, Schneeberger K, Weigel D, Bednarek P, Schulze-Lefert P (2015) Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol 168:814–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Martinière A, Bassil E, Jublanc E, Alcon C, Reguera M, Sentenac H, Blumwald E, Paris N (2013) In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25:4028–4043

    PubMed  PubMed Central  Google Scholar 

  • Matern A, Böttcher C, Eschen-Lippold L, Westermann B, Smolka U, Döll S, Trempel F, Aryal B, Scheel D, Geisler M, Rosahl S (2019) A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana. J Biol Chem 297:6857–6870

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Plant Cell 126:969–980

    CAS  Google Scholar 

  • Merilo E, Jalakas P, Kollist H, Brosché M (2015) The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2 and exogenous ABA. Mol Plant 8:657–659

    CAS  PubMed  Google Scholar 

  • Merilo E, Yarmolinsky D, Jalakas P, Parik H, Tulva I, Rasulov B, Kilk K, Kollist H (2018) Stomatal VPD response: there is more to the story than ABA. Plant Physiol 176:851–864

    CAS  PubMed  Google Scholar 

  • Meurs C, Basra AS, Karssen CM, van Loon LC (1992) Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98:1484–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015) Mechanisms of Abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol 28:154–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawela A, Banasiak J, BiaÅ‚a W, Martinoia E, JasiÅ„ski M (2019) MtABCG20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula. Plant J 98:511–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellizzaro A, Clochard T, Cukier C, Bourdin C, Juchaux M, Montrichard F, Thany S, Raymond V, Planchet E, Limami AM, Morère-Le Paven M-C (2014) The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. Plant Physiol 166:2152–2165

    PubMed  PubMed Central  Google Scholar 

  • Peng Y-B, Zou C, Wang D-H, Gong H-Q, Xu Z-H, Bai S-N (2006) Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber. New Phytol 170:459–466

    CAS  PubMed  Google Scholar 

  • Piotrowska A, Bajguz A (2011) Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry 72:2097–2112

    CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    CAS  PubMed  Google Scholar 

  • Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A (2018) Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development 145:dev159202

    PubMed  Google Scholar 

  • Rerksiri W, Zhang X, Xiong H, Chen X (2013) Expression and promoter analysis of six stress-induced genes in rice. Sci World J 2013:397401

    Google Scholar 

  • Robertson DS (1955) The genetics of vivipary in maize. Genetics 40:745–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou B-H, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotech 31:417–430

    CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 34:44–56

    Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    CAS  PubMed  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    CAS  PubMed  Google Scholar 

  • Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S (2019) The multitasking abilities of MATE transporters in plants. J Exp Bot 70:4643–4656

    CAS  PubMed  Google Scholar 

  • Wang PT, Liu H, Hua HJ, Wang L, Song C-P (2011) A vacuole localized β-glucosidase contributes to drought tolerance in Arabidopsis. Chin Sci Bull 56:3538–3546

    CAS  Google Scholar 

  • Xu Z-Y, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I (2012) A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24:2184–2199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Cheng X, Gu Z, Huang W, Li S, Wang L, Wang Y-F, Xu P, Ma H, Ge X (2018) The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in Rice. Plant Cell 30:1258–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62:100–112

    CAS  PubMed  Google Scholar 

  • Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR (2019) Revisiting the basal role of ABA – Roles outside of stress. Trends Plant Sci 24:625–635. https://doi.org/10.1016/j.tplants.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    CAS  Google Scholar 

  • Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, JÈ•rgens G, Paul Knox J, Wang MH (2010) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhao F-G, Tang R-J, Yu Y, Song J, Wang Y, Legong L, Luan S (2017) Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis. Proc Natl Acad Sci U S A 114:E2036–E2045

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The work on ABA transport done in the authors’ laboratories was supported by the Basic Science Research Program NRF-2018R1A2A1A05018173 (to Y.L.) through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Information and Communication Technology) and the Swiss National Foundation. J Kang was supported by Ambizione fellowship of the Swiss National Science Foundation (PZ00P3_168041) and Brain Pool Program through the NRF funded by the Ministry of Science and ICT (2019H1D3A2A02102582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohyun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, J., Lee, Y., Martinoia, E. (2020). How Can We Interpret the Large Number and Diversity of ABA Transporters?. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_43

Download citation

Publish with us

Policies and ethics