Skip to main content

Gene Expression in Coffee

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

Abstract

Coffee is cultivated in more than 70 countries of the intertropical belt where it has important economic, social and environmental impacts. As for many other crops, the development of molecular biology technics allowed to launch research projects for coffee analyzing gene expression. In the 90s decade, the first expression studies were performed by Northern-blot or PCR, and focused on genes coding enzymes of the main compounds (e.g., storage proteins, sugars, complex polysaccharides, caffeine and chlorogenic acids) found in green beans. Few years after, the development of 454 pyrosequencing technics generated expressed sequence tags (ESTs) obviously from beans but also from other organs (e.g., leaves and roots) of the two main cultivated coffee species, Coffea arabica and C. canephora. Together with the use of real-time quantitative PCR, these ESTs significantly raised the number of coffee gene expression studies leading to the identification of (1) key genes of biochemical pathways, (2) candidate genes involved in biotic and abiotic stresses as well as (3) molecular markers essential to assess the genetic diversity of the Coffea genus, for example. The development of more recent Illumina sequencing technology now allows large-scale transcriptome analysis in coffee plants and opens the way to analyze the effects on gene expression of complex biological processes like genotype and environment interactions, heterosis and gene regulation in polypoid context like in C. arabica. The aim of the present review is to make an extensive list of coffee genes studied and also to perform an inventory of large-scale sequencing (RNAseq) projects already done or on-going.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gene names found in the Coffee Genome Hub (http://coffee-genome.org/)

  2. 2.

    www.breedcafs.eu.

References

  • Abreu HMC, Nobile PM, Shimizu MM, Yamamoto PY, Silva EA, Colombo CA, Mazzafera P (2012) Influence of air temperature on proteinase activity and beverage quality in Coffea arabica. Braz J Bot 35:357–376

    Google Scholar 

  • Acuña R, Bassüner R, Beillinson V, Cortina H, Cadena-Gómez G, Montes V, Nielsen N (1999) Coffee seeds contain 11S storage proteins. Physiol Plant 105:122–131

    Google Scholar 

  • Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372

    CAS  PubMed  Google Scholar 

  • Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, Amin MR, Rahman MM (2014) Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci 21:3–12

    CAS  PubMed  Google Scholar 

  • Alkimim ER, Caixeta ET, Sousa TV, Pereira AA, de Oliveira ACB, Zambolim L, Sakiyama NS (2017) Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Mol Breeding 37:6

    Google Scholar 

  • Alvarenga SM, Caixeta ET, Hufnagel B, Thiebaut F, Maciel-Zambolim E, Zambolim L, Sakiyama NS (2010) In silico identification of coffee genome expressed sequences potentially associated with resistance to diseases. Genet Mol Biol 33:795–806

    PubMed  PubMed Central  Google Scholar 

  • Alves LC, de Magalhães DM, Labate MTV, Guidetti-Gonzalez S, Labate CA, Domingues DS, Sera T, Vieira LGE, Pereira LFP (2016) Differentially accumulated proteins in Coffea arabica seeds during perisperm tissue development and their relationship to coffee grain size. J Agric Food Chem 64:1635–1647

    CAS  PubMed  Google Scholar 

  • Alves GSC, Torres LF, Déchamp E, Breitler J-C, Joët T, Gatineau F, Andrade AC, Bertrand B, Marraccini P, Etienne H (2017) Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. J Exp Bot 68:3017–3031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alves GSC, Torres LF, de Aquino SO, Reichel T, Freire LP, Vieira NG, Vinecky F, This D, Pot D, Etienne H, Paiva LV, Marraccini P, Andrade AC (2018) Nucleotide diversity of the coding and promoter regions of DREB1D, a candidate gene for drought tolerance in Coffea species. Trop Plant Biol 11:31–48

    CAS  Google Scholar 

  • Alves-Ferreira M,Waltenberg FPC, Pinto ERC, Grossi-de-Sá FM (2012) Use of the coffee homeobox gene CaHB12 to produce transgenic plants with greater tolerance to water scarcity and salt stress. WO061911:A2

    Google Scholar 

  • Andrade AC (2018) Developments in molecular breeding techniques in Robusta coffee. In: Lashermes P (ed) Achieving sustainable cultivation of coffee: breeding and quality traits. Burleigh Dodds Science Publishing, Cambridge

    Google Scholar 

  • Ashihara H (2006) Metabolism of alkaloids in coffee plants. Braz J Plant Physiol 18:1–8

    CAS  Google Scholar 

  • Ashihara H, Monteiro AM, Gillies FM, Crozier A (1996) Biosynthesis of caffeine in leaves of coffee. Plant Physiol 111:747–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asquini E, Gerdol M, Gasperini D, Igic B, Graziosi G, Pallavicini A (2011) S-RNase-like sequences in styles of Coffea (Rubiaceae). Evidence for S-RNase based gametophytic self-incompatibility? Trop Plant Biol 4:237–249

    CAS  Google Scholar 

  • Assad ED, Pinto HS, Zullo J Jr, AMH A (2004) Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesqui Agropecu Bras 39:1057–1064

    Google Scholar 

  • Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathol 53:541–547

    Google Scholar 

  • Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, Läderach P, Anzueto F, Hruska A, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–321

    Google Scholar 

  • Avila RT, Martins SCV, Sanglard LMVP, dos Santos MS, Menezes-Silva PE, Detman KC, Sanglard ML, Cardoso AA, Morais LE, Vital CE, Araújo WL, Nunes-Nesi A, DaMatta FM (2020) Starch accumulation does not lead to feedback photosynthetic downregulation in girdled coffee branches under varying source-to-sink ratios. Trees 34:1–16

    Google Scholar 

  • Baba VY, Braghini MT, dos Santos TB, de Carvalho K, Soares JDM, Ivamoto-Suzuki ST, Maluf MP, Padilha L, Paccola-Meirelles LD, Pereira LF, Domingues DS (2020) Transcriptional patterns of Coffea arabica L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. Peer J 8:e8320

    PubMed  Google Scholar 

  • Bang CF, Huyen TTT (2015) In silico identification, classification and expression analysis of genes encoding putative light-harvesting chlorophyll A/B-binding proteins in coffee (Coffea canephora L.). J Agric Technol 11:2547–2561

    Google Scholar 

  • Barbosa BCF, Silva SC, de Oliveira RR, Chalfun-Junior A (2017) Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants. Plant Soil 411:179–191

    CAS  Google Scholar 

  • Bardil A, De Almeida JD, Combes MC, Lashermes P, Bertrand B (2011) Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol 192:760–774

    CAS  PubMed  Google Scholar 

  • Barreto HG, Lazzari F, Ságio SA, Chalfun-Junior A, Paiva LV (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Mol Biol Rep 30:29–35

    CAS  Google Scholar 

  • Barreto HG, Daude MM, Lima AA, Chalfun-Junior A (2018) Expression analysis of the coffee (Coffea arabica L.) FRIGIDA4-like gene (CaFRL4). Rev Desafios 5:204–213

    Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    PubMed  PubMed Central  Google Scholar 

  • Batista-Santos P, Lidon FC, Fortunato A, Leitão AE, Lopes E, Partelli F, Ribeiro AI, Ramalho JC (2011) The impact of cold on photosynthesis in genotypes of Coffea spp. – photosystem sensitivity, photoprotective mechanisms and gene expression. J Plant Physiol 168:792–806

    CAS  PubMed  Google Scholar 

  • Bazzo BR, Eiras AL, DeLaat DM, Siqueira WJ, Mondego JMC, Colombo CA (2013) Gene expression analysis suggests temporal differential response to aluminum in Coffea arabica cultivars. Trop Plant Biol 6:191–198

    CAS  Google Scholar 

  • Benchabane M, Schluter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666

    CAS  PubMed  Google Scholar 

  • Berthaud J (1980) L’incompatibilité chez Coffea canephora: méthode de test et déterminisme génétique. Café Cacao Thé 24:267–274

    Google Scholar 

  • Bertrand C, Noirot M, Doulbeau S, de Kochko A, Hamon S, Campa C (2003) Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae qualitative comparison with leaves. Plant Sci 165:1355–1361

    CAS  Google Scholar 

  • Bertrand B, Vaast P, Alpizar E, Etienne H, Davrieux F, Charmetant P (2006) Comparison of bean biochemical composition and beverage quality of arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol 26:1239–1248

    CAS  PubMed  Google Scholar 

  • Bertrand B, Alpizar E, Lara L, Santacreo R, Hidalgo M, Quijano JM, Montagnon C, Georget F, Etienne H (2011) Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica 181:147–158

    Google Scholar 

  • Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H (2015) The greater phenotypic homeostasis of the allopolyploid Coffea arabica improved the transcriptional homeostasis over that of both diploid parents. Plant Cell Physiol 56:2035–2051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand B, Breitler J-C, Georget F, Penot E, Bordeaux M, Marraccini P, Léran S, Campa C, Bonato O, Villain L, Etienne H (2019) New varieties for innovative agroforestry coffee systems. In: Côte F-X, Poirier-Magona E, Perret S, Roudier P, Rapidel B, Thirion M-C (eds) The agroecological transition of agricultural systems in the global south. Versailles, Quae, pp 161–176

    Google Scholar 

  • Bharathi K, Sreenath HL (2017) Identification and analysis of jasmonate pathway genes in Coffea canephora (Robusta coffee) by in silico approach. Pharmacogn Mag 13:196–200

    Google Scholar 

  • Bharathi K, Santosh P, Sreenath HL (2017) Transcripts of pectin-degrading enzymes and isolation of complete cDNA sequence of a pectate lyase gene induced by coffee white stem borer (Xylotrechus quadripes) in the bark tissue of Coffea canephora (robusta coffee). 3 Biotech 7:45

    PubMed  PubMed Central  Google Scholar 

  • Bibi F, Barozai MYK, Din M (2017) Bioinformatics profiling and characterization of potential microRNAs and their targets in the genus Coffea. Turk J Agric For 41:191–200

    CAS  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottcher A, Nobile PM, Martins PF, Conte FF, Azevedo RA, Mazzafera P (2011) A role for ferritin in the antioxidant system in coffee cell cultures. Biometals 24:225–237

    CAS  PubMed  Google Scholar 

  • Brandalise M, Severino FE, Maluf MP, Maia IG (2009) The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep 28:1699–1708

    CAS  PubMed  Google Scholar 

  • Breitler J-C, Déchamp E, Campa C, Rodrigues LAZ, Guyot R, Marraccini P, Etienne H (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tissue Organ Cult 134:383–394

    CAS  Google Scholar 

  • Breitler J-C, Djerrab D, Leran S, Toniutti L, Guittin C, Severac D, Pratlong M, Dereeper A, Etienne H, Bertrand B (2020) Full moonlight-induced circadian clock entrainment in Coffea arabica. BMC Plant Biol 20:24

    PubMed  PubMed Central  Google Scholar 

  • Budzinski IGF, Santos TB, Sera T, Pot D, Vieira LGE, Pereira LFP (2010) Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development. Plant Biol 13:462–471

    PubMed  Google Scholar 

  • Bunn C, Läderach P, Ovalle Rivera O, Kirschke D (2015a) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Chang 129:89–101

    Google Scholar 

  • Bunn C, Läderach P, Pérez Jimenez JG, Montagnon C, Schilling T (2015b) Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change. PLoS One 10:e0140490

    PubMed  PubMed Central  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    CAS  PubMed  Google Scholar 

  • Bytof G, Knopp SE, Kramer D, Breitenstein B, Bergervoet JHW, Groot SPC, Selmar D (2007) Transient occurrence of seed germination processes during coffee post-harvest treatment. Ann Bot 100:61–66

    PubMed  PubMed Central  Google Scholar 

  • Cação SMB, Leite TF, Budzinski IGF, dos Santos TB, Scholz MBS, Carpentieri-Pipolo V, Domingues DS, Vieira LGE, Pereira LFP (2012) Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L. Genet Mol Res 11:3186–3197

    PubMed  Google Scholar 

  • Cacas J-L, Petitot A-S, Bernier L, Estevan J, Conejero G, Mongrand S, Fernandez D (2011) Identification and characterization of the non-race specific disease resistance 1 (NDR1) orthologous protein in coffee. BMC Plant Biol 11:144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campa C, Ballester JF, Doulbeau S, Dussert S, Hamon S, Noirot M (2004) Trigonelline and sucrose diversity in wild Coffea species. Food Chem 88:39–44

    CAS  Google Scholar 

  • Campa C, Urban L, Mondolot L, Fabre D, Roques S, Lizzi Y, Aarrouf J, Doulbeau S, Breitler J-C, Letrez C, Toniutti L, Bertrand B, La Fisca P, Bidel LPR, Etienne H (2017) Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Front Plant Sci 8:1126

    PubMed  PubMed Central  Google Scholar 

  • Cardoso DC, Martinati JC, Giachetto PF, Vidal RO, Carazzolle MF, Padilha L, Guerreiro-Filho O, Maluf MP (2014) Large-scale analysis of differential gene expression in coffee genotypes resistant and susceptible to leaf miner-toward the identification of candidate genes for marker assisted-selection. BMC Genomics 15:66

    PubMed  PubMed Central  Google Scholar 

  • Carneiro FA, de Aquino SO, Mattos NG, Valeriano JC, Carneiro WWJ, Rodrigues GC, Carvalho MAF, Veiga AD, Grattapaglia D, Silva-Júnior OB, Marraccini P, Junior ICV, Balestre M, Andrade AC (2019) Genome wide selection in Coffea canephora breeding. In: X Simpósio de Pesquisa dos Cafés do Brasil Vitória (ES)-Brazil. EMBRAPA, Vitória

    Google Scholar 

  • Cenci A, Combes MC, Lashermes P (2012) Genome evolution in diploid and tetraploid Coffea species. Plant Mol Biol 78:135–145

    CAS  PubMed  Google Scholar 

  • Chaves SS, Fernandes-Brum CN, Silva GFF, Ferrara-Barbosa BC, Paiva LV, Nogueira FTS, Cardoso TCS, Amaral LR, de Souza Gomes M, Chalfun-Junior A (2015) New insights on Coffea miRNAs: features and evolutionary conservation. Appl Biochem Biotechnol 177:879–908

    CAS  PubMed  Google Scholar 

  • Cheng B, Furtado A, Henry RJ (2017) Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. Gigascience 6:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng B, Furtado A, Henry RJ (2018) The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci Rep 8:11414

    PubMed  PubMed Central  Google Scholar 

  • Cheserek JJ, Gichimu BM (2012) Drought and heat tolerance in coffee: a review. Int Res J Agric Sci Soil Sci 2:498–501

    Google Scholar 

  • Combes MC, Cenci A, Baraille H, Bertrand B, Lashermes P (2012) Homeologous gene expression in response to growing temperature in a recent allopolyploid (Coffea arabica L.). J Hered 103:36–46

    CAS  PubMed  Google Scholar 

  • Combes M-C, Dereeper A, Severac D, Bertrand B, Lashermes P (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytol 200:251–260

    CAS  PubMed  Google Scholar 

  • Combes M-C, Hueber Y, Dereeper A, Rialle S, Herrera J-C, Lashermes P (2015) Regulatory divergence between parental alleles determines gene expression patterns in hybrids. Genome Biol Evol 7:1110–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa TS (2014) Análise do perfil transcriptômico e proteômico de raízes de diferentes clones de Coffea canephora em condições de déficit hídrico. PhD dissertation, Federal University of Lavras, Brazil

    Google Scholar 

  • Costa TS, Melo JAT, Carneiro FA, Vieira NG, Rêgo ECS, Block C Jr, Marraccini P, Andrade AC (2015) Drought effects on expression of genes involved in ABA signaling pathway in roots of susceptible and tolerant clones of C. canephora. In: 25th international conference on coffee science (ASIC), Armenia, Colombia (PB236), pp 42–45

    Google Scholar 

  • Cotta MG (2017) Molecular mechanisms in the first step of ABA-mediated response in Coffea ssp. PhD dissertation, SupAgro, Montpellier, France, p 176

    Google Scholar 

  • Cotta MG, Barros LMG, De Almeida JD, De Lamotte F, Barbosa EA, Vieira NG, Alves GSC, Vinecky F, Andrade AC, Marraccini P (2014) Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants. Plant Mol Biol 85:11–31

    CAS  PubMed  Google Scholar 

  • Couttolenc-Brenis E, Carrión GL, Villain L, Ortega-Escalona F, Ramírez-Martínez D, Mata-Rosas M, Méndez-Bravo A (2020) Prehaustorial local resistance to coffee leaf rust in a Mexican cultivar involves expression of salicylic acid-responsive genes. PeerJ 8:e8345

    PubMed  PubMed Central  Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-De-Sá MF, Vaslin M, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breed 23:607–616

    CAS  Google Scholar 

  • da Silva EAA, Acencio ML, Bovolenta LA, Lemke N, Varani AM, Bravo JP, Hoshino-Bezerra AA, Lemos EGM (2019) Gene expression during the germination of coffee seed. J Seed Sci 41:168–179

    Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    CAS  Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7:e47981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AP, Chadburn H, Moat J, O’Sullivan R, Hargreaves S, Nic Lughadha E (2019) High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci Adv 5:eaav3473

    PubMed  PubMed Central  Google Scholar 

  • de Almeida JD, Barros LMG, Santos DBM, Cotta MG, Barbosa EA, Cação SB, Eira MTS, Alves GSC, Vinecky F, Pereira LFP, da Silva FR, Andrade AC, Marraccini P, Carneiro M (2008) Prospection of tissue specific promoters in coffee. In: 22th international conference on coffee science (ASIC), Campinas, Brazil, pp 954–957

    Google Scholar 

  • de Aquino SO, Carneiro FA, Rêgo ECS, Alves GSC, Andrade AC, Marraccini P (2018) Functional analysis of different promoter haplotypes of the coffee (Coffea canephora) CcDREB1D gene through genetic transformation of Nicotiana tabacum. Plant Cell Tissue Organ Cult 132:279–294

    Google Scholar 

  • de Aquino SO, Tournebize R, Marraccini P, Mariac C, Bethune K, Andrade AC, Kiwuka C, Crouzillat D, Anten NPR, de Kochko A, Poncet V (2019) Towards the identification of candidate gene nucleic polymorphisms to predict the adaptedness of Ugandense C. canephora populations to climate change. In: 27th international conference on coffee science (ASIC), Portland (OR), USA

    Google Scholar 

  • de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS (2013) Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 53:315–325

    PubMed  Google Scholar 

  • de Carvalho K, Petkowicz CLO, Nagashima GT, Bespalhok Filho JC, Vieira LGE, Pereira LFP, Domingues DS (2014) Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Gen Genomics 289:951–963

    Google Scholar 

  • De Castro R, Marraccini P (2006) Cytology, biochemistry and molecular changes during coffee fruit development. Braz J Plant Physiol 18:175–199

    Google Scholar 

  • de Freitas Guedes FA, Nobres P, Ferreira DCR, Menezes-Silva PE, Ribeiro-Alves M, Correa RL, DaMatta FM, Alves-Ferreira M (2018) Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environ Exp Bot 147:220–233

    Google Scholar 

  • de Kochko A, Akaffou S, Andrade AC, Campa C, Crouzillat D, Guyot R, Hamon P, Ming R, Mueller LA, Poncet V, Tranchant Dubreuil C, Hamon S (2010) Advances in Coffea genomics. In: Kader JC, Delseny M (eds) Advances in botanical research, vol 53, pp 23–63

    Google Scholar 

  • de Kochko A, Crouzillat D, Rigoreau M, Lepelley M, Bellanger L, Merot-L’Anthoene V, Vandecasteele C, Guyot R, Poncet V, Tranchant-Dubreuil C, Hamon P, Hamon S, Couturon E, Descombes P, Moine D, Mueller L, Strickler SR, Andrade AC, Protasio LFP, Marraccini P, Giuliano G, Fiore A, Pietrella M, Aprea G, Ming R, Wai J, Domingues DS, Paschoal A, Kuhn G, Korlach J, Chin J, Sankoff D, Zheng C, Albert VA (2015) Dihaploid Coffea arabica genome sequencing and assembly. In: Plant and animal genome XXIII. San Diego (CA), USA. https://pag.confex.com/pag/xxiii/webprogram/Paper16983.html

    Google Scholar 

  • de Kochko A, Hamon S, Guyot R, Couturon E, Poncet V, Dubreuil-Tranchant C, Crouzillat D, Rigoreau M, Hamon P (2017) Omics applications: coffee. In: Chowdappa P, Karun A, Rajesh MK, Ramesh SV (eds) Biotechnology of plantation crops. Daya Publishing House, New Delhi, pp 589–606

    Google Scholar 

  • De Nardi B, Dreos R, Del Terra L, Martellossi C, Asquini E, Tornincasa P, Gasperini D, Pacchioni B, Rathinavelu R, Pallavicini A, Graziosi G (2006) Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance. Genome 49:1594–1605

    PubMed  Google Scholar 

  • de Oliveira RR, Chalfun-Junior A, Paiva LV, Andrade AC (2010) In silico and quantitative analyses of MADS-box genes in Coffea arabica. Plant Mol Biol Rep 28:460–472

    Google Scholar 

  • de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC (2014) Flower development in Coffea arabica L.: new insights into MADS-box genes. Plant Reprod 27:79–94

    PubMed  Google Scholar 

  • de Oliveira KC, de Souza GP, Bazioli JM, Martinati JC, dos Santos MM, Padilha L, Guerreiro-Filho O, Maluf MP (2019) Effects of somatic embryogenesis on gene expression of cloned coffee heterozygous hybrids. Acta Physiol Plant 41:118

    Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury J-M, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes M-C, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joet T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li L-T, Librado P, Lopez L, Munoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono RM, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama MR, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    CAS  Google Scholar 

  • Devi KJ, Chakraborty S, Deb B, Rajwanshi R (2016) Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequences (GSSs) of coffee (Coffea arabica L.). Plant Gene 6:30–42

    CAS  Google Scholar 

  • Dinh SN, Sai TZT, Nawaz G, Lee K, Kang H (2016) Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). J Plant Physiol 201:85–94

    Google Scholar 

  • Diniz I, Figueiredo A, Loureiro A, Batista D, Azinheira H, Várzea V, Pereira AP, Gichuru E, Moncada P, Guerra-Guimarães L, Oliveira H, Silva MDC (2017) A first insight into the involvement of phytohormones pathways in coffee resistance and susceptibility to Colletotrichum kahawae. PLoS One 12:e0178159

    PubMed  PubMed Central  Google Scholar 

  • Diola V, Brito GG, Caixeta ET, Pereira LFP, Loureiro ME (2013) A new set of differentially expressed signaling genes is early expressed in coffee leaf rust race II incompatible interaction. Funct Integr Genomics 13:379–389

    CAS  PubMed  Google Scholar 

  • Dong X, Jiang Y, Yang Y, Xiao Z, Bai X, Gao J, Tan S, Hur Y, Hao S, He F (2019a) Identification and expression analysis of the NAC gene family in Coffea canephora. Agronomy 9:670

    CAS  Google Scholar 

  • Dong X, Yang Y, Zhang Z, Xiao Z, Bai X, Gao J, Hur Y, Hao S, He F (2019b) Genome-wide identification of WRKY genes and their response to cold stress in Coffea canephora. Forests 10:335

    Google Scholar 

  • dos Santos AB, Mazzafera P (2013) Aquaporins and the control of the water status in coffee plants. Theor Exp Plant Physiol 25:79–93

    Google Scholar 

  • dos Santos TB, Budzinski IGF, Marur CJ, Petkowicz CLO, Pereira LFP, Vieira LGE (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448

    PubMed  Google Scholar 

  • dos Santos TB, de Lima RB, Nagashima GT, Petkowicz CLO, Carpentieri-Pipolo V, Pereira LFP, Domingues DS, Vieira LGE (2015) Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 38:182–190

    PubMed  PubMed Central  Google Scholar 

  • dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS (2017) Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 40:346–359

    PubMed  PubMed Central  Google Scholar 

  • dos Santos TB, Soares JDM, Lima JE, Silva JC, Ivamoto ST, Baba VY, Souza SGH, Lorenzetti APR, Paschoal AR, Meda AR, Nishiyama Júnior MY, de Oliveira ÚC, Mokochinski JB, Guyot R, Junqueira-de-Azevedo ILM, Figueira AVO, Mazzafera P, Júnior OR, Vieira LGE, Pereira LFP, Domingues DS (2019) An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Funct Integr Genomics 19:151–169

    PubMed  Google Scholar 

  • Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, Joët T (2018) Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. J Exp Bot 69:1583–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverria-Beirute F, Murray SC, Klein P, Kerth C, Miller R, Bertrand B (2018) Rust and thinning management effect on cup quality and plant performance for two cultivars of Coffea arabica L. J Agric Food Chem 66:5281–5292

    CAS  PubMed  Google Scholar 

  • Echeverría-Beirute F, Murray SC, Bertrand B, Klein PE (2019) Candidate genes in coffee (Coffea arabica L.) leaves associated with rust (Hemileia vastatrix Berk. & Br) stress. Peer J Preprints 7:e27923v1

    Google Scholar 

  • Eira MTS, Amaral da Silva EA, de Castro RD, Dussert S, Walters C, Bewley JD, Hilhorst HWM (2006) Coffee seed physiology. Braz J Plant Physiol 18:149–163

    CAS  Google Scholar 

  • Eskes A, Leroy T (2004) Coffee selection and breeding. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production. A guidebook for growers, processors, traders, and researchers. Wiley, Weinheim, pp 57–86

    Google Scholar 

  • Etienne H, Breton D, Breitler J-C, Bertrand B, Déchamp E, Awada R, Marraccini P, Léran S, Alpizar E, Campa C, Courtel P, Georget F, Ducos J-P (2018) Coffee somatic embryogenesis: how did research, experience gained and innovations promote the commercial propagation of elite clones from the two cultivated species? Front Plant Sci 9:1630

    PubMed  PubMed Central  Google Scholar 

  • Eulgem T (2006) Dissecting the WRKY web of plant defense regulators. PLoS Pathog 2:1028–1030

    CAS  Google Scholar 

  • Falco MC, Marbach PAS, Pompermayer P, Lopes FCC, Silva-Filho MC (2001) Mechanisms of sugarcane response to herbivory. Genet Mol Biol 24:113–122

    CAS  Google Scholar 

  • Fernandes-Brum CN, Garcia BO, Moreira RO, Sagio SA, Barreto HG, Lima AA, Freitas NG, Lima RR, Carvalho CHS, Chalfun-Junior A (2017a) A panel of the most suitable reference genes for RT-qPCR expression studies of coffee: screening their stability under different conditions. Tree Genet Genomes 13:131

    Google Scholar 

  • Fernandes-Brum CN, Rezende PM, Ribeiro THC, de Oliveira RR, Cardoso TCS, Amaral LR, Gomes MS, Chalfun-Junior A (2017b) A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS One 12:e0176333

    Google Scholar 

  • Fernandez D, Santos P, Agostini C, Bon MC, Petitot AS, Silva MC, Guerra-Guimarães L, Ribeiro A, Argout X, Nicole M (2004) Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix). Mol Plant Pathol 5:527–536

    CAS  PubMed  Google Scholar 

  • Fernandez D, Tisserant E, Talhinhas P, Azinheira H, Vieira A, Petitot A-S, Loureiro A, Poulain J, Da Silva C, Silva MC, Duplessis S (2012) 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol Plant Pathol 13:17–37

    CAS  PubMed  Google Scholar 

  • Figueiredo SA, Lashermes P, Aragão FJ (2011) Molecular characterization and functional analysis of the β-galactosidase gene during Coffea arabica (L.) fruit development. J Exp Bot 62:2691–2703

    CAS  PubMed  Google Scholar 

  • Figueiredo A, Loureiro A, Batista D, Monteiro F, Várzea V, Pais MS, Gichuru EK, Silva MC (2013) Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Res Notes 6:388

    PubMed  PubMed Central  Google Scholar 

  • Florez JC, Mofatto LS, do Livramento Freitas-Lopes R, Ferreira SS, Zambolim EM, Carazzolle MF, Zambolim L, Caixeta ET (2017) High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. Plant Mol Biol 95:607–623

    CAS  PubMed  Google Scholar 

  • Fortunato AS, Lidon FC, Batista-Santos P, Leitão AE, Pais IP, Ribeiro AI, Ramalho JC (2010) Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance. J Plant Physiol 167:333–342

    CAS  PubMed  Google Scholar 

  • Freire LP, Marraccini P, Rodrigues GC, Andrade AC (2013) Analysis of the mannose 6 phosphate reductase gene expression in coffee trees submitted to water deficit. Coffee Sci 8:17–23

    Google Scholar 

  • Freitas NC, Barreto HG, Fernandes-Brum CN, Moreira RO, Chalfun-Junior A, Paiva LV (2017) Validation of reference genes for qPCR analysis of Coffea arabica L. somatic embryogenesis-related tissues. Plant Cell Tissue Organ Cult 128:663–678

    CAS  Google Scholar 

  • Frischknecht PM, Ulmer-Dufek J, Baumann TW (1986) Purine alkaloid formation in buds and developing leaflets of Coffea arabica: expression of an optimal defense strategy? Phytochemistry 25:613–616

    CAS  Google Scholar 

  • Gaborit C, Caillet V, Deshayes A, Marraccini P (2003) Molecular cloning of a full-length cDNA and gene from Coffea arabica encoding a protein homologous to the yeast translation initiation factor SUI1: expression analysis in plant organs. Braz J Plant Physiol 15:55–58

    CAS  Google Scholar 

  • Gaitan A, Cristancho MA, Gongora CE, Moncada P, Posada H, Gast F, Yepes M, Aldwinckle H (2015) Long-read deep sequencing and assembly of the allotetraploid Coffea arabica cv. Caturra and its maternal ancestral diploid species Coffea eugenioides. In: Plant and animal genome XXIII. San Diego, CA (USA). https://pag.confex.com/pag/xxiii/webprogram/Paper17662.html

    Google Scholar 

  • Ganesh D, Petitot A-S, Silva MC, Alary R, Lecouls A-C, Fernandez D (2006) Monitoring of the early molecular resistance responses of coffee (Coffea arabica L.) to the rust fungus (Hemileia vastatrix) using real-time quantitative RT-PCR. Plant Sci 170:1045–1051

    CAS  Google Scholar 

  • Gaspari-Pezzopane C, Bonturi N, Guerreiro Filho O, Favarin JL, Maluf MP (2012) Gene expression profile during coffee fruit development and identification of candidate markers for phenological stages. Pesqui Agropecu Bras 47:972–982

    Google Scholar 

  • Georget F, Marie L, Alpizar E, Courtel P, Bordeaux M, Hidalgo JM, Marraccini P, Breitler J-C, Déchamp E, Poncon C, Etienne H, Bertrand B (2019) Starmaya: the first Arabica F1 coffee hybrid produced using genetic male sterility. Front Plant Sci 10:1344

    PubMed  PubMed Central  Google Scholar 

  • Geromel C, Ferreira LP, Guerreiro SMC, Cavalari AA, Pot D, Pereira LFP, Leroy T, Vieira LGE, Mazzafera P, Marraccini P (2006) Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot 57:3243–3258

    CAS  PubMed  Google Scholar 

  • Geromel C, Ferreira LP, Bottcher A, Pot D, Pereira LFP, Leroy T, Vieira LGE, Mazzafera P, Marraccini P (2008a) Sucrose metabolism during fruit development in Coffea racemosa. Ann Appl Biol 152:179–187

    CAS  Google Scholar 

  • Geromel C, Ferreira LP, Davrieux F, Guyot B, Ribeyre F, dos Santos Scholz MB, Pereira LFP, Vaast P, Pot D, Leroy T, Androcioli Filho A, Vieira LGE, Mazzafera P, Marraccini P (2008b) Effects of shade on the development and sugar metabolism of coffee fruits. Plant Physiol Biochem 46:569–579

    CAS  PubMed  Google Scholar 

  • Ghini R, Hamada E, Pedro Júnior MJ, Marengo JA, Gonçalves RRV (2008) Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesqui Agropecu Bras 43:187–194

    Google Scholar 

  • Ghini R, Hamada E, Pedro Júnior MJ, Gonçalves RRV (2011) Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathol 37:85–93

    Google Scholar 

  • Ghini R, Torre-Neto A, Dentzien AFM, Guerreiro-Filho O, Iost R, FRA P, JSM P, Thomaziello RA, Bettiol W, FM DM (2015) Coffee growth, pest and yield responses to free-air CO2 enrichment. Clim Chang 132:307–320

    Google Scholar 

  • Gichuru EK (1997) Resistance mechanisms in Arabica coffee to coffee berry disease Colletotrichum kahawae sp. nov-a review. Kenya Coffee 727:2441–2445

    Google Scholar 

  • Gichuru EK (2007) Histological comparison of susceptible and resistant interactions of coffee (Coffea arabica and C. canephora varieties) and Colletotrichum kahawae. Agron Afr 19:233–240

    Google Scholar 

  • González-Mendoza VM, Sánchez-Sandoval ME, Munnik T, Hernández-Sotomayor SMT (2020) Biochemical characterization of phospholipases C from Coffea arabica in response to aluminium stress. J Inorg Biochem 204:110951

    PubMed  Google Scholar 

  • Goulao LF, Fortunato AS, Ramalho JC (2012) Selection of reference genes for normalizing quantitative real-time PCR gene expression data with multiple variables in Coffea spp. Plant Mol Biol Rep 30:741–759

    CAS  Google Scholar 

  • Grover CE, Gallagher JP, Szadkowski EP, Yoo M-J, Flagel LE, Wendel JF (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971

    CAS  PubMed  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    CAS  PubMed  Google Scholar 

  • Guerreiro-Filho O (2006) Coffee leaf miner resistance. Braz J Plant Physiol 18:109–117

    Google Scholar 

  • Guerreiro-Filho O, Mazzafera P (2000) Caffeine does not protect coffee against the leaf miner Perileucoptera coffeella. J Chem Ecol 26:1447–1464

    CAS  Google Scholar 

  • Guerreiro-Filho O, Silvarolla MB, Eskes AB (1999) Expression and mode of inheritance of resistance in coffee to leaf miner Perileucoptera coffeella. Euphytica 105:7–15

    Google Scholar 

  • Haile M, Kang WH (2018) Transcriptome profiling of the coffee (C. arabica L.) seedlings under salt stress condition. J Plant Biotechnol 45:45–54

    Google Scholar 

  • Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193

    CAS  PubMed  Google Scholar 

  • Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin C, McCarthy J (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot 97:755–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • ICO (2020) Coffee production by exporting countries (data at July 2020). www.ico.org/prices/po-production.pdf

  • Idárraga SM, Castro AM, Macea EP, Gaitán AL, Rivera LF, Cristancho MA, Góngora CE (2012) Sequences and transcriptional analysis of Coffea arabica var. Caturra and Coffea liberica plant responses to coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) attack. J Plant Interact 7:56–70

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, p 1535

    Google Scholar 

  • Ivamoto ST, Reis O Jr, Domingues DS, dos Santos TB, de Oliveira FF, Pot D, Leroy T, Vieira LGE, Carazzolle MF, Pereira GAG, Pereira LFP (2017a) Transcriptome analysis of leaves, flowers and fruits perisperm of Coffea arabica L. reveals the differential expression of genes involved in raffinose biosynthesis. PLoS One 12:e0169595

    PubMed  PubMed Central  Google Scholar 

  • Ivamoto ST, Sakuray LM, Ferreira LP, Kitzberger CSG, Scholz MBS, Pot D, Leroy T, Vieira LGE, Domingues DS, Pereira LFP (2017b) Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiol Biochem 111:340–347

    CAS  PubMed  Google Scholar 

  • Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS One 6:e24528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ (2018) Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to embryo transition. Electron J Biotechnol 36:34–46

    Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S (2009) Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. New Phytol 182:146–162

    PubMed  PubMed Central  Google Scholar 

  • Joët T, Salmona J, Laffargue A, Descroix F, Dussert S (2010) Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Environ 33:1220–1233

    PubMed  PubMed Central  Google Scholar 

  • Joët T, Pot D, Ferreira LP, Dussert S, Marraccini P (2012) Identification des déterminants moléculaires de la qualité du café par des approches de génomique fonctionnelle. Une revue. Cah Agric 21:125–133

    Google Scholar 

  • Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, Lashermes P, Dussert S (2014) Regulation of galactomannan biosynthesis in coffee seeds. J Exp Bot 65:323–337

    PubMed  Google Scholar 

  • Kakegawa H, Shitan N, Kusano H, Ogita S, Yazaki K, Sugiyama A (2019) Uptake of adenine by purine permeases of Coffea canephora. Biosci Biotechnol Biochem 83:1300–1305

    CAS  PubMed  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    CAS  PubMed  Google Scholar 

  • Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S (2003) C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol 44:296–303

    CAS  PubMed  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koshiro Y, Zheng XQ, Wang ML, Nagai C, Ashihara H (2006) Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Sci 171:242–250

    CAS  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    CAS  PubMed  Google Scholar 

  • Kumar A, Giridhar P (2015) Salicylic acid and methyl jasmonate restore the transcription of caffeine biosynthetic N-methyltransferases from a transcription inhibition noticed during late endosperm maturation in coffee. Plant Gene 4:38–44

    CAS  Google Scholar 

  • Kumar A, Naik GK, Giridhar P (2017) Dataset on exogenous application of salicylic acid and methyl jasmonate and the accumulation of caffeine in young leaf tissues and catabolically inactive endosperms. Data Brief 13:22–27

    PubMed  PubMed Central  Google Scholar 

  • Kutywayo D, Chemura A, Kusena W, Chidoko P, Mahoya C (2013) The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS One 8:e73432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ky CL, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M (2001) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora P. accessions. Food Chem 75:223–230

    CAS  Google Scholar 

  • Lashermes P, Couturon E, Moreau N, Paillard M, Louarn J (1996) Inheritance and genetic mapping of self-incompatibility in Coffea canephora Pierre. Theor Appl Genet 93:458–462

    CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    CAS  PubMed  Google Scholar 

  • Lashermes P, Andrade AC, Etienne H (2008) Genomics of coffee, one of the world’s largest traded commodities. In: Moore H, Ming R (eds) Genomics of tropical crop plants. Springer, Berlin, pp 203–226

    Google Scholar 

  • Lashermes P, Hueber Y, Combes M-C, Severac D, Dereeper A (2016) Inter-genomic DNA exchanges and homeologous gene silencing shaped the nascent allopolyploid coffee genome (Coffea arabica L.). G3 Genes Genom Genet 6:2937–2948

    CAS  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978–996

    CAS  Google Scholar 

  • Lepelley M, Ben Amor M, Martineau N, Cheminade G, Caillet V, McCarthy J (2012a) Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination. BMC Plant Biol 12:31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C (2012b) Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236:313–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy T, Ribeyre F, Bertrand B, Charmetant P, Dufour M, Montagnon C, Marraccini P, Pot D (2006) Genetics of coffee quality. Braz J Plant Physiol 18:229–242

    CAS  Google Scholar 

  • Li B, Kadura I, Fu DJ, Watson DE (2004) Genotyping with TaqMAMA. Genomics 83:311–320

    CAS  PubMed  Google Scholar 

  • Lima EA (2015) Resistência múltipla do cafeeiro Coffea canephora população Conilon a Meloidogyne spp.: mecanismos e possíveis genes envolvidos. PhD dissertation, Federal University of Brasilia, Brazil, p 148

    Google Scholar 

  • Lima EA, Carneiro FA, Costa TS, Rêgo ECS, Jorge A Jr, Furlanetto C, Marraccini P, Carneiro RMDG, Andrade AC (2014) Molecular characterization of resistance responses of C. canephora ‘Clone 14’ upon infection by Meloidogyne paranaensis. J Nematol 46:194

    Google Scholar 

  • Lima EA, Furlanetto C, Nicole M, Gomes ACMM, Almeida MRA, Jorge-Júnior A, Correa VR, Salgado SM, Ferrão MAG, Carneiro RMDG (2015) The multi-resistant reaction of drought-tolerant coffee ‘Conilon clone 14’ to Meloidogyne spp. and late hypersensitive-like response in Coffea canephora. Phytopathology 105:805–814

    PubMed  Google Scholar 

  • Lin C, Mueller LA, Mc Carthy J, Crouzillat D, Pétiard V, Tanksley S (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Genet 112:114–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loss-Morais G, Ferreira DCR, Margis R, Alves-Ferreira M, Corrêa RL (2014) Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica. Genet Mol Biol 37:671–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro A, Nicole MR, Várzea V, Moncada P, Bertrand B, Silva MC (2012) Coffee resistance to Colletotrichum kahawae is associated with lignification, accumulation of phenols and cell death at infection sites. Physiol Mol Plant Pathol 77:23–32

    CAS  Google Scholar 

  • Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    CAS  PubMed  Google Scholar 

  • Magalhães STV, Fernandes FL, Demuner AJ, Picanço MC, Guedes RNC (2010) Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). J Econ Entomol 103:1438–1443

    PubMed  Google Scholar 

  • Magrach A, Ghazoul J (2015) Climate and pest-driven geographic shifts in global coffee production: implications for forest cover, biodiversity and carbon storage. PLoS One 10:e0133071

    PubMed  PubMed Central  Google Scholar 

  • Maluf MP, da Silva CC, de Oliveira MP, Tavares AG, Silvarolla MB, Filho OG (2009) Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica. Genet Mol Biol 32:802–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marraccini P, Deshayes A, Pétiard V, Rogers WJ (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 37:273–282

    CAS  Google Scholar 

  • Marraccini P, Rogers WJ, Allard C, André ML, Caillet V, Lacoste N, Lausanne F, Michaux S (2001) Molecular and biochemical characterization of endo-β-mannanases from germinating coffee (Coffea arabica) grains. Planta 213:296–308

    CAS  PubMed  Google Scholar 

  • Marraccini P, Courjault C, Caillet V, Lausanne F, Lepage B, Rogers WJ, Tessereau S, Deshayes A (2003) Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 41:17–25

    CAS  Google Scholar 

  • Marraccini P, Rogers WJ, Caillet V, Deshayes A, Granato D, Lausanne F, Lechat S, Pridmore D, Pétiard V (2005) Biochemical and molecular characterization of α-D-galactosidase from coffee beans. Plant Physiol Biochem 43:909–920

    CAS  PubMed  Google Scholar 

  • Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbelt S, Ramos HJO, Montagnon C, Vieira LGE, Leroy T, Pot D, Silva VA, Rodrigues GC, Andrade AC (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, da Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56:1821–1829

    CAS  PubMed  Google Scholar 

  • Martins LD, Tomaz MA, Lidon FC, DaMatta FM, Ramalho JC (2014) Combined effects of elevated [CO2] and high temperature on leaf mineral balance in Coffea spp. plants. Clim Chang 126:365–379

    CAS  Google Scholar 

  • Martins MQ, Rodrigues WP, Fortunato AS, Leitão AE, Rodrigues AP, Pais IP, Martins LD, Silva MJ, Reboredo FH, Partelli FL, Campostrini E, Tomaz MA, Scotti-Campos P, Ribeiro-Barros AI, Lidon FJC, DaMatta FM, Ramalho JC (2016) Protective response mechanisms to heat stress in interaction with high [CO2] conditions in Coffea spp. Front Plant Sci 7:947

    PubMed  PubMed Central  Google Scholar 

  • Martins MQ, Fortunato AS, Rodrigues WP, Partelli FL, Campostrini E, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI (2017) Selection and validation of reference genes for accurate RT-qPCR data normalization in Coffea spp. under a climate changes context of interacting elevated [CO2] and temperature. Front Plant Sci 8:307

    PubMed  PubMed Central  Google Scholar 

  • Matiello JB, de Almeida SR, da Silva MB, Ferreira IB, de Carvalho CHS (2015) Siriema AS1, coffee cultivar with resistance to leaf rust and leaf miner. In: IX Simpósio de Pesquisa dos Cafés do Brasil, Curitiba, Brazil, p 190

    Google Scholar 

  • Mazzafera P, Eskes AB, Parvais JP, Carvalho A (1990) Male sterility detected in Coffea arabica and C. canephora in Brazil. In: 10st international conference on coffee science (ASIC), Paipa, Colombia, pp 466–473

    Google Scholar 

  • Menezes-Silva PE, Sanglard LMVP, Ávila RT, Morais LE, Martins SCV, Nobres P, Patreze CM, Ferreira MA, Araújo WL, Fernie AR, DaMatta FM (2017) Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. J Exp Bot 68:4309–4322

    CAS  PubMed  Google Scholar 

  • Miniussi M, Del Terra L, Savi T, Pallavicini A, Nardini A (2015) Aquaporins in Coffea arabica L.: identification, expression, and impacts on plant water relations and hydraulics. Plant Physiol Biochem 95:92–102

    CAS  PubMed  Google Scholar 

  • Mizuno K, Kato M, Irino F, Yoneyama N, Fujimura T, Ashihara H (2003a) The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). FEBS Lett 547:56–60

    CAS  PubMed  Google Scholar 

  • Mizuno K, Kuda A, Kato M, Yoneyama N, Tanaka H, Ashihara H, Fujimura T (2003b) Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.). FEBS Lett 534:75–81

    CAS  PubMed  Google Scholar 

  • Mizuno K, Matsuzaki M, Kanazawa S, Tokiwano T, Yoshizawa Y, Kato M (2014) Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica. Biochem Biophys Res Commun 452:1060–1066

    CAS  PubMed  Google Scholar 

  • Moat J, Williams J, Baena S, Wilkinson T, Gole TW, Challa ZK, Demissew S, Davis AP (2017) Resilience potential of the Ethiopian coffee sector under climate change. Nat Plants 19:17081

    Google Scholar 

  • Moat J, Gole TW, Davis AP (2019) Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Glob Chang Biol 25:390–403

    PubMed  PubMed Central  Google Scholar 

  • Mofatto LS, Carneiro FA, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Guitton MG, Verdeil J-L, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P (2016) Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biol 16:94

    PubMed  PubMed Central  Google Scholar 

  • Moisyadi S, Stiles J (1995) A cDNA encoding a metallothionein I-like protein from coffee leaves (Coffea arabica). Plant Physiol 107:295–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mondego JMC, Guerreiro-Filho O, Bengtson MH, Drummond RD, Felix JM, Duarte MP, Ramiro D, Maluf MP, Sogayar MC, Menossi M (2005) Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Sci 169:351–360

    CAS  Google Scholar 

  • Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL, Pereira LFP, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG, Brazilian Coffee Genome Project Consortium (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya G, Vuong H, Cristancho M, Moncada P, Yepes M (2007) Sequence analysis from leaves, flowers and fruits of Coffea arabica var. Caturra. In: 21st international conference on coffee science (ASIC), Montpellier, France (PB261), pp 717–721

    Google Scholar 

  • Moraes MS, Teixeira AL, Ramalho AR, Espíndula MC, Ferrão MAG, Rocha RB (2018) Characterization of gametophytic self-incompatibility of superior clones of Coffea canephora. Genet Mol Res 17:gmr16039876

    Google Scholar 

  • Morais H, Caramori PH, Koguishi MS, Ribeiro AMA (2008) Escala fenológica detalhada da fase reprodutiva de Coffea arabica. Bragantia 67:257–260

    Google Scholar 

  • Morgante M, Scalabrin S, Scaglione D, Cattonaro F, Magni F, Jurman I, Cerutti M, Liverani FS, Navarini L, Del Terra L, Pellegrino G, Graziosi G, Vitulo N, Valle G (2015) Progress report on the sequencing and assembly of the allotetraploid Coffea arabica var. Bourbon genome. In: Plant and animal genome XXIII. San Diego, CA (USA). https://pag.confex.com/pag/xxiii/webprogram/Paper16802.html

    Google Scholar 

  • Nellikunnumal SM, Chandrashekar A (2012) Computational identification of conserved microRNA and their targets in Coffea canephora by EST analysis. Dyn Biochem Process Biotech Mol Biol 6:70–76

    Google Scholar 

  • Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H (2016) Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). J Plant Physiol 201:85–94

    CAS  PubMed  Google Scholar 

  • Nic-Can GI, López-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Peña C (2013) New insights into somatic embryogenesis: leafy cotyledon1, baby boom1 and WUSCHEL-related homeobox4 are epigenetically regulated in Coffea canephora. PLoS One 8:e72160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile PM, Quecini V, Bazzo B, Quiterio G, Mazzafera P, Colombo CA (2010) Transcriptional profile of genes involved in the biosynthesis of phytate and ferritin in Coffea. J Agric Food Chem 58:3479–3487

    CAS  PubMed  Google Scholar 

  • Nobres P, Patreze CM, Waltenberg FP, Correa MF, Tavano ECR, Mendes BMJ, Alves-Ferreira M (2016) Characterization of the promoter of the homeobox gene CaHB12 in Coffea arabica. Trop Plant Biol 9:50–62

    CAS  Google Scholar 

  • Nowak MD, Davis AP, Anthony F, Yoder AD (2011) Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae). PLoS One 6:e21019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Herai Y, Koizumi N, Kusano T, Sano H (2001) 7-methylxanthine methyltransferase of coffee plants gene isolation and enzyme properties. J Biol Chem 276:8213–8218

    CAS  PubMed  Google Scholar 

  • Omondi CO, Agwanda CO, Gichuru EK (2004) Field expression of resistance to coffee berry disease (CBD) as affected by environmental and host-pathogen factors. In: 20th international conference on coffee science (ASIC), Bangalore, India

    Google Scholar 

  • Ovalle-Rivera O, Läderach P, Bunn C, Obersteiner M, Schroth G (2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS One 10:e0124155

    PubMed  PubMed Central  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee S-H, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira LFP, Galvão RM, Kobayashi AK, Cação SMB, Vieira LGE (2005) Ethylene production and acc oxidase gene expression during fruit ripening of Coffea arabica L. Braz J Plant Physiol 17:283–289

    CAS  Google Scholar 

  • Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ (2018) Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiol Plant 163:530–551

    PubMed  Google Scholar 

  • Perrois C, Strickler SR, Mathieu G, Lepelley M, Bedon L, Michaux S, Husson J, Mueller L, Privat I (2015) Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 241:179–191

    CAS  PubMed  Google Scholar 

  • Petitot A-S, Lecouls AC, Fernandez D (2008) Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica. Tree Genet Genomes 3:379–390

    Google Scholar 

  • Petitot A-S, Barsalobres-Cavallari C, Ramiro D, Albuquerque Freire E, Etienne H, Fernandez D (2013) Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). Plant Cell Rep 32:1263–1276

    CAS  PubMed  Google Scholar 

  • Pezzopane JRM, Pedro Júnior MJ, Thomaziello RA, Camargo MBP (2003) Escala para avaliação de estádios fenológicos do cafeeiro Arábica. Bragantia 62:499–505

    Google Scholar 

  • Pinto RT, Freitas NC, Máximo WPF, Cardoso TB, Prudente DO, Paiva LV (2019) Genome-wide analysis, transcription factor network approach and gene expression profile of GH3 genes over early somatic embryogenesis in Coffea spp. BMC Genomics 20:812

    PubMed  PubMed Central  Google Scholar 

  • Poncet V, Rondeau M, Tranchant C,·Cayrel A, Hamon S, de Kochko A, Hamon P (2006) SSR mining in coffee tree EST databases: potential use of EST–SSRs as markers for the Coffea genus. Mol Gen Genomics 276:436–449

    CAS  Google Scholar 

  • Pré M, Caillet V, Sobilo J, McCarthy J (2008) Characterization and expression analysis of genes directing galactomannan synthesis in coffee. Ann Bot 102:207–220

    PubMed  PubMed Central  Google Scholar 

  • Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C, Tanksley S, Foyer C, McCarthy J (2008) Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. New Phytol 178:781–797

    CAS  PubMed  Google Scholar 

  • Privat I, Bardil A, Gomez AB, Severac D, Dantec C, Fuentes I, Mueller L, Joët T, Pot D, Foucrier S, Dussert S, Leroy T, Journot L, De Kochko A, Campa C, Combes M-C, Lashermes P, Bertrand B (2011) The ‘Puce Cafe’ project: the first 15K coffee microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits. BMC Genomics 12:5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    CAS  PubMed  Google Scholar 

  • Quintana-Escobar AO, Nic-Can GI, Galaz Avalos RM, Loyola-Vargas VM, Gongora-Castillo E (2019) Transcriptome analysis of the induction of somatic embryogenesis in Coffea canephora and the participation of ARF and Aux/IAA genes. PeerJ 7:e7752

    PubMed  PubMed Central  Google Scholar 

  • Ramalho JC, Rodrigues AP, Semedo JN, Pais IP, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos IM, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM (2013) Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS One 8:e82712

    PubMed  PubMed Central  Google Scholar 

  • Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AS, Pais IP, Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI (2018a) Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 13:e0198694

    PubMed  PubMed Central  Google Scholar 

  • Ramalho JC, Pais IP, Leitão AE, Guerra M, Reboredo FH, Máguas CM, Carvalho ML, Scotti-Campos P, Ribeiro-Barros AI, Lidon FJC, DaMatta FM (2018b) Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front Plant Sci 9:287

    PubMed  PubMed Central  Google Scholar 

  • Ramiro D, Jalloul A, Petitot A-S, Grossi de Sá MF, Maluf MP, Fernandez D (2010) Identification of coffee WRKY transcription factor genes and expression profiling in resistance responses to pathogens. Tree Genet Genomes 6:767–781

    Google Scholar 

  • Rebijith KB, Asokan R, Ranjitha HH, Krishna V, Nirmalbabu K (2013) In silico mining of novel microRNAs from coffee (Coffea arabica) using expressed sequence tags. J Hortic Sci Biotechnol 88:325–337

    CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simões-Costa MC, Pais IP, Leitão AE, Colwell F, Goulao L, Máguas C, Maia R, Partelli FL, Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC (2016) Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Glob Chang Biol 22:415–431

    PubMed  Google Scholar 

  • Rogers WJ, Bézard G, Deshayes A, Meyer I, Pétiard V, Marraccini P (1999a) Biochemical and molecular characterization and expression of the 11S-type storage protein from Coffea arabica endosperm. Plant Physiol Biochem 37:261–272

    CAS  Google Scholar 

  • Rogers WJ, Michaux S, Bastin M, Bucheli P (1999b) Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids, and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Sci 149:115–123

    CAS  Google Scholar 

  • Romero JV, Cortina H (2004) Fecundidad y ciclo de vida de la coffee berry borer Hypothenemus hampei F. (Coleoptera: Curculionidae: Scolytinae) en introducciones silvestres de café. Rev Cenicafé 55:221–231

    Google Scholar 

  • Romero JV, Cortina H (2007) Tablas de vida de Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) sobre tres introducciones de café. Rev Colomb Entomol 33:10–16

    Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    CAS  PubMed  Google Scholar 

  • Ságio SA, Barreto HG, Lima AA, Moreira RO, Rezende PM, Paiva LV, Chalfun-Junior A (2014) Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta 239:951–963

    PubMed  Google Scholar 

  • Salmona J, Dussert S, Descroix F, de Kochko A, Bertrand B, Joët T (2008) Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66:105–124

    CAS  PubMed  Google Scholar 

  • Samson N, Bausher MG, Lee SB, Jansen RK, Daniell H (2007) The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol J 5:339–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sant’Ana GC, Pereira LFP, Pot D, Ivamoto ST, Domingues DS, Ferreira RV, Pagiatto NF, da Silva BSR, Nogueira LM, Kitzberger CSG, Scholz MBS, de Oliveira FF, Sera GH, Padilha L, Labouisse JP, Guyot R, Charmetant P, Leroy T (2018) Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Sci Rep 8:465

    PubMed  PubMed Central  Google Scholar 

  • Santos AB, Mazzafera P (2012) Dehydrins are highly expressed in water-stressed plants of two coffee species. Trop Plant Biol 5:218–232

    CAS  Google Scholar 

  • Santos GC, Von Pinho EVR, Rosa SDVF (2013) Gene expression of coffee seed oxidation and germination processes during drying. Genet Mol Res 12:6968–6982

    CAS  PubMed  Google Scholar 

  • Santos JO, Santos MO, Torres LF, Matos CSM, Botelho A, Andrade AC, Carvalho GR, Silva VA (2019) Analysis of APX and CaPYL8A genes expression in Coffea arabica progenies under drought. In: X Simpósio de Pesquisa dos Cafés do Brasil, Vitoria, Brazil

    Google Scholar 

  • Satyanarayana KV, Kumar V, Chandrashekar A, Ravishankar GA (2005) Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora. J Biotechnol 119:20–25

    CAS  PubMed  Google Scholar 

  • Schluter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    PubMed  Google Scholar 

  • Scotti-Campos P, Pais IP, Ribeiro-Barros AI, Martins LD, Tomaz MA, Rodrigues WP, Campostrini E, Semedo JN, Fortunato AS, Martins MQ, Partelli FL, Lidon FC, DaMatta FM, Ramalho JC (2019) Lipid profile adjustments may contribute to warming acclimation and to heat impact mitigation by elevated [CO2] in Coffea spp. Environ Exp Bot 167:103856

    CAS  Google Scholar 

  • Selmar D, Bytof G, Knopp SE, Breitenstein B (2006) Germination of coffee seeds and its significance for coffee quality. Plant Biol 8:260–264

    CAS  PubMed  Google Scholar 

  • Sera GH, Sera T, Ito DS, Filho CR, Villacorta A, Kanayama FS, Alegre CR, Del Grossi L (2010) Coffee berry borer resistance in coffee genotypes. Braz Arch Biol Technol 53:261–268

    Google Scholar 

  • Severino FE, Brandalise M, Costa CS, Wilcken SRS, Maluf MP, Gonçalves W, Maia IG (2012) CaPrx, a Coffea arabica gene encoding a putative class III peroxidase induced by root-knot nematode infection. Plant Sci 191-192:35–42

    CAS  PubMed  Google Scholar 

  • Silva EA, Mazzafera P, Brunini O, Sakai E, Arruda FB, Mattoso LHC, Carvalho CRL, Pires RCM (2005) The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans. Braz J Plant Physiol 17:229–238

    Google Scholar 

  • Silva MC, Várzea V, Guerra-Guimarães L, Azinheira HG, Fernandez D, Petitot A-S, Bertrand B, Lashermes P, Nicole M (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18:119–147

    CAS  Google Scholar 

  • Silva AT, Barduche D, do Livramento KG, Ligterink W, Paiva LV (2014) Characterization of a putative Serk-Like ortholog in embryogenic cell suspension cultures of Coffea arabica L. Plant Mol Biol Rep 32:176–184

    CAS  Google Scholar 

  • Silva AT, Barduche D, do Livramento KG, Paiva LV (2015) A putative BABY BOOM-like gene (CaBBM) is expressed in embryogenic calli and embryogenic cell suspension culture of Coffea arabica L. In Vitro Cell Dev Biol Plant 51:93

    CAS  Google Scholar 

  • Simkin AJ, Qian T, Caillet V, Michoux F, Ben Amor M, Lin C, Tanksley S, McCarthy J (2006) Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. J Plant Physiol 163:691–708

    CAS  PubMed  Google Scholar 

  • Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106

    CAS  PubMed  Google Scholar 

  • Simkin AJ, Kuntz M, Moreau H, McCarthy J (2010) Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant Physiol Biochem 48:434–442

    CAS  PubMed  Google Scholar 

  • Singh R, Irikura B, Nagai C, Albert HH, Kumagai M, Paull RE, Moore PH, Wang M-L (2011) Characterization of prolyl oligopeptidase genes differentially expressed between two cultivars of Coffea arabica L. Trop Plant Biol 4:203–216

    Google Scholar 

  • Sreedharan SP, Kumar A, Giridhar P (2018) Primer design and amplification efficiencies are crucial for reliability of quantitative PCR studies of caffeine biosynthetic N-methyltransferases in coffee. 3. Biotech 8:467

    Google Scholar 

  • Thioune EH, McCarthy J, Gallagher T, Osborne B (2017) A humidity shock leads to rapid, temperature dependent changes in coffee leaf physiology and gene expression. Tree Physiol 37:367–379

    CAS  PubMed  Google Scholar 

  • Tiski I, Marraccini P, Pot D, Vieira LGE, Pereira LFP (2011) Characterization and expression of two cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase isoforms in coffee (Coffea arabica L.). OMICS 15:719–727

    CAS  PubMed  Google Scholar 

  • Toniutti L, Breitler J-C, Etienne H, Campa C, Doulbeau S, Urban L, Lambot C, Pinilla JH, Bertrand B (2017) Influence of environmental conditions and genetic background of Arabica coffee (C. arabica L) on leaf rust (Hemileia vastatrix) pathogenesis. Front. Plant Sci 8:2025

    Google Scholar 

  • Toniutti L, Bordeaux M, Klein PE, Bertrand B, Montagnon C (2019a) Association study of tree size and male sterility in a F2 Coffea arabica population. In: 27th international conference on coffee science (ASIC), Portland (OR), USA

    Google Scholar 

  • Toniutti L, Breitler J-C, Guittin C, Doulbeau S, Etienne H, Campa C, Lambot C, Herrera Pinilla JC, Bertrand B (2019b) An altered circadian clock coupled with a higher photosynthesis efficiency could explain the better agronomic performance of a new coffee clone when compared with a standard variety. Int J Mol Sci 20:736

    CAS  PubMed Central  Google Scholar 

  • Torres LF, Diniz LEC, Do Livramento KG, Freire LL, Paiva LV (2015) Gene expression and morphological characterization of cell suspensions of Coffea arabica L. cv. Catiguá MG2 in different cultivation stages. Acta Physiol Plant 37:175

    Google Scholar 

  • Torres LF, Reichel T, Déchamp E, de Aquino SO, Duarte KE, Alves GSC, Silva AT, Cotta MG, Costa TS, Diniz LEC, Breitler J-C, Collin M, Paiva LV, Andrade AC, Etienne H, Marraccini P (2019) Expression of DREB-like genes in Coffea canephora and C. arabica subjected to various types of abiotic stress. Trop Plant Biol 12:98–116

    CAS  Google Scholar 

  • Tran HTM, Lee LS, Furtado A, Smyth H, Henry RJ (2016) Advances in genomics for the improvement of quality in coffee. J Sci Food Agric 96:3300–3312

    CAS  PubMed  Google Scholar 

  • Tran HTM, Ramaraj T, Furtado A, Lee LS, Henry RJ (2018) Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content. Plant Biotechnol 16:1756–1766

    CAS  Google Scholar 

  • Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H (2003) Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol 132:372–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological functions. Curr Opin Plant Biol 7:491–498

    PubMed  Google Scholar 

  • Urwin P, Green J, Atkinson H (2003) Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol Breed 12:263–269

    CAS  Google Scholar 

  • Valadez-González N, Colli-Mull JG, Brito-Argáez L, Muñoz-Sánchez JA, Zúñiga Aguilar JJ, Castaño E, Hernández-Sotomayor SMT (2007) Differential effect of aluminum on DNA synthesis and CDKA activity in two Coffea arabica cell lines. J Plant Growth Regul 26:69–77

    Google Scholar 

  • Valeriano JC, Lima EA, de Aquino SO, Carneiro FA, Carneiro WWJ, Mattos NG, Carneiro RMDG, Andrade AC (2019) Allele specific expression in Coffea canephora associated with nematoides resistance. In: X Simpósio de Pesquisa dos Cafés do Brasil, Vitoria, Brazil

    Google Scholar 

  • Van der Vossen HAM (1985) Coffee breeding and selection. In: Clifford MN, Wilson RC (eds) Coffee botany, biochemistry and production of beans and beverages. Croom Helm, London, pp 48–97

    Google Scholar 

  • van der Vossen HAM, Walyaro DJ (2009) Additional evidence for oligogenic inheritance of durable host resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica L.). Euphytica 165:105–111

    Google Scholar 

  • Van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243–256

    Google Scholar 

  • Vasconcelos EAR, Santana CG, Godoy CV, Seixas CDS, Silva MS, Moreira LRS, Oliveira-Neto OB, Price D, Fitches E, Filho EXF, Mehta A, Gatehouse JA, Grossi-de-Sa MF (2011) A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects soybean Asian rust (Phakopsora pachyrhizi) spore germination. BMC Biotechnol 11:14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal RO, Mondego JMC, Pot D, Ambrósio AB, Andrade AC, Pereira LFP, Colombo CA, Vieira LGE, Carazzolle MF, Pereira GAG (2010) A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiol 154:1053–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA, Moraes AAH, Metha A, Oliveira AC, Labate CA, Marino CL, Monteiro-Vitorello CB, Monte DC, Giglioti E, Kimura ET, Romano E, Kuramae EE, Lemos EGM, Almeida ERP, Jorge EC, Barros EVSA, da Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, Lima LM, Camargo LEA, Pereira LFP, Coutinho LL, Lemos MVF, Romano MR, Machado MA, Costa MMC, Grossi de Sá MF, Goldman MHS, Ferro MIT, Tinoco MLP, Oliveira MC, Sluys MAV, Shimizu MS, Maluf MP, Eira MTS, Guerreiro Filho O, Arruda P, Mazzafera P, Mariani PDSC, Oliveira RL, Harakava R, Balbao SF, Tsai SM, Mauro SMZ, Santos SN, Siqueira WJ, Costa GGL, Formighieri EF, Carazzolle MF, Pereira GAG (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    CAS  Google Scholar 

  • Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Freire LP, Vinecky F, Elbelt S, Silva VA, DaMatta FM, Ferrão MAG, Marraccini P, Andrade AC (2013) Different molecular mechanisms account for drought tolerance in Coffea canephora var. Conilon. Trop Plant Biol 6:181–190

    CAS  Google Scholar 

  • Vieira NG, Ferrari IF, Rezende JC, Mayer JLS, Mondego JMC (2019) Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Sci Rep 9:8446

    PubMed  PubMed Central  Google Scholar 

  • Vinecky F, da Silva FR, Andrade AC (2012) In silico analysis of cDNA libraries SH2 and SH3 for the identification of genes responsive to drought in coffee. Coffee Sci 7:1–19

    Google Scholar 

  • Vinecky F, Davrieux F, Mera AC, Alves GSC, Lavagnini G, Leroy T, Bonnot F, Rocha OC, Bartholo GF, Guerra AF, Rodrigues GC, Marraccini P, Andrade AC (2017) Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. J Agric Sci 155:902–918

    CAS  Google Scholar 

  • Walyaro DJ (1983) Considerations in breeding for improved yield and quality in arabica coffee (Coffea arabica L.). Thesis, University of Wageningen, Netherlands

    Google Scholar 

  • Wang J, Tian L, Lee HS, Chen ZJ (2006) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu Q, Wang H, Zhang H, Xu X, Li C, Yang C (2016) Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa. Sci Rep 6:36274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    CAS  Google Scholar 

  • Yepes M, Gaitan A, Cristancho MA, Rivera LF, Correa JC, Maldonado CE, Gongora CE, Villegas MA, Posada H, Zimin A, Yorke JA, Aldwinckle H (2016) Building high quality reference genome assemblies using PACBio long reads for the allotetraploid Coffea arabica and its diploid ancestral maternal species Coffea eugenioides. In: Plant and animal genome XXIII. San Diego, CA (USA). https://pag.confex.com/pag/xxiv/webprogram/Paper22250.html

    Google Scholar 

  • Yuyama PM, Reis Júnior O, Ivamoto ST, Domingues DS, Carazzolle MF, Pereira GAG, Charmetant P, Leroy T, Pereira LFP (2016) Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Mol Gen Genomics 291:323–336

    CAS  Google Scholar 

  • Zheng XQ, Ashihara H (2004) Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Sci 166:807–813

    CAS  Google Scholar 

  • Zheng XQ, Nagai C, Ashihara H (2004) Pyridine nucleotide cycle and trigonelline (N-methylnicotinic acid) synthesis in developing leaves and fruits of Coffea arabica. Physiol Plant 122:404–411

    CAS  Google Scholar 

  • Zhu A, Goldstein J (1994) Cloning and functional expression of a cDNA encoding coffee bean α-galactosidase. Gene 140:227–231

    CAS  PubMed  Google Scholar 

  • Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank B. Bertrand and H. Etienne (UMR IPME, research team “CoffeeAdapt” of UMR IPME, https://umr-ipme.ird.fr/equipes/equipe-coffeeadapt) for their critical reading of the manuscript. This work was supported by the European Union, Program Horizon 2020, call H2020-SFS-2016-2, action RIA, project BREEDCAFS (http://www.breedcafs.eu/), and proposal 727934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marraccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marraccini, P. (2020). Gene Expression in Coffee. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_42

Download citation

Publish with us

Policies and ethics