Skip to main content

Plant Peroxisomes and Their Metabolism of ROS, RNS, and RSS

  • Chapter
  • First Online:
Progress in Botany Vol. 82

Part of the book series: Progress in Botany ((BOTANY,volume 82))

  • 845 Accesses

Abstract

Peroxisomes are subcellular organelles with a single membrane and devoid of DNA, with an essentially oxidative type of metabolism, and are probably the major loci of intracellular H2O2 production. A general property of peroxisomes is that they contain as basic enzymatic constituents catalase and hydrogen peroxide-producing flavin oxidases and that carry out the fatty acid ß-oxidation, but in recent years, it has been established that peroxisomes are involved in a range of important cellular functions in nearly all eukaryotic cells. Research developed in the last 30 years has indicated the existence of cellular functions of peroxisomes related to reactive oxygen species (ROS), like H2O2, superoxide radicals (O2·−), singlet oxygen, etc., and reactive nitrogen species (RNS), like nitric oxide (NO) and other thereof derived compounds, and a function for peroxisomes as important centers of the cellular signaling apparatus has been postulated. More recently, evidence has been obtained suggesting new roles of peroxisomes involving reactive sulfur species (RSS), sulfur compounds with different higher oxidation states.

In this review, the generation and/or metabolism of ROS, RNS, and RSS in peroxisomes and its regulation, as well as the different antioxidant systems present in these organelles, will be analyzed in the context of distinct ROS-, RNS-, and RSS-mediated functions of plant peroxisomes that can be involved in the metabolism of plant cells under both physiological and stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

·OH:

Hydroxyl radical

1O2:

Singlet oxygen

2,4-D:

2,4-dichlorophenoxyacetic acid

APF:

Aminophenyl fluorescein

APX:

Ascorbate peroxidase

cGMP:

Cyclic guanosine monophosphate

CLSM:

Confocal laser scanning microscopy

CuAO:

Cu-containing amine oxidase

EM:

Electron microscopy

GOX:

Glycolate oxidase

GR:

Glutathione reductase

H2O2:

Hydrogen peroxide

HPLC:

High-pressure liquid chromatography

ICDH:

Isocitrate dehydrogenase

MDAR:

Monodehydroascorbate reductase

NO:

Nitric oxide

O2·−:

Superoxide radical

O3:

Ozone

PAO:

Polyamine oxidase

PMP:

Peroxisomal membrane polypeptide

Prx:

Peroxiredoxin

PTM:

Posttranslational modification

PTS:

Peroxisomal targeting signal

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSS:

Reactive sulfur species

SOD:

Superoxide dismutase

XDH:

Xanthine dehydrogenase

XOD:

Xanthine oxidase

References

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    CAS  PubMed  Google Scholar 

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agurla S, Gayatri G, Raghavendra AS (2018) Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma 255:153–162

    CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuumL.) plants under low temperature stress. Plant Cell Physiol 35:281–295

    CAS  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez C, Calo L, Romero LC, García I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Benito JM, Gotor C, Romero LC (2017) Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. J Exp Bot 68:4915–4927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369

    PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) Special issue on reactive oxygen species. Plant Physiol 141:311–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker A, Graham I (2002) Plant peroxisomes. Biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht

    Google Scholar 

  • Barroso JB, Corpas FJ, Carreras A, Sandalio LM, Valderrama R, Palma JM, Lupiáñez JA, del Río LA (1999) Localization of nitric oxide synthase in plant peroxisomes. J Biol Chem 274:36729–36733

    CAS  PubMed  Google Scholar 

  • Barroso JB, Valderrama R, Corpas FJ (2013) Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles. Acta Physiol Plant 35:2635–2640

    CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    CAS  PubMed  Google Scholar 

  • Begara-Morales JC, López-Jaramillo FJ, Sánchez-Calvo B, Carreras A, Ortega-Muñoz M, Santoyo-González F, Corpas FJ, Barroso JB (2013) Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione. BMC Plant Biol 13:61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher JL, Genet A, Vadon S et al (1992a) Formation of nitrogen oxides and citrulline upon oxidation of N-omega-hydroxy-L-arginine by hemeproteins. Biochem Biophys Res Commun 184:1158–1164

    CAS  PubMed  Google Scholar 

  • Boucher JL, Genet A, Vadon S et al (1992b) Cytochrome P450 catalyzes the oxidation of N-omega-hydroxy-L-arginine by NADPH and O2 to nitric oxide and citrulline. Biochem Biophys Res Commun 187:880–886

    CAS  PubMed  Google Scholar 

  • Bowditch MY, Donaldson RP (1990) Ascorbate free radical reduction by glyoxysomal membranes. Plant Physiol 94:531–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, Varela J, Giménez-Gallego G, del Río LA (1995) Peroxisomal copper,zinc superoxide dismutase: characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31:492–505

    CAS  PubMed  Google Scholar 

  • Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ et al (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Considine MJ, Sandalio LM, Foyer CH (2015) Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann Bot 116:469–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. FEBS Lett 588:2049–2054

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2015) Reactive sulfur species (RSS): possible new players in the oxidative metabolism of plant peroxisomes. Front Plant Sci 6:116

    PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, de la Colina C, Sánchez-Rasero F, del Río LA (1997) A role for leaf peroxisomes in the catabolism of purines. J Plant Physiol 151:246–250

    CAS  Google Scholar 

  • Corpas FJ, Sandalio LM, del Río LA, Trelease RN (1998a) Copper-zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. New Phytol 138:307–314

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Distefano S, Palma JM, Lupiáñez JA, del Río LA (1998b) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330:777–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban FJ, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004a) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2004b) Enzymatic sources of nitric oxide in plant cells – beyond one protein-one function. New Phytol 162:243–251

    Google Scholar 

  • Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ et al (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–994

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Carreras A, Esteban FJ, Chaki M, Valderrama R, del Río LA, Barroso JB (2008a) Localization of S-Nitrosothiols and assay of nitric oxide synthase and S-Nitrosoglutathione reductase activity in plants. Methods Enzymol 437:561–574

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008b) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Palma JM, del Río LA (2009a) Peroxisomes as key organelles in the metabolism of reactive oxygen species, reactive nitrogen species, and reactive sulfur species in plants. In: Terlecky SR, Titorenko VI (eds) Emergent functions of the peroxisome. Research Signpost, Kerala, pp 97–124

    Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2009b) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184:9–14

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009c) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151:2083–2094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2013) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29

    PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB (2015) Nitration and S-nitrosylation: two post-translational modifications (PTMs) mediated by reactive nitrogen species (RNS) which participate in signaling processes of plant cells. In: Kagapunti J, Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Springer, Berlin, pp 267–281

    Google Scholar 

  • Corpas FJ, Barroso JB, Palma JM, Rodríguez-Ruiz M (2017a) Plant peroxisomes: a nitro-oxidative cocktail. Redox Biol 11:535–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Pedrajas JR, Palma JM, Valderrama R, Rodríguez-Ruiz M, Chaki M, del Río LA, Barroso JB (2017b) Immunological evidence for the presence of peroxiredoxin in pea leaf peroxisomes and response to oxidative stress conditions. Acta Physiol Plant 39:57–69

    Google Scholar 

  • Corpas FJ, del Río LA, Palma JM (2019a) Plant peroxisomes at the crossroad of NO and H2O2 metabolism. J Integr Plant Biol 61:803–816

    CAS  PubMed  Google Scholar 

  • Corpas FJ, González-Gordo S, Cañas A, Palma JM (2019b) Nitric oxide and hydrogen sulfide in plants: which comes first? J Exp Bot 70:4391–4404

    CAS  PubMed  Google Scholar 

  • Corpas FJ, del Río LA, Palma JM (2019c) Impact of nitric oxide (NO) on the ROS metabolism of peroxisomes. Plants 8:37. https://doi.org/10.3390/plants8020037

    Article  CAS  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM (2019d) Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J Integr Plant Biol 61:871–883

    CAS  PubMed  Google Scholar 

  • Costa A, Drago IO, Behera S, Zottini M, Pizzo P, Schroeder JI et al (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cueto M, Hernández-Perea O, Martín R, Ventura ML, Rodrigo J, Lamas S, Golvano PM (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    CAS  PubMed  Google Scholar 

  • de Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • de Duve C, Beaufay H, Jacques P, Rahman-Li Y, Selinger OZ, Wattiaux R, de Connick S (1960) Intracellular localization of catalase and of some oxidases in rat liver. Biochim Biophys Acta 40:186–187

    Google Scholar 

  • de Felipe MR, Lucas MM, Pozuelo JM (1988) Cytochemical study of catalase and peroxidase in the mesophyll of Lolium rigidum plants treated with isoproturon. J Plant Physiol 132:67–73

    Google Scholar 

  • Dean JV, Harper JE (1988) The conversion of nitrite to nitrogen oxide(s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean. Plant Physiol 88:389–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Río LA (2011) Peroxisomes as a source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    PubMed  Google Scholar 

  • del Río LA (2013) Peroxisomes and their key role in cellular signaling and metabolism. Subcellular biochemistry, vol 69. Springer, Dordrecht

    Google Scholar 

  • del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    PubMed  Google Scholar 

  • del Río LA, Donaldson RP (1995) Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J Plant Physiol 146:283–287

    Google Scholar 

  • del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376

    PubMed  Google Scholar 

  • del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, Dordrecht

    Google Scholar 

  • del Río LA, Schrader M (2018) Proteomics of peroxisomes. Identifying novel functions and regulatory networks. Subcellular biochemistry, vol 89. Springer, Dordrecht

    Google Scholar 

  • del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–224

    PubMed  Google Scholar 

  • del Río LA, Fernández VM, Rupérez FL, Sandalio LM, Palma JM (1989) NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89:728–731

    PubMed  PubMed Central  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM (1990) A new cellular function for peroxisomes related to oxygen free radicals? Experientia 46:989–992

    PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med 13:557–580

    PubMed  Google Scholar 

  • del Río LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, López-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 24:434–438

    PubMed  Google Scholar 

  • del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    PubMed  PubMed Central  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Altomare DA, Zilinskas BA (2003a) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003b) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging and role in cell signaling. Plant Physiol 141:330–335

    PubMed  PubMed Central  Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB, López-Huertas E, Palma JM (2014) Function of peroxisomes as a cellular source of nitric oxide and other reactive nitrogen species. In: Nasir Khan M, Mobin M, Mohammad F, Corpas FJ (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Berlin, pp 33–55

    Google Scholar 

  • del Río LA, Corpas FJ, López-Huertas PJM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 1–26

    Google Scholar 

  • Desai M, Hu J (2008) Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HYS HOMOLOG, and the peroxisomal protein PEROXIN11B. Plant Physiol 146:1117–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao QN, Song YJ, Shi DM, Qi HY (2016) Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling. J Zhejiang Univ Sci B 17:916–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    CAS  PubMed  Google Scholar 

  • Distefano S, Palma JM, Gómez M, del Río LA (1997) Characterization of endoproteases from plant peroxisomes. Biochem J 327:399–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Distefano S, Palma JM, McCarthy I, del Río LA (1999) Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta 209:308–313

    CAS  PubMed  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Droillard MJ, Paulin A (1990) Isoenzymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann R (2016) Assembly, maintenance and dynamics of peroxisomes. Special issue. Biochim Biophys Acta 1863:787–789

    CAS  PubMed  Google Scholar 

  • Fahimi HD, Sies H (1987) Peroxisomes in biology and medicine. Springer, Berlin

    Google Scholar 

  • Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336

    CAS  PubMed  Google Scholar 

  • Fernández-García N, Martí MC, Jiménez A, Sevilla F, Olmos E (2009) Sub-cellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate. J Plant Physiol 166:2004–2012

    PubMed  Google Scholar 

  • Ferreira RMB, Bird B, Davies DD (1989) The effect of light on the structure and organization of Lemna peroxisomes. J Exp Bot 40:1029–1035

    Google Scholar 

  • Filipovic MR, Jovanovic VM (2017) More than just an intermediate: hydrogen sulfide signalling in plants. J Exp Bot 68:4733–4736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G et al (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetic, and redox signaling. Annu Rev Plant Biol 60:455–484

    CAS  PubMed  Google Scholar 

  • Fransen M, Lismont C (2018) Peroxisomes and cellular oxidant/antioxidant balance: protein redox modifications and impact on inter-organelle communication. Subcell Biochem 89:435–461

    CAS  PubMed  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822:1363–1373

    CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    CAS  PubMed  Google Scholar 

  • Frölich A, Durner J (2011) The hunt for a plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181:401–404

    Google Scholar 

  • Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31:1279–1283

    CAS  PubMed  Google Scholar 

  • Giles GI, Tasker KM, Collins C, Giles NM, O’Rourke E, Jacob C (2002) Reactive Sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides. Biochem J 364:579–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R et al (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8(2):e57395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51:576–584

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Period Biol 114:19–24

    Google Scholar 

  • Hancock JT (2019) Hydrogen sulfide and environmental stresses. Environ Exp Bot 161:50–56

    CAS  Google Scholar 

  • Hancock JT, Neill SJ (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plan Theory 8:41. https://doi.org/10.3390/plants8020041

    Article  CAS  Google Scholar 

  • Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee. Plant Physiol Biochem 78:37–42

    CAS  PubMed  Google Scholar 

  • Hancock JT, Whiteman M (2016) Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci 1365:5–14

    CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2005) Sulfite oxidase in plant peroxisomes. Photosynth Res 86:337–343

    PubMed  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    CAS  PubMed  Google Scholar 

  • Hayashi M, Nishimura M (2003) Entering a new era of research on plant peroxisomes. Curr Opin Plant Biol 6:577–582

    CAS  PubMed  Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999

    CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AHC, Trelease RN, Moore TS Jr (1983) Plant peroxisomes. Academic Press, New York

    Google Scholar 

  • Huang J, Sommers EM, Kim-Shapiro DB, King SB (2002) Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J Am Chem Soc 124:3473–3480

    CAS  PubMed  Google Scholar 

  • Imlay JA (2011) Redox pioneer: professor Irwin Fridovich. Antioxid Redox Signal 14:335–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inzé A, Vanderauwera S, Hoeberichts FA, Vandorpe M, van Gaever T, van Breusegem F (2012) A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ 35:308–320

    PubMed  Google Scholar 

  • Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol 39:23–34

    CAS  PubMed  Google Scholar 

  • Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  PubMed Central  Google Scholar 

  • Jones DP, Sies H (2015) The redox code. Antioxid Redox Signal 23:734–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju Y, Fu M, Stokes E, Wu L, Yang G (2017) H2S-mediated protein S-sulfhydration: a prediction for its formation and regulation. Molecules 22:E1334

    PubMed  Google Scholar 

  • Kabil O, Vitvitsky V, Banerjee R (2014) Sulfur as a signaling nutrient through hydrogen sulfide. Annu Rev Nutr 34:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    CAS  PubMed  Google Scholar 

  • Kao Y-T, González KL, Bartel B (2018) Peroxisome function, biogenesis, and dynamics in plants. Plant Physiol 176:162–177

    CAS  PubMed  Google Scholar 

  • Kaur N, Hu J (2011) Defining the plant peroxisomal proteome from Arabidopsis to rice. Front Plant Sci 2:103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Li J, Hu J (2013) Peroxisomes and photomorphogenesis. Subcell Biochem 69:195–211

    CAS  PubMed  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewell RA (1991) Cu, Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci U S A 88:7381–7385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H (2015) Signaling molecules: hydrogen sulfide and polysulfide. Antioxid Redox Signal 22:362–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274:13908–13914

    CAS  PubMed  Google Scholar 

  • Kissner R, Nauser T, Bugnon P et al (1997) Formation and properties of peroxynitrite as studied by laser flash photolysis, high pressure stopped flow technique, and pulse radiolysis. Chem Res Toxicol 10:1285–1292

    CAS  PubMed  Google Scholar 

  • Kleff S, Sander S, Mielke G, Eising R (1997) The predominant protein in peroxisomal cores of sunflower cotyledons is a catalase that differs in primary structure from the catalase in the peroxisomal matrix. Eur J Biochem 245:402–410

    CAS  PubMed  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh S, André A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    CAS  PubMed  Google Scholar 

  • Kuzniak E, Sklodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    CAS  PubMed  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Barroso JB, Valderrama R, Begara-Morales JC, Sánchez-Calvo B, Chaki M et al (2016) Peroxisomal NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement. Protoplasma 253:403–415

    CAS  PubMed  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    CAS  PubMed  Google Scholar 

  • Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36:1607–1616

    CAS  PubMed  Google Scholar 

  • López-Huertas E, del Río LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. J Plant Physiol 171:1463–1471

    PubMed  Google Scholar 

  • López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    PubMed  PubMed Central  Google Scholar 

  • López-Huertas E, Charlton WL, Johnson B, Graham I, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    PubMed  PubMed Central  Google Scholar 

  • Loughran PA, Stolz DB, Vodovotz Y et al (2005) Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci U S A 102:13837–13842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loughran PA, Stolz DB, Barrick SR, Wheeler DS, Friedman PA, Rachubinski RA, Watkins SC, Billiar TR (2013) PEX7 and EBP50 target iNOS to the peroxisome in hepatocytes. Nitric Oxide 31:9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J Exp Bot 62:3501–3517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mano S, Nakamori C, Hayashi M et al (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: dynamic morphology and actin-dependent movement. Plant Cell Physiol 43:331–341

    CAS  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    CAS  PubMed  Google Scholar 

  • Martínez-Ruiz A, Lamas S (2004) S-Nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52

    PubMed  Google Scholar 

  • Martínez-Ruiz A, Lamas S (2009) Two decades of new concepts in nitric oxide signaling: from the discovery of a gas messenger to the mediation of nonenzymatic posttranslational modifications. IUBMB Life 61:91–98

    PubMed  Google Scholar 

  • Mateos RM, León AM, Sandalio LM, Gómez M, del Río LA, Palma JM (2003) Peroxisomes from pepper fruits (Capsicum annuum L.): purification, characterization and antioxidant activity. J Plant Physiol 160:1507–1516

    CAS  PubMed  Google Scholar 

  • Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    CAS  Google Scholar 

  • McCarthy I, Gómez M, del Río LA, Palma JM (2011) Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. Biol Plant 55:485–492

    Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    CAS  PubMed  Google Scholar 

  • Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 525:181–194

    CAS  PubMed  Google Scholar 

  • Mitsuya S, El Shami M, Sparkes IA, Charlton WL, de Marcos LC, Johnson B et al (2010) Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoS One 5:e9408

    PubMed  PubMed Central  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    CAS  PubMed  Google Scholar 

  • Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiol 165:249–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski MW, Moncada S (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci U S A 91:6702–6706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morré DJ, Sellden G, Ojanperae K, Sandelius AS, Egger A, Morré DM, Chalko CM, Chalko RA (1990) Peroxisome proliferation in Norway spruce induced by ozone. Protoplasma 155:58–65

    Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sánchez-Serrano JJ, Kalliopi K et al (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Crisstescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KM, Gupta KJ (2012) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5:pls052

    PubMed Central  Google Scholar 

  • Nasir Khan M, Mobin M, Mohammad F, Corpas FJ (eds) (2014) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Berlin

    Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock JT, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    CAS  PubMed  Google Scholar 

  • Nguyen AT, Donaldson RP (2005) Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch Biochem Biophys 439:25–31

    CAS  PubMed  Google Scholar 

  • Nicholls P (1964) The reactions of azide with catalase and their significance. Biochem J 40:331–343

    Google Scholar 

  • Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisomes proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–558

    CAS  PubMed  Google Scholar 

  • Nowak K, Luniak N, Witt C, Wüstefeld Y, Wachter A, Mendel RR, Hänsch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45:1889–1894

    CAS  PubMed  Google Scholar 

  • Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signaling molecules. Biochim Biophys Acta 1763:1478–1495

    CAS  PubMed  Google Scholar 

  • Oikawa KS, Matsunaga S, Mano S, Kondo M, Yamada K, Hayashi M et al (2015) Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat Plants 1:15035

    CAS  PubMed  Google Scholar 

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 287:68–74

    CAS  PubMed  Google Scholar 

  • Palma JM, López-Huertas E, Corpas FJ, Sandalio LM, Gómez M, del Río LA (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104:720–726

    CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation and oxidate stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    CAS  PubMed  Google Scholar 

  • Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitocondria and peroxisomes. Ann Bot 116:627–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356

    CAS  PubMed  Google Scholar 

  • Petrova V, Uzunov Z, Kujumdzieva A (2009) Peroxisomal localization of Mn-SOD enzyme in Saccharomyces cerevisiae yeasts: in silico analysis. Biotechnol Biotechnol Equip 23:1531–1536

    CAS  Google Scholar 

  • Pracharoenwattana I, Smith SM (2008) When is a peroxisome not a peroxisome? Trends Plant Sci 13:522–525

    CAS  PubMed  Google Scholar 

  • Puyaubert J, Fares A, Rézé N, Peltier JB, Baudouin E (2014) Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level. Plant Sci 215–216:150–156

    PubMed  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46:550–559

    CAS  PubMed  Google Scholar 

  • Rao RS, Møller IM (2011) Pattern of occurrence and occupancy of carbonylation sites in proteins. Proteomics 11:4166–4173

    CAS  PubMed  Google Scholar 

  • Reddy JK, Rao MS, Lalwani ND, Reddy MK, Nemali MR, Alvares K (1987) Induction of hepatic peroxisome proliferation by xenobiotics. In: Fahimi HD, Sies H (eds) Peroxisomes in biology and medicine. Springer, Berlin, pp 254–262

    Google Scholar 

  • Reumann S (2011) Toward a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics. Proteomics 11:1764–1779

    CAS  PubMed  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways and defense mechanisms. Plant Cell 19:3170–3193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodin J (1954) Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Doctoral thesis, Karolinska Institut, Aktiebolaget Godvil, Stockholm

    Google Scholar 

  • Rodríguez-Serrano M (2007) Molecular mechanisms of response to cadmium in Pisum sativum L. plants: function of reactive oxygen and nitrogen species. PhD thesis, University of Granada, Spain

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. J Exp Bot 58:2417–2427

    PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Río LA, Serrano LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 47:1632–1639

    PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sanz-Fernández M, Hu J, Sandalio LM (2016) Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a. Plant Physiol 171:1665–1674

    PubMed  PubMed Central  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Wang K, Ryu C-M, Kaundal A, Mysorek K (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31:S25–S31

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004a) Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, del Río LA, Palma JM (2004b) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ 27:1135–1148

    CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA et al (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Sandalio LM (2013) Protein S-nitrosylation in plants under abiotic stress: an overview. Front Plant Sci 4:1–6

    Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156:185–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Romero-Puertas MC (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signaling networks. Annu Bot 116:475–485

    CAS  Google Scholar 

  • Sandalio LM, Palma JM, del Río LM (1987) Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum. Plant Sci 51:1–8

    CAS  Google Scholar 

  • Sandalio LM, Fernández VM, Rupérez FL, del Río LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 87:1–4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, López-Huertas E, Bueno P, del Río LA (1997) Immunocytochemical localization of copper,zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:187–194

    CAS  PubMed  Google Scholar 

  • Sandalio LM et al (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Methods Enzymol 440:397–409

    CAS  PubMed  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Gupta DK, Archilla A, Romero-Puertas MC, del Río LA (2012) Reactive oxygen species and nitric oxide in plants under cadmium stress: from toxicity to signaling. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Berlin, pp 199–215

    Google Scholar 

  • Sandalio LM, Gotor C, Romero LC, Romero-Puertas MC (2019) Multilevel regulation of peroxisomal proteome by post-translational modifications. Int J Mol Sci 20:4881. https://doi.org/10.3390/ijms20194881

    Article  CAS  PubMed Central  Google Scholar 

  • Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122:383–393

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    CAS  PubMed  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Annu Rev Plant Physiol 37:539–574

    CAS  Google Scholar 

  • Shabab M (2013) Role of plant peroxisomes in protection against herbivores. Subcell Biochem 69:315–328

    CAS  PubMed  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214

    CAS  PubMed  Google Scholar 

  • Sparkes I, Gao H (2014) Plant peroxisome dynamics: movement, positioning and connections. In: Brocard C, Hartig A (eds) Molecular machines involved in peroxisome biogenesis and maintenance. Springer, Wien, pp 461–477

    Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    PubMed  Google Scholar 

  • Stolz DB, Zamora R, Vodovotz Y, Loughran PA, Billiar TR, Kim Y-M, Simmons RL, Watkins SM (2002) Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology 36:81–93

    CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    CAS  PubMed  Google Scholar 

  • Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6:662–680

    PubMed  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    CAS  PubMed  Google Scholar 

  • Tischner R, Galli M, Heimer YM et al (2007) Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts. FEBS J 274:4238–4245

    CAS  PubMed  Google Scholar 

  • Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–25

    CAS  PubMed  Google Scholar 

  • Triantaphylidés C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EL, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    CAS  PubMed  Google Scholar 

  • Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69(14):3313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–1459

    CAS  PubMed  Google Scholar 

  • van Bentem S, Anrather D, Roitinger E et al (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNS metabolism. Nucleic Acids Res 34:3267–3278

    Google Scholar 

  • Vanderauwera S, Hoeberichts FA, Van Breusegem F (2009) Hydrogen peroxide-responsive genes in stress acclimation and cell death. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Berlin, pp 149–164

    Google Scholar 

  • Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B (2015) Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 84:215–226

    CAS  PubMed  Google Scholar 

  • Wanders RJA (2013) Peroxisomes in human health and disease: metabolic pathways, metabolite transport, interplay with other organelles and signal transduction. Subcell Biochem 69:23–44

    CAS  PubMed  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revised. Annu Rev Biochem 75:295–332

    CAS  PubMed  Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front Plant Sci 4:314

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Li S, Liu Y, Ma C et al (2015) Redox regulated peroxisome homeostasis. Redox Biol 4:104–108

    CAS  PubMed  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signaling in plants. Plant Cell Environ 31:622–631

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011a) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    CAS  PubMed  Google Scholar 

  • Wimalasekera R, Villar C, Begum T, Scherer GF (2011b) COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol Plant 4:663–678

    CAS  PubMed  Google Scholar 

  • Wink DA, Hanbauer I, Grisham MB et al (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34:159–187

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    CAS  PubMed  Google Scholar 

  • Young D, Pedre B, Ezerina D, de Smet B, Lewandowska A, Tossounian M-A, Bodra N, Huang J, Astolfi-Rosado L, Van Breusegem F, Messens J (2019) Protein promiscuity in H2O2 signaling. Antioxid Redox Signal 30:1285–1324

    CAS  PubMed  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    CAS  PubMed  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H (2016) Hydrogen sulfide in plant biology. In: Lamattina L, García-Mata C (eds) Gasotransmitters in plants. The rise of a new paradigm in cell signaling. Springer, Berlin, pp 23–51

    Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The valuable help of Dr. Javier Corpas in the modification of Fig. 5 is appreciated. The author apologizes to the many colleagues whose work could not be cited because of space limitations. This work was supported by ERDF-cofinanced grants from the Ministry of Economy and Competitiveness and Junta de Andalucía (Group BIO-192), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. del Río .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Río, L.A. (2020). Plant Peroxisomes and Their Metabolism of ROS, RNS, and RSS. In: Cánovas, F.M., Lüttge, U., Risueño, MC., Pretzsch, H. (eds) Progress in Botany Vol. 82. Progress in Botany, vol 82. Springer, Cham. https://doi.org/10.1007/124_2020_37

Download citation

Publish with us

Policies and ethics