Skip to main content

Crassulacean Acid Metabolism and Its Role in Plant Acclimatization to Abiotic Stresses and Defence Against Pathogens

Part of the Progress in Botany book series (BOTANY,volume 81)

Abstract

The type of plant photosynthetic metabolism (C3, C4 or CAM) seems to affect plant sensitivity to environmental stresses. CAM is a metabolic strategy allowing plants to maintain photosynthesis under stress conditions. Evolutionary developed adaptations of CAM plants to climate changes, especially CO2 and water availability, may also affect their resistance to biotic stresses. Experimental data obtained with the Mesembryanthemum crystallinum/Botrytis cinerea (C3-CAM intermediate plant/necrotroph) pathosystem indicated that the CAM mode of photosynthesis favoured the expression of resistance when compared with C3 plants. We suggested that microenvironmental conditions encountered by the pathogen in the plant tissue were one of the reasons why the fungus penetration of the CAM leaves was less effective than of the C3 ones. CAM-related postinoculation conditions encountered by the fungi in the plant tissue could be crucial for disease development. Differences between the reaction of C3 and CAM plants to the pathogen resulted most likely from photorespiratory activity, accompanied by changes in the reactive oxygen species (ROS)-redox signalling and salicylic acid (SA)-mediated local and systemic response.

Keywords

  • Antioxidant system
  • Crassulacean acid metabolism
  • Mesembryanthemum crystallinum
  • Oxidative stress
  • Pathogen
  • Photosynthesis
  • Resistance

Communicated by Ulrich Lüttge

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/124_2019_33
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36327-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Abbreviations

AA:

Ascorbic acid

ABA:

Abscisic acid

ALT:

Alanine aminotransferase

APX:

Ascorbate peroxidase

AST:

Aspartate aminotransferase

CAM:

Crassulacean acid metabolism

cAPX:

Cytosolic ascorbate peroxidase

CAT:

Catalase

CBB:

Calvin-Benson-Bassham cycle

CCM:

CO2-concentrating mechanism

CuZnSOD:

Copper/zinc superoxide dismutase

DAMPs:

Damage-associated molecular patterns

DHAR:

Dehydroascorbate reductase

ETI:

Effector-triggered immunity

Fd-GOGAT:

Ferredoxin-dependent glutamate synthase

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GS:

Glutamine synthetase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HR:

Hypersensitive response

JA:

Jasmonic acid

MAMPs:

Microbe-associated molecular patterns

MDHAR:

Monodehydroascorbate reductase

MnSOD:

Manganese superoxide dismutase

NAD-GDH:

Glutamate dehydrogenase

NAD(P)-MDH:

NAD(P)-malate dehydrogenase

NAD(P)-ME:

NAD(P)-malic enzymes

NLR:

Nucleotide-binding leucine-rich repeat receptor

NPR1:

Non-expressor of pathogenesis-related protein 1

NO:

Nitric oxide

NR:

Nitrate reductase

OAA:

Oxaloacetic acid

PAMPs:

Pathogen-associated molecular patterns

PEP:

Phosphoenolpyruvate

PEPC:

Phosphoenolpyruvate carboxylase

PCD:

Programmed cell death

PGA:

Phosphoglyceric acid

PR:

Pathogenesis-related protein

PRRs:

Pattern recognition receptors

PTI:

PAMP-triggered immunity

ROS:

Reactive oxygen species

RubisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SA:

Salicylic acid

SAR:

Systemic acquired resistance

SOD:

Superoxide dismutase

WUE:

Water use efficiency

References

  • Achuo EA, Prinsen E, Hofte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    CAS  CrossRef  Google Scholar 

  • Amari T, Ghnaya T, Debez A, Taamali M, Ben Youssef N, Lucchini G, Sacchi GA, Abdelly C (2014) Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. J Plant Physiol 171:1634–1644

    CAS  PubMed  CrossRef  Google Scholar 

  • Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bechtold U, Karpinski S, Mullineaux P (2005) The influence of the light environment and photosynthesis on oxidative signalling responses in plant-biotrophic pathogen interactions. Plant Cell Environ 28:1046–1055

    CAS  CrossRef  Google Scholar 

  • Black CC, Osmond CB (2003) Crassulacean acid metabolism photosynthesis: working the night shift. Photosynth Res 76:329–341

    CAS  PubMed  CrossRef  Google Scholar 

  • Bohnert H, Cushman J (2000) The ice plant cometh: lessons in abiotic stress tolerance. J Plant Growth Regul 19:334–346

    CAS  CrossRef  Google Scholar 

  • Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63:3989–3998

    CAS  PubMed  CrossRef  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22:487–497

    CAS  PubMed  CrossRef  Google Scholar 

  • Borland A, Elliott S, Patterson S, Taybi T, Cushman J, Pater B, Barnes B (2006) Are the metabolic components of crassulacean acid metabolism up-regulated in response to an increase in oxidative burden? J Exp Bot 57:319–328

    CAS  PubMed  CrossRef  Google Scholar 

  • Bräutigam A, Schlüter U, Eisenhut M, Gowik U (2017) On the evolutionary origin of CAM photosynthesis. Plant Physiol 174:473–477

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Broetto F, Lüttge U, Ratajczak R (2002) Influence of light intensity and salt-treatment on mode of photosynthesis and enzymes of the antioxidative response system of Mesembryanthemum crystallinum. Funct Plant Biol 29:13–23

    CAS  PubMed  CrossRef  Google Scholar 

  • Castillo FJ (1996) Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107:469–477

    CAS  PubMed  CrossRef  Google Scholar 

  • Cha J, Pujol C, Kado CI (1997) Identification and characterization of a Pantoea citrea gene encoding glucose dehydrogenase that is essential for causing pink disease of pineapple. Appl Environ Microbiol 63:71–76

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chandra-Shekara AC, Gupte M, Navarre D, Raina S, Raina D, Klessig D, Kachroo P (2006) Light-dependent hypersensitive response and resistance signaling against Turnip Crinkle virus in Arabidopsis. Plant J 45:320–334

    CAS  PubMed  CrossRef  Google Scholar 

  • Chojak-Koźniewska J, Linkiewicz A, Sowa S, Radzioch MA, Kuźniak E (2017) Interactive effects of salt stress and Pseudomonas syringae pv lachrymans infection in cucumber: involvement of antioxidant enzymes, abscisic acid and salicylic acid. Environ Exp Bot 136:9–20

    CrossRef  CAS  Google Scholar 

  • Chojak-Koźniewska J, Kuźniak E, Zimny J (2018) The effects of combined abiotic and pathogen stress in plants: insights from salinity and Pseudomonas syringae pv lachrymans interaction in cucumber. Front Plant Sci 9:1691

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2017) Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep 7:17251

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chu C, Dai Z, Ku M, Edwards G (1990) Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol 93:1253–1260

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Corpas FJ, Barroso JB (2014) NADPH-generating dehydrogenases: their role in the mechanism of protection against nitro-oxidative stress induced by adverse environmental conditions. Front Environ Sci 2:55

    CrossRef  Google Scholar 

  • Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    CAS  PubMed  CrossRef  Google Scholar 

  • Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332

    CAS  PubMed  CrossRef  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    CAS  PubMed  CrossRef  Google Scholar 

  • Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1:715–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Agarie S, Albion RL, Elliot SM, Taybi T, Borland AM (2008) Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism. Plant Physiol 147:228–238

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    CrossRef  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    CrossRef  CAS  Google Scholar 

  • de León IP, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 14:3178–3200

    PubMed Central  CrossRef  CAS  Google Scholar 

  • de Souza AEF, Nascimento LCD, de Souza BO (2017) Principal components of the intensity of squamous rot on prickly pear plantations in the semiarid region of the state of Paraíba, Brazil. Rev Caatinga 30:370–376

    CrossRef  Google Scholar 

  • Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci 5:249

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Develey-Rivière M, Galiana E (2007) Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol 175:405–416

    PubMed  CrossRef  Google Scholar 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Divon HH, Fluhr R (2007) Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett 266:65–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Dodd AN, Griffiths H, Taybi T, Cushman JC, Borland AM (2003) Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Planta 216:789–797

    CAS  PubMed  CrossRef  Google Scholar 

  • Doughari JH (2015) An overview of plant immunity. Plant Pathol Microbiol 6:11

    Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    CAS  PubMed  CrossRef  Google Scholar 

  • Elad Y, Evensen K (1995) Physiological aspects of resistance to Botrytis cinerea. Phytopathology 85:637–643

    Google Scholar 

  • Elter A, Hartel A, Sieben C, Hertel B, Fischer-Schliebs E, Lüttge U, Moroni A, Thiel G (2007) A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J Biol Chem 282:8786–8792

    CAS  PubMed  CrossRef  Google Scholar 

  • Fatima U, Senthil-Kumar M (2015) Plant and pathogen nutrient acquisition strategies. Front Plant Sci 6:750

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:862–905

    CrossRef  CAS  Google Scholar 

  • Gabara B, Kuźniak-Gębarowska E, Skłodowska M, Surówka E, Miszalski Z (2012) Ultrastructural and metabolic modifications at the plant-pathogen interface in Mesembryanthemum crystallinum leaves infected by Botrytis cinerea. Environ Exp Bot 77:33–43

    CAS  CrossRef  Google Scholar 

  • Gajewska E, Surówka E, Kornas A, Kuźniak E (2018) Nitrogen metabolism-related enzymes in Mesembryanthemum crystallinum after Botrytis cinerea infection. Biol Plant 62:579–587

    CAS  CrossRef  Google Scholar 

  • Gautam AK (2013) Natural occurrence of Alternaria alternata on Agave americana: a report from Himachal Pradesh, India. J New Biol Rep 2:36–39

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  CrossRef  Google Scholar 

  • Gill US, Lee S, Mysore KS (2015) Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathology 105:580–587

    PubMed  CrossRef  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    CAS  PubMed  CrossRef  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    CAS  PubMed  CrossRef  Google Scholar 

  • Govrin EM, Rachmilevitch S, Tiwari BS, Solomon M, Levine A (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96:299–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211

    CAS  PubMed  CrossRef  Google Scholar 

  • Gregory FG, Spear I, Thimann KV (1954) The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol 29:220–229

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin, pp 42–86

    CrossRef  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102:662–673

    PubMed  CrossRef  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Hafke JB, Hafke Y, Smith JA, Lüttge U, Thiel G (2003) Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Plant J 35:116–128

    CAS  PubMed  CrossRef  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    CAS  PubMed  CrossRef  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A (2014) Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 369:20130228

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Höfner R, Vazquez-Moreno L, Winter K, Bohnert HJ, Schmitt JM (1987) Induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: mass increase and de novo synthesis of PEP-carboxylase. Plant Physiol 83:915–919

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hurst AC, Grams TEE, Ratajczak R (2004) Effects of salinity, high irradiance, ozone, and ethylene on mode of photosynthesis, oxidative stress and oxidative damage in the C3/CAM intermediate plant Mesembryanthemum crystallinum L. Plant Cell Environ 27:187–197

    CAS  CrossRef  Google Scholar 

  • Iglesias-Bartolome R, González CA, Kenis JD (2004) Nitrate reductase dephosphorylation is induced by sugars and sugar-phosphates in corn leaf segments. Physiol Plant 122:62–67

    CAS  CrossRef  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    CAS  CrossRef  Google Scholar 

  • Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith AC, Harberd NP (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31:4359–4370

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice–Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    CAS  PubMed  CrossRef  Google Scholar 

  • Joy PP, Sindhu G (2012) Disease of pineapple (Ananas comosus): pathogen, symptoms, infection, spread & management. Pineapple Research Station, Kerala Agricultural University, Kerala, pp 1–14

    Google Scholar 

  • Jwa N-S, Hwang BK (2017) Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front Plant Sci 8:1687

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kado CI (2003) Pink disease of pineapple. The American Phytopathological Society, Saint Paul. Disponível em: http://www.apsnet.org/publications/apsnetfeatures/Pages/Pineapple.aspx. Acesso em: 27 abr. 2015

    CrossRef  Google Scholar 

  • Kagiwada S, Kayano Y, Hoshi H, Kawanishi T, Oshima K, Hamamoto H, Horie H, Namba S (2010) First report of Choanephora rot of ice plant (Mesembryanthemum crystallinum) caused by Choanephora cucurbitarum in Japan. J Gen Plant Pathol 76:345–347

    CrossRef  Google Scholar 

  • Kayum MA, Kim H-T, Nath UK, Park J-I, Kho KH, Cho Y-G, Nou I-S (2016) Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: a review. Plant Breed Biotechnol 4:135–144

    CrossRef  Google Scholar 

  • Kelley JE, Rundel PW (2003) Evolution of CAM and C4 carbon concentrating mechanisms. Int J Plant Sci 164:S55–S77

    CrossRef  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci U S A 105:11823–11826

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kholodova V, Volkov K, Kuznetsov V (2005) Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ J Plant Physiol 52:748–757

    CAS  CrossRef  Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71:382–389

    CAS  Google Scholar 

  • Kim YK, Xiao CL, Rogers JD (2005) Influence of culture media and environmental factors on mycelial growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia 97:25–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97:8849–8855

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kumar V, Sharma A, Kumar Soni J, Pawar N (2017) Physiological response of C3, C4 and CAM plants in changeable climate. J Parm Innov 6:70–79

    CAS  Google Scholar 

  • Kushalappa AC, Yogendra KN, Karre S (2016) Plant innate immune response: qualitative and quantitative resistance. Crit Rev Plant Sci 35:38–55

    CAS  CrossRef  Google Scholar 

  • Kuźniak E, Skłodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in tomato leaf cells response to Botrytis cinerea infection. J Exp Bot 56:921–933

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuźniak E, Kornas A, Gabara B, Ullrich C, Skłodowska M, Miszalski Z (2010) Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum. Environ Exp Bot 69:137–147

    CrossRef  CAS  Google Scholar 

  • Kuźniak E, Gabara B, Skłodowska M, Libik-Konieczny M, Miszalski Z (2011) Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection. Biol Plant 55:423–430

    CrossRef  CAS  Google Scholar 

  • Kuźniak E, Kaźmierczak A, Wielanek M, Głowacki R, Kornas A (2013) Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea. Plant Physiol Biochem 63:30–38

    PubMed  CrossRef  CAS  Google Scholar 

  • Kuźniak E, Kornas A, Kaźmierczak A, Rozpądek P, Nosek M, Kocurek M, Zellnig G, Müller M, Miszalski Z (2016) Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum. Ann Bot 117:1141–1151

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lee H-A, Lee H-Y, Seo E, Lee J, Kim S-B, Oh S, Choi E, Choi E, Lee SE, Choi D (2017) Current understandings of plant nonhost resistance. Mol Plant Microbe Interact 30:5–15

    CAS  PubMed  CrossRef  Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Libik M, Pater B, Elliot S, Slesak I, Miszalski Z (2004) Malate accumulation in different organs of Mesembryanthemum crystallinum L. following age-dependent or salinity-triggered CAM metabolism. Z Naturforsch C 59:223–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Libik-Konieczny M, Surówka E, Kuźniak E, Nosek M, Miszalski Z (2011) Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant. J Plant Physiol 168:1052–1059

    CAS  PubMed  CrossRef  Google Scholar 

  • Libik-Konieczny M, Surówka E, Nosek M, Goraj S, Miszalski Z (2012) Pathogen-induced changes in malate content and NADP-dependent malic enzyme activity in C3 and CAM performing Mesembryanthemum crystallinum L. plants. Acta Physiol Plant 34:1471–1477

    CAS  CrossRef  Google Scholar 

  • Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y (2010) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lu H, Higgins VJ (1999) The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum. Physiol Mol Plant Pathol 54:131–143

    CAS  CrossRef  Google Scholar 

  • Lüttge U (1988) Day-night changes of citric acid levels in crassulacean acid metabolism – phenomenon and ecophysiological significance. Plant Cell Environ 11:445–451

    CrossRef  Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142

    PubMed  CrossRef  CAS  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Lüttge U (2010) Photorespiration in phase III of crassulacean acid metabolism: evolutionary and ecophysiological implications. Prog Bot 72:371–384

    Google Scholar 

  • Lüttge U, Fischer-Schliebs E, Ratajczak R, Kramer D, Berndt E, Kluge M (1995) Functioning of the tonoplast in vacuolar C-storage and remobilization in crassulacean acid metabolism. J Exp Bot 46:1377–1388

    CrossRef  Google Scholar 

  • Maeda K, Kurahashi Y, Ohsato S, Yoneyama K (2010) Appearance of a new leaf rot disease on common ice plant. J Gen Plant Pathol 76:303–309

    CrossRef  Google Scholar 

  • Marín-Cevada V, Fuentes-Ramírez LE (2016) Pink disease, a review of an asymptomatic bacterial disease in pineapple. Rev Bras Frutic 38:e949

    CrossRef  Google Scholar 

  • Méndez KÁ, Romero HM (2017) Plant responses to pathogen attack: molecular basis of qualitative resistance. Rev Fac Nac Agron Medellin 70:8225–8235

    CrossRef  Google Scholar 

  • Miszalski Z, Ślesak I, Niewiadomska E, Baczek-Kwinta R, Lüttge U, Ratajczak R (1998) Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. Plant Cell Environ 21:169–179

    CAS  CrossRef  Google Scholar 

  • Miszalski Z, Niewiadomska E, Slesak I, Lüttge U, Kluge M, Ratajczak R (2001) The effect of irradiance on carboxylating/decarboxylating enzymes and fumarase activities in Mesembryanthemum crystallinum L. exposed to salinity stress. Plant Biol 3:17–23

    CAS  CrossRef  Google Scholar 

  • Moore PD (1983) Plants and the palaeoatmosphere. J Geol Soc Lond 140:13–25

    CrossRef  Google Scholar 

  • Morkunas I, Ratajczak L (2014) The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant 36:1607–1619

    CAS  CrossRef  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  CrossRef  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed  PubMed Central  Google Scholar 

  • Nagendran R, Lee YH (2015) Green and red light reduces the disease severity by Pseudomonas cichorii JBC1 in tomato plants via upregulation of defense-related gene expression. Phytopathology 105:413–418

    CrossRef  CAS  Google Scholar 

  • Nakano Y, Okawa S, Prieto R, Sekiya J (2006) Subcellular localization and possible functions of γ-glutamyltransferase in the radish (Raphanus sativus L.) plant. Biosci Biotechnol Biochem 70:1790–1793

    CAS  PubMed  CrossRef  Google Scholar 

  • Neuhaus HE, Schulte N (1996) Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem J 318:945–953

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Niewiadomska E, Borland AM (2007) Crassulacean acid metabolism: a cause or consequence of oxidative stress in planta? Prog Bot 72:247–266

    Google Scholar 

  • Niewiadomska E, Miszalski Z (2008) Partial characterization and expression of leaf catalase in the CAM-inducible halophyte Mesembryanthemum crystallinum L. Plant Physiol Biochem 46:421–427

    CAS  PubMed  CrossRef  Google Scholar 

  • Niewiadomska E, Miszalski Z, Ślesak I, Ratajczak R (1999) Catalase activity during C3-CAM transition in Mesembryanthemum crystallinum. Free Radic Res 31:251–256

    CrossRef  Google Scholar 

  • Niewiadomska E, Pater B, Miszalski Z (2002) Does ozone induce C3-CAM transition in Mesembryanthemum crystallinum leaves? Phyton (Horn) 42:69–78

    CAS  Google Scholar 

  • Niewiadomska E, Karpinska B, Romanowska E, Slesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol 45:789–794

    CAS  PubMed  CrossRef  Google Scholar 

  • Nosek M, Kornaś A, Kuźniak E, Miszalski Z (2015a) Plastoquinone redox state modifies plant response to pathogen. Plant Physiol Biochem 96:163–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Nosek M, Rozpądek P, Kornaś A, Kuźniak E, Schmitt A, Miszalski Z (2015b) Veinal–mesophyll interaction under biotic stress. J Plant Physiol 185:52–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Nosek M, Gawrońska K, Rozpądek P, Szechyńska-Hebda M, Kornaś A, Miszalski Z (2018) Withdrawal from functional crassulacean acid metabolism (CAM) is accompanied by changes in both gene expression and activity of antioxidative enzymes. J Plant Physiol 229:151–157

    CAS  PubMed  CrossRef  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    CAS  PubMed  CrossRef  Google Scholar 

  • Nurnadirah MN, Neni KCMR, Yuziah MYN (2018) Evaluation of antifungal activity of antagonistic bacteria against butt rot disease pathogen of pineapple. Walailak J Sci Tech 15:283–293

    CrossRef  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49

    PubMed  CrossRef  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    CAS  CrossRef  Google Scholar 

  • Osmond CB (2007) Crassulacean acid metabolism: now and then. Prog Bot 68:3–32

    CAS  CrossRef  Google Scholar 

  • Osmond B, Maxwell K, Popp M, Robinson S (1999) On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. In: Bryant JA, Burrell MM, Kruger NJ (eds) Plant carbohydrate biochemistry. BIOS Scientific Publishers, Oxford, pp 39–47

    Google Scholar 

  • Ostrem JA, Olson SW, Schmitt JM, Bohnert HJ (1987) Salt stress increases to level of translatable mRNA for phosphoenolpyruvate carboxylase in Mesembryanthemum crystallinum. Plant Physiol 84:1270–1275

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ota K, Yamamoto Y (1991) Effects of different nitrogen sources and concentrations on CAM photosynthesis in Kalanchoë blossfeldiana. J Exp Bot 42:1271–1277

    CAS  CrossRef  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D (2017) Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant J 90:720–737

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Putnam ML, Miller ML (2007) Rhodococcus fascians in herbaceous perennials. Plant Dis 91:1064–1076

    CAS  PubMed  CrossRef  Google Scholar 

  • Ratajczak R, Lüttge U, Gonzalez P, Etxeberria E (2003) Malate and malate-channel antibodies inhibit electrogenic and ATP-dependent citrate transport across the tonoplast of citrus juice cells. J Plant Physiol 160:1313–1317

    CAS  PubMed  CrossRef  Google Scholar 

  • Reda M, Golicka A, Kabała K, Janicka M (2018) Involvement of NR and PM-NR in NO biosynthesis in cucumber plants subjected to salt stress. Plant Sci 267:55–64

    CAS  PubMed  CrossRef  Google Scholar 

  • Reignault P, Cojan A, Muchembled J, Sahouri AL, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519–529

    CAS  PubMed  CrossRef  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodrigues MA, Freschi L, Pereira PN, Mercier H (2014) Interactions between nutrients and crassulacean acid metabolism. Prog Bot 75:167–186

    CAS  Google Scholar 

  • Rohrbach KG, Pfeiffer JB (1976) The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars. Phytopathology 66:396–399

    CrossRef  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sage RF (2002) Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct Plant Biol 29:775–785

    CAS  PubMed  CrossRef  Google Scholar 

  • Scheible WR, Gonzales-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schmitt JM, Piepenbrock M (1992) Regulation of phosphoenolpyruvate carboxylase and Crassulacean acid metabolism induction in Mesembryanthemum crystallinum L. by cytokinin. Plant Physiol 99:1664–1669

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Seifi HS, Van Bockhaven J, Angenon G, Höfte M (2013) Glutamate metabolism in plant disease and defense: friend or foe? Mol Plant Microbe Interact 26:475–485

    CAS  PubMed  CrossRef  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2013) Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu Rev Phytopathol 51:407–427

    CAS  PubMed  CrossRef  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signalling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sharma YK, Leon J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc Natl Acad Sci U S A 93:5099–5104

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shevyakova N, Netronina I, Aronova E, Kuznetsov V (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 50:678–685

    CAS  CrossRef  Google Scholar 

  • Silva MS, Arraesa FBM, de Araújo CM, Grossi-de-Sad M, Fernandezd D, de Souza Cândido E, Cardosoe MH, Franco OL, Grossi-de-Sa MF (2018) Review: potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci 270:72–84

    CAS  PubMed  CrossRef  Google Scholar 

  • Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010

    CAS  CrossRef  Google Scholar 

  • Slesak I, Karpinska B, Surówka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C(3)-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    CAS  PubMed  CrossRef  Google Scholar 

  • Ślesak I, Miszalski Z, Karpinska B, Niewiadomska E, Ratajczak R, Karpinski S (2002) Redox control of oxidative stress responses in the C3-CAM intermediate plant Mesembryanthemum crystallinum. Plant Physiol Biochem 40:669–677

    CrossRef  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    PubMed  CrossRef  Google Scholar 

  • Ślesak I, Libik M, Miszalski Z (2008) The foliar concentration of hydrogen peroxide during salt-induced C3-CAM transition in Mesembryanthemum crystallinum L. Plant Sci 174:221–226

    CrossRef  CAS  Google Scholar 

  • Snoeijers S, Pérez-García A, Joosten MAJ, De Wit PGM (2000) The effect of nitrogen on disease dvelopment and gene expression in bacterial and fungal pathogens. Eur J Plant Pathol 106:493–506

    CAS  CrossRef  Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variation of internal CO2 and O2-concentrations in Sedum praealtum DC. Aust J Plant Physiol 6:557–567

    CAS  Google Scholar 

  • Sunagawa H, Cushman JC, Agarie S (2010) Crassulacean acid metabolism may alleviate production of reactive oxygen species in a facultative CAM plant, the common ice plant Mesembryanthemum crystallinum L. Plant Prod Sci 13:256–260

    CAS  CrossRef  Google Scholar 

  • Surówka E, Karolewski P, Niewiadomska E, Libik M, Miszalski Z (2007) Antioxidative response of Mesembryanthemum crystallinum plant to exogenous SO2 application. Plant Sci 172:76–84

    CrossRef  CAS  Google Scholar 

  • Surówka E, Dziurka M, Kocurek M, Goraj S, Rapacz M, Miszalski Z (2016) Effects of exogenously applied hydrogen peroxide on antioxidant and osmoprotectant profiles and the C3-CAM shift in the halophyte Mesembryanthemum crystallinum L. J Plant Physiol 200:102–110

    PubMed  CrossRef  CAS  Google Scholar 

  • Surówka E, Latowski D, Libik-Konieczny M, Miszalski Z (2019) ROS signalling, and antioxidant defence network in halophytes. In: Hasanuzzaman M, Shabala S, Fujita M (eds) Halophytes and climate change: adaptive mechanisms and potential uses. CAB International, Wallingford, pp 179–195

    CrossRef  Google Scholar 

  • Szymańska R, Ślesak I, Orzechowska A, Kruk J (2017) Physiological and biochemical responses to high light and temperature stress in plants. Environ Exp Bot 139:165–177

    CrossRef  CAS  Google Scholar 

  • Thalineau E, Truong HN, Berger A, Fournier C, Boscari A, Wendehenne D, Jeandroz S (2016) Cross-regulation between N metabolism and nitric oxide (NO) signaling during plant immunity. Front Plant Sci 7:472

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Thomas JC, Malick FK, Endreszl C, Davies EC, Murray K (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360–368

    CAS  CrossRef  Google Scholar 

  • Tkalec M, Car D, Gospočić J, Križaić I, Duž K, Vidacović-Cifrek Ž (2012) Response of Kalanchoe daigremontiana to wounding and infection with Agrobacterium tumefaciens. Period Biol 114:83–90

    Google Scholar 

  • Unger C, Kleta S, Jandl G, von Tiedemann A (2005) Suppression of the defence related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J Phytopathol 153:15–26

    CAS  CrossRef  Google Scholar 

  • van Kan JAL, Shaw MW, Grant-Downton RT (2014) Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Velásquez AC, Castroverde CMD, He SY (2018) Plant-pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vercesi A, Locci R, Prosser JI (1997) Growth kinetics of Botrytis cinerea on organic acids and sugars in relation to colonization of grape berries. Mycol Res 101:139–142

    CAS  CrossRef  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vernon DM, Ostrem JA, Schmitt JM, Bohnert HJ (1988) PEPC transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol 86:1002–1004

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang M, Gu Z, Wang R, Guo J, Ling N, Firbank LG, Guo S (2018) Plant primary metabolism regulated by nitrogen contributes to plant–pathogen interactions. Plant Cell Physiol 60:329–342

    CrossRef  CAS  Google Scholar 

  • Wick RL (2017) Diseases of Kalanchoe. In: McGovern R, Elmer W (eds) Handbook of florists’ crops diseases. Handbook of plant disease management. Springer, Cham

    Google Scholar 

  • Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp Bot 65:3425–3441

    PubMed  CrossRef  Google Scholar 

  • Winter K, Smith JAC (1996) An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism. Springer, Berlin, pp 1–13

    CrossRef  Google Scholar 

  • Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z Pflanzenphysiol 67:166–170

    CAS  CrossRef  Google Scholar 

  • Winter K, Garcia M, Holtum JAM (2008) On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. J Exp Bot 59:1829–1840

    CAS  PubMed  CrossRef  Google Scholar 

  • Wróblewski T, Caldwell KS, Piskurewicz U, Cavanaugh KA, Xu H, Kozik A, Ochoa O, McHale LK, Lahre K, Jelenska J, Castillo JA, Blumenthal D, Vinatzer BA, Greenberg JT, Michelmore RW (2009) Comparative large-scale analysis of interactions between several crop species and the effector repertoires from multiple pathovars of Pseudomonas and Ralstonia. Plant Physiol 150:1733–1749

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae by suppressing salicylic acid-mediated defenses. PLoS One 8:e67413

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC, Weston DJ, Cottingham R, Hartwell J, Davis SC, Silvera K, Ming R, Schlauch K, Abraham P, Stewart JR, Guo H, Albion R, Ha J, Lim SD, Wone BW, Yim WC, Garcia T, Mayer JA, Petereit J, Nair SS, Casey E, Hettich RL, Ceusters J, Ranjan P, Palla KJ, Yin H, Reyes-García C, Andrade JL, Freschi L, Beltrán JD, Dever LV, Boxall SF, Waller J, Davies J, Bupphada P, Kadu N, Winter K, Sage RF, Aguilar CN, Schmutz J, Jenkins J, Holtum JA (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol 207:491–450

    CAS  PubMed  CrossRef  Google Scholar 

  • Yen S-K, Chung M-C, Chen P-C, Yen H-E (2001) Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant Physiol 127:517–528

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • You XD, Park JE, Takase M, Wada T, Tojo M (2015) First report of Pythium aphanidermatum causing root rot on common ice plant (Mesembryanthemum crystallinum). New Dis Rep 32:36

    CrossRef  Google Scholar 

  • Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD (2012) Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 16:567–586

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

Our studies were partially supported by the National Science Centre (OPUS project no. 2016/21/B/NZ9/00813) and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Miszalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Libik-Konieczny, M., Kuźniak, E., Surówka, E., Ślesak, I., Nosek, M., Miszalski, Z. (2019). Crassulacean Acid Metabolism and Its Role in Plant Acclimatization to Abiotic Stresses and Defence Against Pathogens. In: Cánovas, F., Lüttge, U., Leuschner, C., Risueño, MC. (eds) Progress in Botany Vol. 81. Progress in Botany, vol 81. Springer, Cham. https://doi.org/10.1007/124_2019_33

Download citation