Skip to main content

Redox Control of Autophagy in Photosynthetic Organisms

  • Chapter
  • First Online:
Book cover Progress in Botany Vol. 79

Part of the book series: Progress in Botany ((BOTANY,volume 79))

  • 1122 Accesses

Abstract

Autophagy is a major catabolic pathway by which eukaryotic cells deliver unnecessary or damaged cytoplasmic material to the vacuole for its degradation and recycling in order to maintain cellular homeostasis. Mounting evidence suggests the existence of a strong link between autophagy and the production of reactive oxygen species in several systems. Here, we review recent studies in algae and plants describing redox control of autophagy and discuss the conserved regulatory proteins that may transmit redox signals to the autophagic machinery.

Communicated by Francisco M. Cánovas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez C, Garcia I, Moreno I, Perez-Perez ME, Crespo JL, Romero LC, Gotor C (2012) Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell 24:4621–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    Article  CAS  PubMed  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta 1823:1531–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2013) Iron sparing and recycling in a compartmentalized cell. Curr Opin Microbiol 16:677–685

    Article  CAS  PubMed  Google Scholar 

  • Chaouch S, Queval G, Noctor G (2012) AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis. Plant J 69:613–627

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tian D, Kong X, Chen Q, E F AA, Hu X, Jia A (2016) The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta 244:651–669

    Article  PubMed  Google Scholar 

  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:851–865

    Article  CAS  PubMed  Google Scholar 

  • Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bartel B (2013) Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 25:4085–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaesener AG, Merchant SS, Blaby-Haas CE (2013) Iron economy in Chlamydomonas reinhardtii. Front Plant Sci 4:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  CAS  PubMed  Google Scholar 

  • Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y (2015) Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. Plant Cell 27:1316–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  CAS  PubMed  Google Scholar 

  • Inwood W, Yoshihara C, Zalpuri R, Kim KS, Kustu S (2008) The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. Mol Plant 1:925–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi M, Ishida H, Nakamura S, Hidema J (2017) Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. Plant Cell. pii: tpc.00637.2016. doi: 10.1105/tpc.16.00637

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OA (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee H, Lee HN, Kim SH, Shin KD, Chung T (2013) Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 25:4956–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laureano-Marin AM, Moreno I, Romero LC, Gotor C (2016) Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiol 171:1378–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24:4635–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell 58:1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Clement G, Anne P, Routaboul JM, Guiboileau A, Soulay F, Shirasu K, Yoshimoto K (2014) Stitching together the multiple dimensions of autophagy using metabolomics and transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. Plant Cell 26:1857–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci U S A 94:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  CAS  PubMed  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Ozgur R, Turkan I, Uzilday B, Sekmen AH (2014) Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J Exp Bot 65:1377–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL (2014) Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii. Plant Physiol 166:997–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Martin M, Blaby-Haas CE, Perez-Perez ME, Andres-Garrido A, Blaby IK, Merchant SS, Crespo JL (2015) Activation of autophagy by metals in Chlamydomonas reinhardtii. Eukaryot Cell 14:964–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Perez ME, Crespo JL (2010) Autophagy in the model alga Chlamydomonas reinhardtii. Autophagy 6:562–563

    Article  PubMed  Google Scholar 

  • Perez-Perez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152:1874–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Perez ME, Lemaire SD, Crespo JL (2012a) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Perez ME, Couso I, Crespo JL (2012b) Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy 8:376–388

    Article  CAS  PubMed  Google Scholar 

  • Perez-Perez ME, Zaffagnini M, Marchand CH, Crespo JL, Lemaire SD (2014) The yeast autophagy protease Atg4 is regulated by thioredoxin. Autophagy 10:1953–1964

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Perez ME, Lemaire SD, Crespo JL (2016) Control of autophagy in Chlamydomonas is mediated through redox-dependent inactivation of the ATG4 protease. Plant Physiol 172:2219–2234

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Bartel B (2016) Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics. Curr Opin Plant Biol 34:17–26

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Albrecht M (1990) Accumulation of colorless carotenes and derivatives during interaction of bleaching herbicides with phytoene desaturation. Z Naturforsch C 45:487–491

    CAS  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Shemi A, Ben-Dor S, Vardi A (2015) Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11:701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M (2013) Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 25:4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoiber TL, Shafer MM, Armstrong DE (2013) Induction of reactive oxygen species in chlamydomonas reinhardtii in response to contrasting trace metal exposures. Environ Toxicol 28:516–523

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8:165–173

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  • Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Woo J, Park E, Dinesh-Kumar SP (2014) Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases. Proc Natl Acad Sci U S A 111:863–868

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Ministerio de Economía y Competitividad grants BFU2015-68216-P and BIO2015-74432-JIN to JLC and MEPP, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pérez-Pérez, M.E., Couso, I., Domínguez-González, M., Lemaire, S.D., Crespo, J.L. (2017). Redox Control of Autophagy in Photosynthetic Organisms. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 79. Progress in Botany, vol 79. Springer, Cham. https://doi.org/10.1007/124_2017_6

Download citation

Publish with us

Policies and ethics