Advertisement

pp 1-20 | Cite as

Northern Forest Trees Under Increasing Atmospheric Humidity

  • Elina Oksanen
  • Jenna Lihavainen
  • Markku Keinänen
  • Sarita Keski-Saari
  • Sari Kontunen-Soppela
  • Arne Sellin
  • Anu Sõber
Chapter
Part of the Progress in Botany book series

Abstract

Several climate change scenarios predict increasing precipitation for northern latitudes and several other regions in the globe, leading to increase in atmospheric water vapour content [expressed as increased relative humidity (RH) or as decreased water vapour pressure deficit (VPD)] and environmental wetness. Plants are known to be sensitive to high humidity (low VPD) as indicated by changes in stomatal function, transpiration, mineral nutrient uptake, growth, development, sugar metabolism and leaf epicuticular wax composition in several species and studies. To understand the impact of increasing humidity (lower VPD) on forest ecosystems, a long-term and large-scale field experiment (FAHM, Free Air Humidity Manipulation) is conducted in Estonia with silver birch and hybrid aspen, representing widespread deciduous species in northern Europe. The experiment revealed that high humidity is an important climatic factor, causing reduction in growth rate of the aboveground parts, leaf biomass and area, bud size, sap flux and earlier bud break and delayed leaf fall. In the belowground parts, root biomass (fine-root biomass in particular) was increased although the root compartment was exposed to anaerobic conditions, increased soil pH and soil water potential, with lowered soil respiration and altered microbial and fungal communities. In the leaves, high humidity shifted the metabolism towards nonstructural carbohydrates, antioxidants and phenolic compounds, while nutrient (N and P) content, photosynthesis, dark respiration, hydraulic conductance and the density of glandular trichomes were reduced. The change in the chemical composition of the surface wax layer resulted in lower hydrophobicity, exposing the leaves for fungal pathogen attacks. In the stem, N and P content in wood and number of living parenchyma cells were increased, while the stem wood density was reduced and wood chemistry altered. Reduction in the growth rates under high humidity was more pronounced in hybrid aspen than in silver birch. Birch showed more efficient adjustment of leaf and root morphology, hydraulic architecture, primary carbon and nitrogen metabolism and leaf surface properties mitigating the negative impacts of high humidity. At the ecosystem level, high humidity altered soil processes (moisture content, microbiota, nitrification), with potential to affect competition and species composition. A complementary laboratory study with birch demonstrated that additional N supply can counteract the effects of low VPD on cellular metabolism and leaf surface wax quality.

Keywords

Aspen Birch Forest ecosystem Growth Leaf epicuticular waxes Metabolism Nitrogen Nutrients Relative humidity (RH) Sap flux Soil processes Trichomes Vapour pressure deficit (VPD) 

Notes

Acknowledgements

The authors thank Jaak Sõber and Priit Kupper for the technical constructions, coordination and management of the FAHM experiment.

References

  1. Adams P, Holder R (1992) Effects of humidity, Ca and salinity on the accumulation of dry matter and Ca by the leaves and fruit of tomato (Lycopersicon esculentum). J. Hortic Sci 67:137–142CrossRefGoogle Scholar
  2. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372CrossRefPubMedGoogle Scholar
  3. Aliniaeifard S, van Meeteren U (2013) Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? J Exp Bot 64:3551–3566CrossRefPubMedPubMedCentralGoogle Scholar
  4. An P, Inanaga S, Lux A, Li XJ, Ali MEK, Matsui T, Sugimoto Y (2002) Effects of salinity and relative humidity on two melon cultivars differing to salt tolerance. Biol Plant 45:409–415CrossRefGoogle Scholar
  5. Armstrong M, Kirkby E (1979) The influence of humidity on the mineral composition of tomato plants with special reference to calcium distribution. Plant Soil 52:427–435CrossRefGoogle Scholar
  6. Arve LE, Kruse OMO, Tanino KK, Olsen JE, Futsæther C, Torre S (2017) Daily changes in VPD during leaf development in high air humidity increase the stomatal responsiveness to darkness and dry air. J Plant Physiol 211:63–69CrossRefPubMedGoogle Scholar
  7. Bakker JC (1991) Analysis of humidity effects on growth and production of glasshouse fruit vegetables. Dissertation, Landbouwuniversiteit, WageningenGoogle Scholar
  8. Ball M, Cochrane M, Rawson H (1997) Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell Environ 20:1158–1166CrossRefGoogle Scholar
  9. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, ChichesterGoogle Scholar
  10. Boé J, Terray L (2014) Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42:683–699CrossRefGoogle Scholar
  11. Carins Murphy MR, Jordan GJ, Brodribb TJ (2014) Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ 37:124–131CrossRefPubMedGoogle Scholar
  12. Carlson RW (1979) Reduction in the photosynthetic rate of Acer, Quercus and Fraxinus species caused by sulphur dioxide and ozone. Environ Pollut 18(2):159–170CrossRefGoogle Scholar
  13. Cernusak LA, Winter K, Turner BL (2011) Transpiration modulates phosphorus acquisition in tropical tree seedlings. Tree Phys 31:878–885CrossRefGoogle Scholar
  14. Claverie E, Schoppach R, Sadok W (2016) Nighttime evaporative demand induces plasticity in leaf and root hydraulic traits. Physiol Plant 158(4):402–413CrossRefPubMedGoogle Scholar
  15. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606ADSCrossRefGoogle Scholar
  16. Dai Z, Edwards GE, Ku MS (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf to air vapour pressure deficit. Plant Physiol 99:1426–1434CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dessler AE, Schoeberl MR, Wang T, Davis SM, Rosenlof KH (2013) Stratospheric water vapour feedback. Proc Natl Acad Sci 110:18087–18091ADSCrossRefPubMedPubMedCentralGoogle Scholar
  18. Devi MJ, Taliercio EW, Sinclair TR (2015a) Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits. J Exp Bot 66:1845–1850CrossRefPubMedPubMedCentralGoogle Scholar
  19. Devi MJ, Sinclair TR, Taliercio E (2015b) Comparisons of the effects of elevated vapour pressure deficit on gene expression in leaves among two fast-wilting and a slow-wilting soybean. PLoS One 10:e0139134CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eamus D, Boulain N, Cleverly J, Breshears DD (2013) Global change-type drought-induced tree mortality: vapour pressure deficit is more important than temperature per se in causing decline in tree health. Ecol Evol 3(8):2711–2729CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fanourakis D, Heuvelink E, Carvalho SM (2013) A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. J Plant Physiol 170:890–898CrossRefPubMedGoogle Scholar
  22. Fanourakis D, Bouranis D, Giday H, Carvalho DR, Nejad AR, Ottosen CO (2016) Improving stomatal functioning at elevated growth air humidity: a review. J Plant Physiol 207:51–60CrossRefPubMedGoogle Scholar
  23. Fatichi S, Molnar P, Mastrotheodoros T, Burlando P (2015) Diurnal and seasonal changes in near-surface humidity in a complex orography. J Geophys Res Atmos 120:2358–2374ADSCrossRefGoogle Scholar
  24. Fu G, Shen ZX (2016) Environmental humidity regulates effects of experimental warming on vegetation index and biomass production in an alpine meadow of the Northern Tibet. PLoS One 11(10):e0165643CrossRefPubMedPubMedCentralGoogle Scholar
  25. Georgii E, Jin M, Zhao J et al (2017) Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biol 17(1):120CrossRefPubMedPubMedCentralGoogle Scholar
  26. Godbold D, Tullus A, Kupper P, Sõber J, Ostonen I, Godbold JA, Lukac M, Ahmed IU, Smith AR (2014) Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides. Ann For Sci 71:831–842CrossRefGoogle Scholar
  27. Hansen R, Mander Ü, Soosaar K, Maddison M, Lõhmus K, Kupper P, Kanal A, Sõber J (2013) Greenhouse gas fluxes in an open air humidity manipulation experiment. Landsc Ecol 28:637–649CrossRefGoogle Scholar
  28. Holder R, Cockshull K (1990) Effects of humidity on the growth and yield of glasshouse tomatoes. J Hortic Sci 65:31–39CrossRefGoogle Scholar
  29. Hölscher D, Koch O, Korn S, Leuschner C (2005) Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees 19(6):628–637CrossRefGoogle Scholar
  30. Hovenden MJ, Vander Schoor JK, Osanai Y (2012) Relative humidity has dramatic impacts on leaf morphology but little effect on stomatal index or density in Nothofagus cunninghamii (Nothofagaceae). Aust J Bot 60:700–706CrossRefGoogle Scholar
  31. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Ishibashi M, Terashima I (1995) Effects of continuous leaf wetness on photosynthesis: adverse aspects of rainfall. Plant Cell Environ 18:431–438CrossRefGoogle Scholar
  33. Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578CrossRefGoogle Scholar
  34. Jasińska AK, Alber M, Tullus A, Rahi M, Sellin A (2015) Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Funct Plant Biol 42(6):565–578CrossRefGoogle Scholar
  35. Kaldenhoff R, Grote K, Zhu J, Zimmermann U (1998) Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana. Plant J 14:121–128CrossRefPubMedGoogle Scholar
  36. Kellomäki S, Wang KY (2001) Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Ann Bot 87(5):669–682CrossRefGoogle Scholar
  37. Kholová J, Zindy P, Malayee S et al (2016) Component traits of plant water use are modulated by vapour pressure deficit in pearl millet (Pennisetum glaucum (L.) R. Br.) Funct Plant Biol 43(5):423–437Google Scholar
  38. Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C (2006) Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot 56:1–9CrossRefGoogle Scholar
  39. Kukk M, Räim O, Tulva I, Sõber J, Lõhmus K, Sõber A (2015) Elevated air humidity modulates bud size and the frequency of bud break in fast-growing deciduous trees: silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.) Trees 29(5):1381–1393CrossRefGoogle Scholar
  40. Kukumägi M, Ostonen I, Kupper P et al (2014) The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agric For Meteorol 194:167–174ADSCrossRefGoogle Scholar
  41. Kupper P, Sõber J, Sellin A et al (2011) An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ Exp Bot 72(3):432–438CrossRefGoogle Scholar
  42. Kupper P, Rohula G, Inno L, Ostonen I, Sellin A, Sõber A (2017) Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species. Reg Environ Chang 17:2149–2157CrossRefGoogle Scholar
  43. Laur J, Hacke UG (2013) Transpirational demand affects aquaporin expression in poplar roots. J Exp Bot 64:2283–2293CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876CrossRefPubMedGoogle Scholar
  45. Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits. For Ecol Manag 256:648–655CrossRefGoogle Scholar
  46. Leuschner C (2002) Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high VPD levels. Flora 197:262–274CrossRefGoogle Scholar
  47. Levin M, Resnick N, Rosianskey Y, Kolotilin I, Wininger S, Lemcoff JH, Cohen S, Galili G, Koltai H, Kapulnik Y (2009) Transcriptional profiling of Arabidopsis thaliana plants’ response to low relative humidity suggests a shoot–root communication. Plant Sci 177:450–459CrossRefGoogle Scholar
  48. Leyva R, Constán-Aguilar C, Sánchez-Rodríguez E, Romero-Gámez M, Soriano T (2015) Cooling systems in screenhouses: effect on microclimate, productivity and plant response in a tomato crop. Biosyst Eng 129:100–111CrossRefGoogle Scholar
  49. Li J, Li X (2014) Response of stomatal conductance of two tree species to vapour pressure deficit in three climate zones. J Arid Land 6:771–781CrossRefGoogle Scholar
  50. Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E (2016a) Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen. J Exp Bot 67(14):4367–4378CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lihavainen J, Ahonen V, Keski-Saari S, Kontunen-Soppela S, Oksanen E, Keinänen M (2016b) Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch. J Exp Bot 67(14):4353–4365CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lihavainen J, Ahonen V, Keski-Saari S, Sõber A, Oksanen E, Keinänen M (2017) Low vapour pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Tree Physiol 37:1166–1181CrossRefPubMedGoogle Scholar
  53. Marchin RM, Broadhead AA, Bostic LE, Dunn RR, Hoffmann WA (2016) Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ 39(10):2221–2234CrossRefPubMedGoogle Scholar
  54. McDonald EP, Erickson JE, Kruger EL (2002) Research note: can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol 29:1115–1120CrossRefGoogle Scholar
  55. Medina V, Teran JCBM, Gepts P, Gilbert ME (2017) Low stomatal sensitivity to vapour pressure deficit in irrigated common, lima and tepary beans. Field Crop Res 206:128–137CrossRefGoogle Scholar
  56. Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134(1):1–11ADSCrossRefPubMedGoogle Scholar
  57. Monteith J (1995) Accommodation between transpiring vegetation and the convective boundary layer. J Hydrol 166:251–263CrossRefGoogle Scholar
  58. Mortley D, Bonsi C, Loretan P, Hill W, Morris C (2000) High relative humidity increases yield, harvest index, flowering, and gynophore growth of hydroponically grown peanut plants. Hortic Sci 35:46–48Google Scholar
  59. Niglas A, Kupper P, Tullus A, Sellin A (2014) Responses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions. AoB Plants 6:plu021CrossRefPubMedPubMedCentralGoogle Scholar
  60. Niglas A, Alber M, Suur K, Jasińska AK, Kupper P, Sellin A (2015) Does increased air humidity affect stomatal morphology and functioning in hybrid aspen? Botany 93:243–250CrossRefGoogle Scholar
  61. Niglas A, Papp K, Sękiewicz M, Sellin A (2017) Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula). Tree Phys 37:1218–1228CrossRefGoogle Scholar
  62. Norby RJ, Kozlowski TT (1982) The role of stomata in sensitivity of Betula papyrifera seedlings to SO2 at different humidities. Oecologia 53(1):34–39ADSCrossRefPubMedGoogle Scholar
  63. Novák V, Vidovič J (2003) Transpiration and nutrient uptake dynamics in maize (Zea mays L.) Ecol Model 166:99–107CrossRefGoogle Scholar
  64. Osonubi O, Davies W (1980) The influence of plant water stress on stomatal control of gas exchange at different levels of atmospheric humidity. Oecologia 46:1–6ADSCrossRefPubMedGoogle Scholar
  65. Parts K, Tedersoo L, Lõhmus K, Kupper P, Rosenvald K, Sõber A, Ostonen I (2013) Increased air humidity and understory composition shape short root traits and the colonizing ectomycorrhizal fungal community in silver birch stands. For Ecol Manag 310:720–728CrossRefGoogle Scholar
  66. Possen BJ, Oksanen E, Rousi M et al (2011) Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. For Ecol Manag 262(8):1387–1399CrossRefGoogle Scholar
  67. Rodrigues CR, Silveira JA, Viégas RA, Moura RM, Aragão RM, Silva EN (2016) Combined effects of high relative humidity and K+ supply mitigates damage caused by salt stress on growth, photosynthesis and ion homeostasis in J. curcas plants. Agric Water Manag 163:255–262CrossRefGoogle Scholar
  68. Rohula G, Tulva I, Tullus A, Sõber A, Kupper P (2017) Endogenous regulation of night-time water relations in hybrid aspen grown at ambient and elevated air humidity. Reg Environ Chang 17:2169–2178CrossRefGoogle Scholar
  69. Rosenvald K, Tullus A, Ostonen I, Uri V, Kupper P, Aosaar J, Varik M, Sõber J, Niglas A, Hansen R (2014) The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation–Acclimation mechanisms and capacity. For Ecol Manag 330:252–260CrossRefGoogle Scholar
  70. Ryan AC, Dodd IC, Rothwell SA, Jones R, Tardieu F, Draye X, Davies WJ (2016) Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency. Plant Sci 251:101–109CrossRefPubMedGoogle Scholar
  71. Salojärvi J, Smolander OP, Nieminen K et al (2017) Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat Genet 49(6):904–912CrossRefPubMedGoogle Scholar
  72. Saxe H, Cannell MG, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest functioning in response to global warming. New Phytol 149(3):369–399CrossRefGoogle Scholar
  73. Sellin A, Lubenets K (2010) Variation of transpiration within a canopy of silver birch: effect of canopy position and daily versus nightly water loss. Ecohydrology 3:467–477CrossRefGoogle Scholar
  74. Sellin A, Eensalu E, Niglas A (2010) Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula. Ecol Res 25:173–183CrossRefGoogle Scholar
  75. Sellin A, Tullus A, Niglas A, Õunapuu E, Karusion A, Lõhmus K (2013) Humidity-driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (Betula pendula). Ecol Res 28:523–535CrossRefGoogle Scholar
  76. Sellin A, Rosenvald K, Õunapuu-Pikas E, Tullus A, Ostonen I, Lõhmus K (2015) Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Front Plant Sci 6:860CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sellin A, Alber M, Keinänen M et al (2017a) Growth of northern deciduous trees under increasing atmospheric humidity: possible mechanisms behind the growth retardation. Reg Environ Chang 17:2135–2148CrossRefGoogle Scholar
  78. Sellin A, Alber M, Kupper P (2017b) Increasing air humidity influences hydraulic efficiency but not functional vulnerability of xylem in hybrid aspen. J Plant Physiol 219:28–36CrossRefPubMedGoogle Scholar
  79. Shibuya T, Itagaki K, Ueyama S, Hirai N, Endo R (2015) Atmospheric Humidity influences oviposition rate of Tetranychus urticae (Acari: Tetranychidae) through morphological responses of host Cucumis sativus leaves. J Econ Entomol 109(1):255–258CrossRefPubMedGoogle Scholar
  80. Shibuya T, Kano K, Endo R, Kitaya Y (2017) Effects of the interaction between vapour-pressure deficit and salinity on growth and photosynthesis of Cucumis sativus seedlings under different CO2 concentrations. Photosynthetica.  https://doi.org/10.1007/s11099-017-0746-8
  81. Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247CrossRefPubMedGoogle Scholar
  82. Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55:2111–2120CrossRefPubMedGoogle Scholar
  83. Simmons A, Willett K, Jones P, Thorne P, Dee D (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res Atmos 115:D01110ADSGoogle Scholar
  84. Staub JE, Navazio JP (1993) Temperature and humidity affect pillowy fruit disorder in cucumber. Hortic Sci 28:822–823Google Scholar
  85. Street NR, Skogstrom O, Sjodin A et al (2006) The genetics and genomics of the drought response in Populus. Plant J 48:321–341CrossRefPubMedGoogle Scholar
  86. Sturrock R, Frankel S, Brown A, Hennon P, Kliejunas J, Lewis K, Worrall J, Woods A (2011) Climate change and forest diseases. Plant Pathol 60:133–149CrossRefGoogle Scholar
  87. Suzuki M, Umeda H, Matsuo S, Kawasaki Y, Ahn D, Hamamoto H, Iwasaki Y (2015) Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Sci Hortic 187:44–49CrossRefGoogle Scholar
  88. Thioune EH, McCarthy J, Gallagher T, Osborne B (2017) A humidity shock leads to rapid, temperature dependent changes in coffee leaf physiology and gene expression. Tree Phys 37(3):367–379Google Scholar
  89. Tinker BP, Nye PH (2001) Solute movement in rhizosphere. Oxford University Press, Oxford, p 444Google Scholar
  90. Torga R, Mander Ü, Soosaar K et al (2017) Weather extremes and tree species shape soil greenhouse gas fluxes in an experimental fast-growing deciduous forest of air humidity manipulation. Ecol Eng 106:369–377CrossRefGoogle Scholar
  91. Torre S, Fjeld T, Gislerød HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. J Am Soc Hortic Sci 128:598–602Google Scholar
  92. Tuchman NC, Wahtera KA, Wetzel RG, Teeri JA (2003) Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495:203–211CrossRefGoogle Scholar
  93. Tullus A, Kupper P, Sellin A, Parts L, Sõber J, Tullus T, Lõhmus K, Sõber A, Tullus H (2012) Climate change at northern latitudes: rising atmospheric humidity decreases transpiration, N-uptake and growth rate of hybrid aspen. PLoS One 7:e42648ADSCrossRefPubMedPubMedCentralGoogle Scholar
  94. Tullus A, Sellin A, Kupper P et al (2014) Increasing air humidity – a climate trend predicted for northern latitudes – alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica 48(4):1107CrossRefGoogle Scholar
  95. Tullus A, Kupper P, Kaasik A et al (2017) The competitive status of trees determines their responsiveness to increasing atmospheric humidity – a climate trend predicted for northern latitudes. Glob Chang Biol 23(5):1961–1974ADSCrossRefPubMedGoogle Scholar
  96. Valkama E, Salminen JP, Koricheva J, Pihlaja K (2004) Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Ann Bot 94(2):233–242CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wheeler R, Tibbitts T, Fitzpatrick A (1989) Potato growth in response to relative humidity. Hortic Sci 24:482–484Google Scholar
  98. Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–712ADSCrossRefPubMedGoogle Scholar
  99. Worrell R (1995) European aspen (Populus tremula L.) – a review with particular reference to Scotland I. Distribution, ecology and genetic variation. Forestry 68:93–105CrossRefGoogle Scholar
  100. Zhang P, Zhang J, Chen M (2017a) Economic impacts of climate change on agriculture: the importance of additional climatic variables other than temperature and precipitation. J Environ Econ Manag 83:8–31CrossRefGoogle Scholar
  101. Zhang D, Du Q, Zhang Z, Jiao X, Song X, Li J (2017b) Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci Rep 7:srep43461ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Elina Oksanen
    • 1
  • Jenna Lihavainen
    • 1
  • Markku Keinänen
    • 1
  • Sarita Keski-Saari
    • 1
  • Sari Kontunen-Soppela
    • 1
  • Arne Sellin
    • 2
  • Anu Sõber
    • 2
  1. 1.Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Institute of Ecology and Earth Sciences, University of TartuTartuEstonia

Personalised recommendations