Extracellular ATP: An Essential Apoplastic Messenger in Plants

Part of the Progress in Botany book series (BOTANY, volume 78)


Adenosine triphosphate (ATP) plays major roles in cell metabolism as an energy supplier and as a substrate for enzymatic reactions. While ATP is well known for its role as an intracellular energy carrier, recent studies have found that ATP exists not only in the cytoplasm, but also in the extracellular matrix. Cytoplasmic ATP can be secreted into the apoplast through wound leakage, secretory vesicles, or transporters in the plasma membrane. As a signaling molecule, extracellular ATP (eATP) regulates plant metabolism, growth and development, and responses to biotic and abiotic stimuli. eATP binds to receptors in the plasma membrane, where it triggers the generation of second messengers, including Ca2+, NO, and reactive oxygen species. These second messengers induce expression of a series of functional genes that promote changes in the cellular structure and physiological function of plant cells. Here, we discuss the progress in research on the function and signaling properties of this novel apoplastic messenger.


Hairy Root Root Hair Pollen Tube Growth Stomatal Movement Plant Cell Growth 



We thank National Natural Science Foundation of China (Grant No. 31370319) and the Natural Science Foundation of Hebei Province (Grant No. C2014205079) for supporting this work.


  1. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969CrossRefPubMedGoogle Scholar
  2. Bouwmeester K, Han M, Blanco-Portales R, Song W, Weide R, Guo L, van der Vossen E, Govers F (2013) The Arabidopsis lectin receptor kinase LecRK-1.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnol J 12:10–16CrossRefPubMedGoogle Scholar
  3. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176CrossRefPubMedGoogle Scholar
  4. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483CrossRefPubMedGoogle Scholar
  5. Burnstock G, Arnett T, Orriss I (2013) Purinergic signalling in the musculoskeletal system. Purinergic Signal 9:541–572CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao Y, Tanaka K, Nguyen C, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Curr Opin Plant Biol 20:82–87CrossRefPubMedGoogle Scholar
  7. Cavaliere F, Donno C, Ambrosi N (2015) Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 9:211CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chivasa S, Slabas AR (2012) Plant extracellular ATP signalling: new insight from proteomics. Mol Biosyst 8:445–452CrossRefPubMedGoogle Scholar
  9. Chivasa S, Ndimba B, Simon W, Robertson D, Yu X, Knox J, Bolwell P, Slabas A (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765CrossRefPubMedGoogle Scholar
  10. Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas A (2005) Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. Plant Cell 17:3019–3034CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chivasa S, Simon WJ, Murphy AM, Lindsey K, Carr J, Slabas A (2010) The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome. Proteomics 10:235–244CrossRefPubMedGoogle Scholar
  12. Chivasa S, Tome D, Hamilton J, Slabas A (2011) Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol Cell Proteomics 10:M110.003905CrossRefPubMedGoogle Scholar
  13. Chivasa S, Murphy A, Hamilton J, Lindsey K, Carr J, Slabas A (2009) Extracellular ATP is a regulator of pathogen defence in plants. Plant J 60:436–448CrossRefPubMedGoogle Scholar
  14. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee S, Stacey G (2014a) Identification of a plant receptor for extracellular ATP. Science 343:290–294CrossRefPubMedGoogle Scholar
  15. Choi J, Tanaka K, Liang Y, Cao Y, Lee S, Stacey G (2014b) Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem J 463:429–437CrossRefPubMedGoogle Scholar
  16. Clark G, Roux SJ (2009) Extracellular nucleotides: ancient signaling molecules. Plant Sci 177:239–244CrossRefGoogle Scholar
  17. Clark G, Roux S (2011) Apyrases, extracellular ATP and the regulation of growth. Curr Opin Plant Biol 14:700–706CrossRefPubMedGoogle Scholar
  18. Clark G, Torres J, Finlayson S, Guan X, Handley LJ, Kays J, Chen Z, Roux S (2010) Apyrase (NTPDase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres J, Tang W, Kim J, Roux S (2011) Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. Plant Physiol 156:1740–1753CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130CrossRefPubMedGoogle Scholar
  21. Dark A, Demidchik V, Richards S, Shabala S, Davies J (2011) Release of extracellular purines from plant roots and effect on ion fluxes. Plant Signal Behav 6:1855–1857CrossRefPubMedPubMedCentralGoogle Scholar
  22. Day R, McAlvin C, Loh J, Denny R, Wood T, Young N, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant Microbe Interact 13:1053–1070CrossRefPubMedGoogle Scholar
  23. Demidchik V, Nichols C, Oliynyk M, Dark A, Glover B, Davies J (2003) Is ATP a signalling agent in plants? Plant Physiol 133:456–461CrossRefPubMedPubMedCentralGoogle Scholar
  24. Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer J, Chivasa S, Slabas A, Glover B, Schachtman D, Shabala S, Davies J (2009) Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913CrossRefPubMedGoogle Scholar
  25. Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S (2015) Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol 169:530–548CrossRefPubMedPubMedCentralGoogle Scholar
  26. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237CrossRefPubMedPubMedCentralGoogle Scholar
  27. Etzler M, Kalsi G, Ewing N, Roberts N, Day R, Murphy J (1999) A nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci U S A 96:5856–5861CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ferrari D, Vitiello L, Idzko M, la Sala A (2015) Purinergic signaling in atherosclerosis. Trends Mol Med 21:184–192CrossRefPubMedGoogle Scholar
  29. Foresi NP, Laxalt AM, Tonón CV, Casalongué C, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fountain S, Cao L, Yound M, North R (2008) Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 283:15122–15126CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hao L, Wang W, Chen C, Wang Y, Liu T, Li X, Shang Z (2012) Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. Mol Plant 5:852–864CrossRefPubMedGoogle Scholar
  32. Idzko M, Ferrari D, Riegel A, Eltzschig H (2014) Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood 124:1029–1037CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jaffe M (1973) The role of ATP in mechanically stimulated rapid closure of the venus’s-flytrap. Plant Physiol 51:17–18CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jeter C, Tang W, Henaff E, Butterfield T, Roux S (2004) Evidence of a novel cell signalling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kennedy C (2015) ATP as a cotransmitter in the autonomic nervous system. Auton Neurosci 191:2–15CrossRefPubMedGoogle Scholar
  36. Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142:984–992CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim S, Yang S, Kim T, Han J, Suh J (2009) Hypertonic stress increased extracellular ATP levels and the expression of stress responsive genes in Arabidopsis thaliana seedlings. Biosci Biotechnol Biochem 73:1252–1256CrossRefPubMedGoogle Scholar
  38. Lew RR, Dearnaley J (2000) Extracellular nucleotide effects on electrical properties of growing Arabidopsis thaliana root hairs. Plant Sci 153:1–6CrossRefGoogle Scholar
  39. Lim M, Wu J, Yao J, Gallardo I, Dugger J, Webb L, Huang J, Salmi M, Song J, Clark G, Roux S (2014) Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Physiol 164:2054–2067CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday G, Gardner G, Roux S (2012) Role for apyrases in polar auxin transport in Arabidopsis. Plant Physiol 160:1985–1995CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lüttge U, Schöch EV, Ball E (1974) Can externally applied ATP supply energy to active ion uptake mechanisms of intact plant cells? Aust J Plant Physiol 1:211–220CrossRefGoogle Scholar
  42. McAlvin C, Stacey G (2005) Transgenic expression of the soybean apyrase in Lotus japonicus enhances nodulation. Plant Physiol 137:1456–1462CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nejidat A, Itai C, Roth-Bejerano N (1983) Stomatal response to ATP mediated by phytochrome. Physiol Plant 57:367–370CrossRefGoogle Scholar
  44. Raghavendra A (1981) Energy supply for stomatal opening in epidermal strips of Commelina benghalensis. Plant Physiol 67:385–387CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:415–492Google Scholar
  46. Reichler S, Torres J, Rivera AL, Cintolesi V, Clark G, Roux S (2009) Intersection of two signaling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138CrossRefPubMedPubMedCentralGoogle Scholar
  47. Riewe D, Grosman L, Fernie A, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiol 147:1092–1109CrossRefPubMedPubMedCentralGoogle Scholar
  48. Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527CrossRefPubMedGoogle Scholar
  49. Schiller M, Massalski C, Kurth T, Steinebrunner I (2012) The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol 12:123CrossRefPubMedPubMedCentralGoogle Scholar
  50. Song C, Steinebrunner I, Wang X, Stout S, Roux S (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232CrossRefPubMedPubMedCentralGoogle Scholar
  51. Steinebrunner I, Wu J, Sun Y, Corbett A, Roux S (2003) Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol 131:1638–1647CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sun J, Zhang C, Deng S, Lu C, Shen X, Zhou X, Zheng X, Hu Z, Chen S (2012a) An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphraticapce. Plant Cell Environ 35:893–916CrossRefPubMedGoogle Scholar
  53. Sun J, Zhang X, Deng S, Zhang C, Wang M, Ding M, Zhao R, Shen X, Zhou X, Lu C, Chen S (2012b) Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells. PLoS One 12, e53136CrossRefGoogle Scholar
  54. Tanaka K, Gilroy S, Jones AM, Stacey G (2010a) Extracellular ATP signaling in plants. Trends Cell Biol 20:601–608CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tanaka K, Swanson S, Gilroy S, Stacey G (2010b) Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiol 154:705–719CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tanaka K, Choi J, Cao Y, Gary S (2014) Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci 5, Article 446Google Scholar
  57. Tang W, Brady S, Sun Y, Muday G, Roux S (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thomas C, Sun Y, Naus K, Lloyd A, Roux S (1999) Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol 119:543–551CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thomas C, Rajagopal A, Windosr B, Dudler R, Lloyd A, Roux S (2000) A role for ectophosphatase in xenobiotic resistance. Plant Cell 12:519–533CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tonón C, Terrile MC, Iglesias MJ, Lamattina L, Casalongué C (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J Plant Physiol 167:540–546CrossRefPubMedGoogle Scholar
  61. Udvardy J, Farkas GL (1973) ATP stimulates the formation of nucleases in excised Avena leaves. Z Pflanzenphysiol 69:394–401CrossRefGoogle Scholar
  62. Vanegas D, Clark G, Cannon A, Roux S, Chaturvedi P, McLamore E (2015) A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 74:37–44CrossRefPubMedGoogle Scholar
  63. Wang F, Jia J, Wang Y, Wang W, Chen Y, Liu T, Shang Z (2014) Hyperpolization-activated Ca2+ channels in guard cell plasma membrane are involved in extracellular ATP-promoted stomatal opening in Vicia faba. J Plant Physiol 171:1241–1247CrossRefPubMedGoogle Scholar
  64. Weerasinghe R, Swanson S, Okada S, Garrett M, Kim S, Stacey G, Boucher R, Gilroy S, Jones A (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526CrossRefPubMedPubMedCentralGoogle Scholar
  65. Windsor B, Roux SJ, Lloyd A (2003) Multiherbicide tolerance conferred by AtPgp1 and apyrase in Arabidopsis: a novel mechanism of herbicide resistance. Nat Biotechnol 21:428–433CrossRefPubMedGoogle Scholar
  66. Wolf C, Hennig M, Romanovicz D, Steinebrunner I (2007) Developmental defects and seedling lethality in apyrase AtAPY1 and AtAPY2 double knockout mutants. Plant Mol Biol 64:657–672CrossRefPubMedGoogle Scholar
  67. Wu S, Wu J (2008) Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots. J Exp Bot 59:4007–4016CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux S (2007) Apyrases (NTPDases) play key role in growth control in Arabidopsis. Plant Physiol 144:961–975CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wu S, Liu Y, Wu J (2008) The signaling role of extracellular ATP and its dependence on Ca2+ flux in elicitation of Salvia miltiorrhiza hairy root cultures. Plant Cell Physiol 49:617–624CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Life SciencesHebei Normal UniversityShijiazhuangP. R. China

Personalised recommendations