Skip to main content

The “Forgotten” Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning

  • Chapter
  • First Online:
Progress in Botany Vol. 78

Part of the book series: Progress in Botany ((BOTANY,volume 78))

Abstract

Aquatic plants and benthic algae have long been used as indicators for nutrient enrichment in lakes and streams. Evaluations of the performance of indices calculated from species assemblages of aquatic plants and algae are generally based on correlations with water nutrient concentrations. We argue that this is a misinterpretation, because water chemistry is both cause and effect: higher nutrient concentrations may cause enhanced plant and algal growth and change their assemblages, but plants and benthic algae also remove nutrients from the water. Additionally, biotic interactions blur water chemistry – aquatic plant relationships. We suggest that indices can be improved by relating biotic responses to quantifiable causal stressors, such as nutrient loading, instead of using water chemistry for performance evaluation of the indices. In addition, a tiered approach, i.e., the use of simpler indices for getting an overview and of sophisticated methods in doubtful cases, could avoid unnecessary costs and efforts while giving important monitoring and management information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arts GHP, Roelofs JGM, De Lyon MJH (1990) Differential tolerances among soft-water macrophyte species to acidification. Can J Bot 68:2127–2134

    Article  Google Scholar 

  • Bakker ES, Sarneel JM, Gulati RD, Liu ZW, van Donk E (2013) Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710:23–37

    Article  Google Scholar 

  • Barko JW, Smart RM (1981) Sediment-based nutrition of submersed macrophytes. Aquat Bot 10:339–352

    Article  CAS  Google Scholar 

  • Barton DR, Howell ET, Fietsch CL (2013) Ecosystem changes and nuisance benthic algae on the southeast shores of Lake Huron. J Great Lakes Res 39:602–611

    Article  Google Scholar 

  • Bennett C, Owen R, Birk S, Buffagni A, Erba S, Mengin N et al (2011) Bringing European river quality into line: an exercise to intercalibrate macro-invertebrate classification methods. Hydrobiologia 667:31–48

    Article  Google Scholar 

  • Billen G, Garnier J, Deligne C, Billen C (1999) Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Sci Total Environ 243(244):43–52

    Article  PubMed  Google Scholar 

  • Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, Solimini A, van de Bund WV, Zampoukas N, Hering D (2012) Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol Indic 18:31–41

    Article  Google Scholar 

  • Blindow I, Hargeby A, Hilt S (2014) Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737:99–110

    Article  CAS  Google Scholar 

  • Bouleau G, Pont D (2015) Did you say reference conditions? Ecological and socio-economic perspectives on the European Water Framework Directive. Environ Sci Policy 47:32–41

    Article  Google Scholar 

  • Brothers S, Köhler J, Meyer N, Attermeyer K, Grossart HP, Mehner T, Scharnweber K, Hilt S (2014) A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol Oceanogr 59:1388–1398

    Article  CAS  Google Scholar 

  • Butcher RW (1933) Studies on the ecology of rivers: I. On the distribution of macrophytic vegetation in the rivers of Britain. J Ecol 21:58–91

    Article  CAS  Google Scholar 

  • Cairns J, Pratt JR (1993) A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds) Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York

    Google Scholar 

  • Carignan R, Kalff J (1980) Phosphorus sources for aquatic weeds: water or sediments? Science 207:987–988

    Article  CAS  PubMed  Google Scholar 

  • CEMAGREF (1982) Etude de méthodes biologiques quantitatives d’appreciation de la qualité des eaux. Rapport Q.E. Lyon-A.F.B. Rhône-Mediterranée-Corse

    Google Scholar 

  • Chambers PA, Prepas EE, Bothwell ML, Hamilton HR (1989) Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Can J Fish Aquat Sci 46:435–439

    Article  Google Scholar 

  • del Pozo R, Fernandez-Alaez C, Fernandez-Alaez M (2010) An assessment of macrophyte community metrics in the determination of the ecological condition and total phosphorus concentration of Mediterranean ponds. Aquat Bot 92:55–62

    Article  Google Scholar 

  • DeNicola DM, Kelly MG (2014) Role of periphyton in ecological assessment of lakes. Freshw Sci 33:619–638

    Article  Google Scholar 

  • Descy JP (1979) A new approach to water quality estimation using diatoms. Nova Hedwigia 64:305–323

    Google Scholar 

  • DIN 4049-2 (1990) Hydrologie; Begriffe der Gewässerbeschaffenheit. Deutsches Institut fuer Normung, Berlin, p 25

    Google Scholar 

  • Dodds WK (2003) The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. J Phycol 39:840–849

    Article  CAS  Google Scholar 

  • Dollan A, Hupfer M (2003) Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia 506–509:635–640

    Google Scholar 

  • Eigemann F, Mischke U, Hupfer M, Schaumburg J, Hilt S (2016) Biological indicators track differential responses of pelagic and littoral areas to nutrient load reductions in German lakes. Ecol Indic 61:905–910

    Article  CAS  Google Scholar 

  • European Commission (2000) Directive 2000/60/EC. Establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg

    Google Scholar 

  • European Commission (2009) Guidance document on eutrophication assessment in the context of European water policies. Technical Report - 2009 – 030, Luxembourg

    Google Scholar 

  • European Court of Justice (2009) Judgment of the Court (Third Chamber) of 10 December 2009 (Case C-390/07). European Commission v United Kingdom of Great Britain and Northern Ireland. Failure of a Member State to fulfill obligations – Environment – Directive 91/271/EEC – Urban waste water treatment – Article 3(1) and (2), Article 5(1) to (3) and (5) and Annexes I and II – Initial failure to identify sensitive areas – Concept of ‘eutrophication’ – Criteria – Burden of proof – Relevant date when considering the evidence – Implementation of collection obligations – Implementation of more stringent treatment of discharges into sensitive areas. Official Journal of the European Union, C 24/4

    Google Scholar 

  • Fisher J, Deflandre-Vlandas A, Coste M, Delmas F, Jarvie HP (2010) Assemblage grouping of European benthic diatoms as indicators of trophic status of rivers. Fundam Appl Limnol 176:89–100

    Article  CAS  Google Scholar 

  • Friberg N (2014) Impacts and indicators of change in lotic ecosystems. WIREs Water 1:513–531

    Article  Google Scholar 

  • Friedrich G (1990) Eine Revision des Saprobiensystems. Zeitschrift fur Wasser- und Abwasserforschung 23:141–152

    CAS  Google Scholar 

  • Gabriels W, Lock K, De Pauw N, Goethals PLM (2010) Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica 40:199–207

    Article  Google Scholar 

  • Hassall AH (1850) Memoir on the organic analysis or microscopic examination of water supplied to the inhabitants of London and the suburban districts. Lancet 1:230–235

    Article  Google Scholar 

  • Haury J, Peltre MC, Tremolieres M, Barbe J, Thiebaut G, Bernez I et al (2006) A new method to assess water trophy and organic pollution – the Macrophyte biological index for rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570:153–158

    Article  CAS  Google Scholar 

  • Hawes I, Smith R (1993) Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo, New Zealand. N Z J Mar Freshw Res 27:365–372

    Article  CAS  Google Scholar 

  • Hering D, Meier C, Rawer-Jost C, Feld CK, Biss R, Zenker A, Sundermann A, Lohse S, Bohmer J (2004) Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34:398–415

    Article  Google Scholar 

  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006a) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response due to stress. Freshw Biol 51:1757–1785

    Article  Google Scholar 

  • Hering D, Feld CK, Moog O, Ofenbock T (2006b) Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311–324

    Article  Google Scholar 

  • Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen AS, Johnson RK, Moe J, Pont D, Lyche Solheim A, van de Bund W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019

    Article  CAS  PubMed  Google Scholar 

  • Hidding B, Bakker ES, Hootsmans MJM, Hilt S (2016) Synergy between shading and herbivory triggers plant loss and regime shifts in aquatic systems. Oikos (in press). doi:10.1111/oik.03104

    Google Scholar 

  • Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Johnson CB (2000) Use of periphyton assemblage data as an index of biotic integrity. J N Am Benthol Soc 19:50–67

    Article  Google Scholar 

  • Hilt S, Van de Weyer K, Köhler A, Chorus I (2010) Submerged macrophyte responses to reduced phosphorus concentrations in two peri-urban lakes. Restor Ecol 18(S2):452–461

    Article  Google Scholar 

  • Hilt S, Köhler J, Kozerski HP, Scheffer M, Van Nes E (2011) Abrupt regime shifts in space and time along rivers and connected lakes systems. Oikos 120:766–775

    Article  Google Scholar 

  • Hilt S, Adrian R, Köhler J, Monaghan MT, Sayer C (2013) Clear, crashing, turbid and back – long-term changes of macrophyte assemblages in a shallow lake. Freshw Biol 58:2027–2036

    Article  Google Scholar 

  • Holmes NTH, Newman JR, Chadd S, Rouen KJ, Saint L, Dawson FH (1999) Mean trophic rank: a user’s manual. R&D Technical Report E38. Environment Agency, Bristol

    Google Scholar 

  • Hutchinson GE (1973) Eutrophication – the scientific background of a contemporary practical problem. Am Sci 61:269–279

    CAS  Google Scholar 

  • James WF, Barko JW, Butler MG (2004) Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515:181–191

    Article  Google Scholar 

  • Janse JH, De Senerpont Domis LN, Scheffer M, Lijklema L, Van Liere L, Klinge M, Mooij W (2008) Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLAKE. Limnologica 38:203–219

    Article  CAS  Google Scholar 

  • Jones JI, Sayer CE (2003) Does a fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84:2155–2167

    Article  Google Scholar 

  • Juggins S, Kelly M, Allott T, Kelly-Quinn M, Monteith D (2016) A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms. Science of the total environment (in press)

    Google Scholar 

  • Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1:66–84

    Article  PubMed  Google Scholar 

  • Karr JR (1999) Defining and measuring river health. Freshw Biol 41:221–234

    Article  Google Scholar 

  • Kelly MG (2006) A comparison of diatoms with other phytobenthos as indicators of ecological status in streams in northern England. In: Witkowski A (ed) Proceedings of the 18th international diatom symposium 2004. Biopress, Bristol, pp 139–151

    Google Scholar 

  • Kelly MG (2013) Data rich, information poor? Phytobenthos assessment and the Water Framework Directive. Eur J Phycol 48:437–450

    Article  Google Scholar 

  • Kelly MG, Whitton BA (1995) The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Article  Google Scholar 

  • Kelly MG, King L, Jones RI, Barker PA, Jamieson BJ (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129

    Article  Google Scholar 

  • Kelly MG, Bennett C, Coste M, Delgado C, Delmas F, Denys L et al (2009) A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621:169–182

    Article  Google Scholar 

  • Kelly MG, Schneider SC, King L (2015) Customs, habits and traditions: the role of non-scientific factors in the development of ecological assessment methods. WIREs Water 2:159–165

    Article  Google Scholar 

  • Kohler A, Brinkmeier R, Vollrath H (1974) Verbreitung und Indikatorwert der submsersen Makrophyten in den Fliessgewässern der Friedberger Au. Ber Bay Bot Ges 45:5–36

    Google Scholar 

  • Köhler J, Hachoł J, Hilt S (2010) Regulation of submersed macrophyte biomass in a temperate lowland river: interactions between shading by bank vegetation, epiphyton and water turbidity. Aquat Bot 92:129–136

    Article  Google Scholar 

  • Kolada A, Willby N, Dudley B, Noges P, Sondergaard M, Hellsten S, Mjelde M, Penning E, van Geest G, Bertrin V, Ecke F, Maemets H, Karus K (2014) The applicability of macrophyte compositional metrics for assessing eutrophication in European lakes. Ecol Indic 45:407–415

    Article  CAS  Google Scholar 

  • Kolkwitz R, Marsson M (1902) Grundsätze für die biologische Beurteilung des Wassers nach seiner Flora und Fauna. Mitteilungen der königlichen Prüfanstalt für Wasserversorgung und Abwasserbeseitigung 1:33–72

    Google Scholar 

  • Kolkwitz R, Marsson M (1908) Ökologie der pflanzlichen Saprobien. Mitteilung aus der Königlichen Prüfungsanstalt für Wasserversorgung und Abwässerbeseitigung Heft 1:508–519

    Google Scholar 

  • Krupska J, Pełechaty M, Pukacz A, Ossowski P (2012) Effects of grass carp introduction on macrophyte communities in a shallow lake. Oceanol Hydrobiol Stud 41:35–40

    Article  Google Scholar 

  • Lange-Bertalot H (1979) Pollution tolerance as a criterion for water quality estimation. Nova Hedwigia 64:285–304

    Google Scholar 

  • Loeb SL (1986) Algal biofouling of oligotrophic Lake Tahoe: causal factors affecting production. In: Evans LV, Hoagland KD (eds) Algal biofouling. Elsevier Science Publishers, Amsterdam, pp 159–173

    Chapter  Google Scholar 

  • Lyche-Solheim A, Feld CK, Birk S, Phillips G, Carvalho L, Morabito G, Mischke U, Willby N, Søndergaard M, Hellsten S, Kolada A, Mjelde M, Böhmer J, Miler O, Pusch MT, Argillier C, Jeppesen E, Lauridsen TL, Poikane S (2013) Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704:57–74

    Article  Google Scholar 

  • Mjelde M, Hellsten S, Ecke F (2013) A water level drawdown index for aquatic macrophytes in Nordic lakes. Hydrobiologia 704:141–151

    Article  Google Scholar 

  • Naumann E (1929) Einige neue Gesichtspunkte zur Systematik der Gewässertypen. Arch Hydrobiol 20:191–198

    Google Scholar 

  • Newbold C, Palmer M (1979) Trophic adaptations of aquatic plants. NCC CST Notes number 18. Nature Conservancy Council, Peterborough

    Google Scholar 

  • Ohle W (1955) Beiträge zur Produktionsbiologie der Gewässer. Arch Hydrobiol XXII(Suppl):456–479

    Google Scholar 

  • Pantle K, Buck H (1955) Die biologische Überwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach Wasser/Abwasser 96:609–620

    Google Scholar 

  • Pardo I, Gomez-Rodriguez C, Wasson JG, Owen R, van de Bund W, Kelly M, Bennett C, Birk S, Buffagni A, Erba S, Mengin N, Murray-Bligh J, Ofenboeck G (2012) The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci Total Environ 420:33–42

    Article  CAS  PubMed  Google Scholar 

  • Penning WE, Dudley B, Mjelde M, Hellsten S, Hanganu J, Kolada A, van den Berg M, Poikane S, Phillips G, Willby N, Ecke F (2008) Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquat Ecol 42:253–264

    Article  CAS  Google Scholar 

  • Perillon C, Hilt S (2016) Groundwater influence differentially affects periphyton and macrophyte production in lakes. Hydrobiologia (in press). doi:10.1007/s10750-015-2485-9

    Google Scholar 

  • Phillips GL, Eminson DF, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated waters. Aquat Bot 4:103–125

    Article  Google Scholar 

  • Piggott JJ, Salis RK, Lear G, Townsend CR, Matthaei CD (2015) Climate warming and agricultural stressors interact to determine stream periphyton community composition. Glob Chang Biol 21:206–222

    Article  PubMed  Google Scholar 

  • Prygiel J, Coste M (1993) The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia 269(270):343–349

    Article  Google Scholar 

  • Ricart M, Guasch H, Alberch M, Barcelo D, Bonnineau C, Geiszinger A, Farre M, Ferrer J, Ricciardi F, Romani AM, Morin S, Proia L, Sala L, Sureda D, Sabater S (2010) Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    Article  CAS  PubMed  Google Scholar 

  • Rodhe W (1969) Crystallization of eutrophication concepts in Northern Europe. In: Proceedings of a symposium on eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington, pp 50–64

    Google Scholar 

  • Rott E, Pipp E, Pfister P, van Dam H, Ortler K, Binder N, Pall K (1999) Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Bundesministerium für Land- und Forstwirtschaft, Vienna, Austria

    Google Scholar 

  • Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, Schneider S, Schmedtje U (2004) Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34:283–301

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Schmetje U, Kohmann F (1987) Bioindikation durch Makrophyten – indizieren Makrophyten Saprobie? Arch Hydrobiol 199:455–469

    Google Scholar 

  • Schneider S, Lindstrøm EA (2009) Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecol Indic 9:1206–1211

    Article  CAS  Google Scholar 

  • Schneider S, Lindstrøm EA (2011) The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665:143–155

    Article  CAS  Google Scholar 

  • Schneider S, Melzer A (2003) The Trophic Index of Macrophytes (TIM) – a new tool for indicating the trophic state of running waters. Int Rev Hydrobiol 88:49–67

    Article  Google Scholar 

  • Schneider S, Melzer A (2004) Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters. Hydrobiologia 527:195–207

    Article  Google Scholar 

  • Schneider SC, Moe TF, Hessen DO, Kaste O (2013a) Juncus bulbosus nuisance growth in oligotrophic freshwater ecosystems: different triggers for the same phenomenon in rivers and lakes? Aquat Bot 104:15–24

    Article  CAS  Google Scholar 

  • Schneider SC, Kahlert M, Kelly MG (2013b) Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Sci Total Environ 444:73–84

    Article  CAS  PubMed  Google Scholar 

  • Schneider SC, Cara M, Eriksen TE, Budzakoska Goreska B, Imeri A, Kupe L, Lokoska T, Patceva S, Trajanovska S, Trajanovski S, Talevska M, Veljanoska Sarafilovska E (2014) Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica 44:90–97

    Article  CAS  Google Scholar 

  • Schulz M, Kozerski HP, Pluntke T, Rinke K (2003) The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res 37:569–578

    Article  CAS  PubMed  Google Scholar 

  • Siong K, Asaeda T (2006) Does calcite encrustation in Chara provide a phosphorus nutrient sink? J Environ Qual 35:490–494

    Article  CAS  PubMed  Google Scholar 

  • Smith MJ, Ough KM, Scroggie MP, Schreiber ESG, Kohout M (2009) Assessing changes in macrophyte assemblages with salinity in non-riverine wetlands: a Bayesian approach. Aquat Bot 90:137–142

    Article  CAS  Google Scholar 

  • Steyaert P, Ollivier G (2007) The European Water Framework Directive: how ecological assumptions frame technical and social change. Ecol Soc 12(1):25

    Article  Google Scholar 

  • Timm H, Moels T (2012) Littoral macroinvertebrates in Estonian lowland lakes: the effects of habitat, season, eutrophication and land use on some metrics of biological quality. Fundam Appl Limnol 180:145–156

    Article  Google Scholar 

  • Tremp H, Kohler A (1995) The usefulness of macrophyte monitoring-systems, exemplified on eutrophication and acidification of running waters. Acta Botanica Gallica 142:541–550

    Article  Google Scholar 

  • Twilley RR, Ejdung G, Romare P, Kemp WM (1986) A comparative study of decomposition, oxygen consumption and nutrient release for selected aquatic plants occurring in an estuarine environment. Oikos 47:190–198

    Article  CAS  Google Scholar 

  • Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Arch Hydrobiol 148:549–562

    Article  CAS  Google Scholar 

  • Vollenweider RA, Kerekes J (1982) Eutrophication of waters. Monitoring, assessment and control. OECD cooperative programme on monitoring of inland waters (Eutrophication control), Environment Directorate, OECD, Paris, p 154

    Google Scholar 

  • von der Ohe PC, Apitz S, Arbaciauskas K, Beketov MA, Borchardt D, de Zwart D, Goedkoop W, Hein M, Hellsten S, Hering D, Kefford BJ, Panov VE, Schafer RB, Segner H, van Gils J, Vegter JJ, Wetzel MA, Brack W (2014) Status and causal pathway assessments supporting River Basin management. In: Brils J, Brack W, Müller-Grabherr D, Négrel P, Vermaat JE (eds) Risk-informed management of European River Basins. Springer, Heidelberg, p 395

    Google Scholar 

  • Wagenhoff A, Lange K, Townsend CR, Matthaei CD (2013) Patterns of benthic algae and cyanobacteria along twin-stressor gradients of nutrients and fine sediment: a stream mesocosm experiment. Freshw Biol 58:1849–1863

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology – lake and river ecosystems, 3rd edn. Academic, San Diego

    Google Scholar 

Download references

Acknowledgements

This manuscript resulted from >15 years of work on ecological assessment and the Water Framework Directive. Numerous colleagues have participated in discussions, and many organizations provided funding for a multitude of different projects. We thank the authors of the Water Framework Directive for putting ecology into focus, the editor and a reviewer for constructive feedback, and a countless number of colleagues for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, S.C., Hilt, S., Vermaat, J.E., Kelly, M. (2016). The “Forgotten” Ecology Behind Ecological Status Evaluation: Re-Assessing the Roles of Aquatic Plants and Benthic Algae in Ecosystem Functioning. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 78. Progress in Botany, vol 78. Springer, Cham. https://doi.org/10.1007/124_2016_7

Download citation

Publish with us

Policies and ethics