Skip to main content

Plant Vacuolar Sorting: An Overview

  • Chapter
  • First Online:
  • 1171 Accesses

Part of the book series: Progress in Botany ((BOTANY,volume 78))

Abstract

Eukaryotic cells have developed membrane-bound organelles, connected between themselves in a complex and tightly regulated network – the endomembrane system. Despite being less well understood when compared to the animal and yeast models, plant cells have begun to reveal an intricate and dense network of endomembranes. Particularly diverse is the network of pathways revolving around the vacuole, especially when comparing plant and non-plant models. This dynamic, pleiomorphic and multifunctional organelle is essential for correct plant growth and development, compartmentalizing different components, from proteins to secondary metabolites. In this review we will provide an historical perspective of what has been discovered relating vacuolar sorting, and the potential biotech applications of such findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP:

Aspartic proteinase

BFA:

Brefeldin A

BP-80:

80 kDa proaleurein-binding protein

CCV:

Clathrin coated vesicle

CPY:

Carboxypeptidase Y

ctVSD:

C-terminal vacuolar sorting determinant

Cvt:

Cytosol-to-vacuole targeting pathway

DCB:

Dichlorobenzonitrile

EM:

Electron microscopy

ER:

Endoplasmic reticulum

ERvt:

ER to the vacuole targeting pathway

EST:

Expressed sequence tag

GEF:

Guanine nucleotide exchange factor

LV:

Lytic vacuole

M6P:

Mannose-6-phosphate

PA Domain:

Protease associated domain

PB:

Protein body

PI3P:

Phosphatidylinositol 3-phosphate

PM:

Plasma membrane

PSI:

Plant-specific insert

PSV:

Protein storage vacuole

psVSD:

Physical structure vacuolar sorting determinant

PVC:

Prevacuolar compartment

RMR:

Receptor-homology-region-transmembrane-domain-RING-H2

SAPLIP:

Saposin-like protein

SNARE:

Soluble NSF attachment protein receptor

ssVSD:

Sequence-specific vacuolar sorting determinant

TGN:

trans Golgi Network

TIP:

Tonoplast intrinsic protein

VSR:

Vacuolar sorting receptor

References

  • Agarwal PK, Jain P, Jha B, Reddy MK, Sopory SK (2008) Constitutive over-expression of a stress-inducible small GTP binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Rep 27:105–115

    Article  CAS  PubMed  Google Scholar 

  • Banyai W, Mii M, Supaibulwatana K (2011) Enhancement of artemisinin content and biomass in Artemisia annua by exogenous GA3 treatment. Plant Growth Regul 63:45–54

    Article  CAS  Google Scholar 

  • Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2:1145–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocock J, Carmicle S, Chhotani S, Ruffolo MR, Chu H, Erickson AH (2009) The PA-TM-RING protein RING finger protein 13 is an endosomal integral membrane E3 ubiquitin ligase whose RING finger domain is released to the cytoplasm by proteolysis. FEBS J 276:1860–1877

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Schiene K, Dietz KJ (2000) Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol Biol 42:923–936

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Lanquar V, Soler MN, Beebo A, Satiat-Jeunemaitre B, Bouhidel K, Thomine S (2011) Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds. Plant Cell Physiol 52:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  PubMed  Google Scholar 

  • Bottanelli F, Foresti O, Hanton S, Denecke J (2011) Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23:3007–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottanelli F, Gershlick DC, Denecke J (2012) Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning. Traffic 13:338–354

    Article  CAS  PubMed  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438–454

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Rogers SW, Butler J, Beevers L, Rogers JC (2000) Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12:493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JL, Fang HM, Ji YP, Pu GB, Guo YW, Huang LL, Du ZG, Liu BY, Ye HC, Li GF, Wang H (2011) Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene. Planta Med 77:1759–1765

    Article  CAS  PubMed  Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20:101–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock CP, Hunter PR, Szakacs E, Hinz G, Robinson DG, Frigerio L (2008) Lack of a vacuolar sorting receptor leads to non-specific missorting of soluble vacuolar proteins in Arabidopsis seeds. Traffic 9:408–416

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Q, Gao C, Ding Y, Zeng Y, Ueda T, Nakano A, Jiang L (2014) Activation of the Rab7 GTPase by the MON1-CCZ1 complex is essential for PVC-to-vacuole trafficking and plant growth in Arabidopsis. Plant Cell 26(5):2080–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa DS, Pereira S, Moore I, Pissarra J (2010) Dissecting cardosin B trafficking pathways in heterologous systems. Planta 232(6):1517–1530

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Fields MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120:2977–2985

    Article  CAS  PubMed  Google Scholar 

  • De Benedictis M, Bleve G, Faraco M, Stigliano E, Grieco F, Piro G, Dalessandro G, Di Sansebastiano GP (2013) AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vacuolar sorting. Mol Plant 6:916–930

    Article  PubMed  CAS  Google Scholar 

  • de Graaf BH, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Wu HM (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Marcos Lousa C, Gershlick DC, Denecke J (2012) Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. Plant Cell 24:1714–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Sansebastiano GP (2013) Defining new SNARE functions: the i-SNARE”. Front Plant Sci 4:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Sansebastiano GP, Rizzello F, Durante M, Caretto S, Nisi R, De Paolis A, Faraco M, Montefusco A, Piro G, Mita G (2014) Subcellular compartmentalization in protoplastos from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein. J Biotechnol 202:146–152

    Article  PubMed  CAS  Google Scholar 

  • Duarte P, Pissarra J, Moore I (2008) Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. Planta 227:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13(7):U853–U859

    Article  CAS  Google Scholar 

  • Ebine K, Uemura T, Nakano A, Ueda T (2012) Flowering time modulation by a vacuolar SNARE via FLOWERING LOCUS C in Arabidopsis thaliana. PLoS One 7, e42239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T (2014) Plant vacuolar trafficking occurs through distinctly regulated pathways. Curr Biol 24:1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Elias M (2010) Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol Membr Biol 27:469–489

    Article  CAS  PubMed  Google Scholar 

  • Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A 95:15781–15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyd BE, Morriss SC, Macintosh GC, Bassham DC (2012) What to eat: evidence for selective autophagy in plants. J Integr Plant Biol 54:907–920

    CAS  PubMed  Google Scholar 

  • Foresti O, Da Silva LL, Denecke J (2006) Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. Plant Cell 18:2275–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Ueda T (2012) Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. Front Plant Sci 3(197):1–10

    Google Scholar 

  • Galili G, Altschuler Y, Levanony H (1993) Assembly and transport of seed storage proteins. Trends Cell Biol 3:437–442

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JE, Rogers SW, Deery M, Dupree P, Rogers JC (2005) A unique family of proteins associated with internalized membranes in protein storage vacuoles of the Brassicaceae. Plant J 41:429–441

    Article  CAS  PubMed  Google Scholar 

  • Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103:11821–11827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurkan C, Koulov AV, Balch WE (2007) An evolutionary perspective on eukaryotic membrane trafficking. Adv Exp Med Biol 607:73–83

    Article  PubMed  Google Scholar 

  • Haas TJ, Sliwinski MK, Martinez DE, Preuss M, Ebine K, Ueda T, Nielsen E, Odorizzi G, Otegui MS (2007) The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19:1295–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara-Nishimura I, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley SM, Beevers L (1989) Coated vesicles are involved in the transport of storage proteins during seed development in Pisum sativum L. Plant Physiol 91:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiguchi Y, Niihama M, Takahashi T, Saito C, Nakano A, Tasaka M, Morita MT (2010) Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks Qb-SNARE VTI11. Plant Cell 22:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman EM (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11:672–679

    Article  CAS  PubMed  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG (2007) Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic 8:1452–1464

    Article  CAS  PubMed  Google Scholar 

  • Hoflack B, Kornfeld S (1985) Lysosomal enzyme binding to mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: evidence for the existence of a second mannose 6-phosphate receptor. Proc Natl Acad Sci U S A 82:4428–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holkeri H, Vitale A (2001) Vacuolar sorting determinants within a plant storage protein trimer act cumulatively. Traffic 2:737–741

    Article  CAS  PubMed  Google Scholar 

  • Holwerda BC, Padgett HS, Rogers JC (1992) Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibl V, Stoger E (2011) The formation, function and fate of protein storage compartments in seeds. Protoplasma 249:379–392

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Phillips TE, Rogers SW, Rogers JC (2000) Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 150:755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolliffe NA, Craddock CP, Frigerio L (2005) Pathways for protein transport to seed storage vacuoles. Biochem Soc Trans 33:1016–1018

    Article  CAS  PubMed  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A 91:3403–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejek I, Van Der Hoorn RA (2010) Mining the active proteome in plant science and biotechnology. Curr Opin Biotechnol 21:225–233

    Article  CAS  PubMed  Google Scholar 

  • Kotzer AM, Brandizzi F, Neuman U, Paris N, More I, Hawes C (2004) AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 117:6377–6389

    Article  CAS  PubMed  Google Scholar 

  • Kriegel MA, Rathinam C, Flavell RA (2009) E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci U S A 106:16770–16775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem Y, Golani Y, Kaye Y, Levine A (2010) Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. J Exp Bot 61:2615–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Li F, Vierstra RD (2012) Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci 17:526–537

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Tang K (2013) AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Luini A (2011) A brief history of the cisternal progression-maturation model. Cell Logist 1:6–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo F, Fong YH, Zeng Y, Shen J, Jiang L, Wong K (2014) How vacuolar sorting receptor proteins interact with their cargo proteins: crystal structures of Apo and cargo-bound forms of the protease-associated domain from an Arabidopsis vacuolar sorting receptor. Plant Cell 26:3693–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch-Day MA, Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes L, Goossens A (2010) Hormone-mediated promotion of trichome initiation in plants is conserved but utilizes species and trichome-specific regulatory mechanisms. Plant Signal Behav 5:205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeshima M, Haranishimura I, Takeuchi Y, Nishimura M (1994) Accumulation of vacuolar H+-pyrophosphatase and H+-ATPase during reformation of the central vacuole in germinating pumpkin seeds. Plant Physiol 106:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci U S A 88:834–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaeli S, Avin-Wittenberg T, Galili G (2014) Involvement of autophagy in the direct ER to vacuole protein trafficking route in plants. Front Plant Sci 5:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M (2002) Involvement of the vacuoles of the endodermis in the early process of shot gravitropism in Arabidopsis. Plant Cell 14:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  CAS  PubMed  Google Scholar 

  • Nafis T, Akmal M, Ram M, Alam P, Ahlawat S, Mohd A, Abdin MZ (2011) Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol Rep 5:53–60

    Article  Google Scholar 

  • Nahm MY, Kim SW, Yun D, Lee SY, Cho MJ, Bahk JD (2003) Molecular and biochemical analyses of OsRAB7, a rice Rab7 homolog. Plant Cell Physiol 44:1341–1349

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Matsuoka K (1993) Protein targeting to the vacuole in plant cells. Plant Physiol 101:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus JM, Rogers J (1998) Sorting of proteins to vacuoles in plant cells. Plant Mol Biol 38:127–144

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus JM, Sticher L, Meins F Jr, Boller T (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A 88:10362–10366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa K, Maruyama N, Utsumi S (2006) The C-terminal region of α’ subunit of soybean β-conglycinin contains two types of vacuolar sorting determinants. Plant Mol Biol 62:111–125

    Article  CAS  PubMed  Google Scholar 

  • Ohtomo I, Ueda H, Shimada T, Nishiyama C, Komoto Y, Hara-Nishimura I, Takahashi T (2005) Identification of na allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana. Plant Cell Physiol 46:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Olbrich A, Hillmer S, Hinz G, Oliviusson P, Robinson DG (2007) Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol 145:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  CAS  PubMed  Google Scholar 

  • Park M, Lee D, Lee G-J, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Oufattole M, Rogers JC (2007) Golgi-mediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Sci 172:728–745

    Article  CAS  Google Scholar 

  • Peng L, Xiang F, Roberts E, Kawagoe Y, Greve LC, Kreuz K, Delmer DP (2001) The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline beta-1,4-glucan associated with CesA protein. Plant Physiol 126:981–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira C, Pereira S, Satiat-Jeunemaitre B, Pissarra J (2013) Cardosin A contains two vacuolar sorting signals using different vacuolar routes in tobacco epidermal cells. Plant J 76:87–100

    CAS  PubMed  Google Scholar 

  • Pereira C, Pereira S, Pissarra J (2014) Delivering of proteins to the plant vacuole – an update. Int J Mol Sci 15:7611–7623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pompa A, de Marchis F, Vitale A, Arcioni S, Bellucci M (2010) An engineered C-terminal disulphide bond can partially replace the phaseolin vacuolar sorting signal. Plant J 61:782–791

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis RabGTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16:1589–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho-Santos M, Pissarra J, Veríssimo P, Pereira S, Salema R, Pires E, Faro CJ (1997) Cardosin A, na abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203:204–212

    Article  CAS  PubMed  Google Scholar 

  • Rehman RU, Stigliano E, Lycett G, Sticher L, Franchesca S, Dalessandro G, Di Sansebastiano GP (2008) Tomato Rab11a characterization evidenced a difference between SYP121 dependent and SYP122-dependent exocytosis. Plant Cell Physiol 49(5):751–766

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Raikhel NV, Hicks GR (2009) Powerful partners: Arabidopsis and chemical genomics. Arabidopsis Book 7, e0109, http://doi.org/10.1199/tab.0109

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6:615–625

    Article  CAS  PubMed  Google Scholar 

  • Rosado A, Hicks GR, Norambuena L, Rogachev I, Meir S, Pourcel L, Zouhar J, Brown MQ, Boirsdore MP, Puckrin RS, Cutler SR, Rojo E, Aharoni A, Raikhel NV (2011) Sortin1-hypersensitive mutants link vacuolar-trafficking defects and flavonoid metabolism in Arabidopsis vegetative tissues. Chem Biol 18:187–197

    Article  CAS  PubMed  Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    Article  CAS  PubMed  Google Scholar 

  • Saito C, Ueda T (2009) Chapter 4: Functions of RAB and SNARE proteins in plant life. Int Rev Cell Mol Biol 274:183–233

    Article  CAS  PubMed  Google Scholar 

  • Saito C, Uemura T, Awai C, Tominaga M, Ebine K, Ito J, Ueda T, Abe H, Morita MT, Tasaka M et al (2011) The occurrence of ‘bulbs’, a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. Plant J 68:64–73

    Article  CAS  PubMed  Google Scholar 

  • Samaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    Article  CAS  PubMed  Google Scholar 

  • Sanderfoot A (2007) Increases in the number of SNARE genes parallels the rise of multicellularity among the green plants. Plant Physiol 144:6–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12:3733–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansebastiano GD, Piro G (2014) The SNARE proteins (in plants) beyond the Noble Prize. J Plant Biochem Physiol 2:2

    Google Scholar 

  • Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ (1996) Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci U S A 93:12304–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Kombrink E, Meesters C (2015) Considerations for designing chemical screening strategies in plant biology. Front Plant Sci 6:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100:16095–16100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinshi H, Wenzler H, Neuhaus JM, Felix G, Hofsteenge J, Meins F (1988) Evidence for N- and C-terminal processing of a plant defense-related enzyme: primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A 85:5541–5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa M, Ueda H, Shimada T, Nishiyama C, Hara-Nishimura I (2009) Vacuolar SNAREs function in the formation of the leaf vascuolar network by regulating auxin distribution. Plant Cell Physiol 50:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa M, Ueda H, Shimada T, Koumoto Y, Shimada TL, Kondo M, Takahashi T, Okuyama Y, Nishimura M, Hara-Nishimura I (2010) Arabidopsis Qa-SNARE SYP2 proteins localized to different subcellular regions function redundantly in vacuolar protein sorting and plant development. Plant J 64:924–935

    Article  CAS  PubMed  Google Scholar 

  • Simões I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2, Reviews 3007. doi:10.1186/gb-2001-2-5-reviews3007

    Google Scholar 

  • Suen PK, Shen J, Sun SSM, Jiang L (2010) Expression and characterization of two functional vacuolar sorting receptor (VSR) proteins, BP-80 and AtVSR4 from culture media of transgenic tobacco BY-2 cells. Plant Sci 179:68–76

    Article  CAS  Google Scholar 

  • Sutter JU, Campanoni P, Blatt MR, Paneque M (2006) Setting SNAREs in a different wood. Traffic 7:627–638

    Article  CAS  PubMed  Google Scholar 

  • Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang K, Shen Q, Yan T, Fu X (2014) Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep 33:605–615

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Matsuda N, Anai T, Tsukaya H, Uchimiya H, Nakano A (1996) An Arabidopsis gene isolated by a novel method for detecting genetic interaction in yeast encodes the GDP dissociation inhibitor of Ara4 GTPase. Plant Cell 8:2079–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Nishiyama C, Shimada T, Koumoto Y, Hayashi Y, Kondo M, Takahashi T, Ohtomo I, Nishimura M, Hara-Nishimura I (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Sato MH, Takeyasu K (2005) The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett 579:2842–2846

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Morita MT, Ebine K, Okatani Y, Yano D, Saito C, Ueda T, Nakano A (2010) Vacuolar/pre-vacuolar compartment Qa-SNAREs VAM3/SYP22 and PEP12/SYP21 have interchangeable functions in Arabidopsis. Plant J 64:864–873

    Article  CAS  PubMed  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira M, Pissarra J, Veríssimo P, Castanheira P, Costa Y, Pires E, Faro C (2001) Molecular cloning and characterization of cDNA encoding cardosin B, na aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol 45:529–539

    Article  CAS  PubMed  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldener N, Takano J et al (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  • Voelker TA, Herman EM, Chrispeels MJ (1989) In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell 1:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Rogers JC, Jiang L (2011) Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J 278:59–68

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  CAS  PubMed  Google Scholar 

  • Watanabe E, Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2002) Calcium-mediated association of a putative vacuolar sorting receptor PV72 with a propeptide of 2S albumin. J Biol Chem 277:8708–8715

    Article  CAS  PubMed  Google Scholar 

  • Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I (2004) An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves. Plant Cell Physiol 45:9–17

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Etxeberria E, van den Ende W (2013) Vacuolar protein sorting mechanisms in plants. FEBS J 280:979–993

    Article  CAS  PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organisers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hicks GR, Raikhel NV (2014) Plant vacuole morphology and vacuolar trafficking. Front Plant Sci 5:476–485

    PubMed  PubMed Central  Google Scholar 

  • Zouhar J, Rojo E (2009) Plant vacuoles: where did they come from and where are they heading? Curr Opin Plant Biol 12:677–684

    Google Scholar 

  • Zouhar J, Hicks GR, Raikhel NV (2004) Sorting inhibitors (Sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci U S A 101:9497–9501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work developed under the Strategic Project OE/BIA/UI4046/2014 of the BioISI – Biosystems & Integrative Sciences Institute, supported by FCT (Fundação para a Ciência e a Tecnologia) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peixoto, B., Pereira, S., Pissarra, J. (2016). Plant Vacuolar Sorting: An Overview. In: Cánovas, F., Lüttge, U., Matyssek, R. (eds) Progress in Botany Vol. 78. Progress in Botany, vol 78. Springer, Cham. https://doi.org/10.1007/124_2016_6

Download citation

Publish with us

Policies and ethics