Advertisement

Advances in Plant Sulfur Metabolism and Signaling

  • Cecilia Gotor
  • Ana M. Laureano-Marín
  • Lucía Arenas-Alfonseca
  • Inmaculada Moreno
  • Ángeles Aroca
  • Irene García
  • Luis C. Romero
Chapter
Part of the Progress in Botany book series (BOTANY, volume 78)

Abstract

Sulfur is an essential element for life, and the entry point of organic sulfur into the metabolism and into the human food chain is through cysteine, initially synthesized in plants. Cysteine is synthesized in the last stage of the plant photosynthetic assimilation of sulfate and is a very important metabolite because it is crucial for the structure, function and regulation of proteins and also because it is the precursor of essential biomolecules and defense compounds. Recent research focused on determining the specific roles of the enzymes involved in the biosynthesis of cysteine and the metabolites they produce has provided new perspectives on their functions. Thus, the cases of the less-abundant cytosolic DES1 with l-cysteine desulfhydrase activity and the major mitochondrial enzyme CAS-C1 with β-cyanoalanine synthase activity highlight the importance of sulfide and cyanide as signaling molecules involved in regulating essential processes for plant performance. The research has provided insight into the role of the sulfide specifically generated from cysteine in the cytosol as a signaling molecule regulating the processes of autophagy and of abscisic acid-dependent stomatal movement. One of the proposed mechanisms of action of sulfide involving the post-translational modification of cysteine residues in proteins by S-sulfhydration has been demonstrated recently in plants. In addition, in the mitochondria, cysteine plays a central role in maintaining discrete concentrations of cyanide with signaling purposes for proper root hair development to occur and for the modulation of the plant immune system. Therefore, a fundamental conceptual change regarding cysteine and related molecules performing signaling roles is proposed.

Keywords

Sulfate Transporter Genetic Complementation Sulfate Assimilation Root Hair Development Omics Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded in part by the European Regional Development Fund through the Ministerio de Economia y Competitividad (grant MOLCIS, no. BIO2013-44648-P). A. M. L.-M. and L. A.-A. thank the Ministerio de Economia y Competitividad for fellowship support through the program of Formación de Personal Investigador. A. A. thanks the Consejo Superior de Investigaciones Científicas for support through the postdoctoral program of the Junta de Ampliación de Estudios.

References

  1. Álvarez C, Calo L, Romero LC, García I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152(2):656–669. doi: 10.1104/pp.109.147975 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Álvarez C, Bermudez MA, Romero LC, Gotor C, García I (2012a) Cysteine homeostasis plays an essential role in plant immunity. New Phytol 193(1):165–177. doi: 10.1111/j.1469-8137.2011.03889.x CrossRefPubMedGoogle Scholar
  3. Álvarez C, García I, Moreno I, Pérez-Pérez ME, Crespo JL, Romero LC, Gotor C (2012b) Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell 24(11):4621–4634. doi: 10.1105/tpc.112.105403 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Álvarez C, García I, Romero LC, Gotor C (2012c) Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana. Mol Plant 5(6):1217–1226. doi: 10.1093/mp/sss043 CrossRefPubMedGoogle Scholar
  5. Aroca Á, Serna A, Gotor C, Romero LC (2015) S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol 168(1):334–342. doi: 10.1104/pp.15.00009 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153. doi: 10.1146/annurev-arplant-050213-035759 CrossRefPubMedGoogle Scholar
  7. Bassham DC (2015) Methods for analysis of autophagy in plants. Methods 75:181–188. doi: 10.1016/j.ymeth.2014.09.003 CrossRefPubMedGoogle Scholar
  8. Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11CrossRefPubMedGoogle Scholar
  9. Bermúdez MA, Páez-Ochoa MA, Gotor C, Romero LC (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell 22(2):403–416. doi: 10.1105/tpc.109.071985 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bermúdez MA, Galmés J, Moreno I, Mullineaux PM, Gotor C, Romero LC (2012) Photosynthetic adaptation to length of day is dependent on S-sulfocysteine synthase activity in the thylakoid lumen. Plant Physiol 160(1):274–288. doi: 10.1104/pp.112.201491 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bethke PC, Libourel IG, Reinohl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223(4):805–812. doi: 10.1007/s00425-005-0116-9 CrossRefPubMedGoogle Scholar
  12. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18. doi: 10.1146/annurev.cellbio.16.1.1 CrossRefPubMedGoogle Scholar
  13. Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280(46):38803–38813CrossRefPubMedGoogle Scholar
  14. Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ (2014) Allicin: chemistry and biological properties. Molecules 19(8):12591–12618. doi: 10.3390/molecules190812591 CrossRefPubMedGoogle Scholar
  15. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220CrossRefPubMedGoogle Scholar
  16. Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72. doi: 10.1016/j.niox.2014.02.005 CrossRefPubMedGoogle Scholar
  17. Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62(13):4481–4493. doi: 10.1093/jxb/err145 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cheng W, Zhang L, Jiao C, Su M, Yang T, Zhou L, Peng R, Wang R, Wang C (2013) Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol Biochem 70:278–286. doi: 10.1016/j.plaphy.2013.05.042 CrossRefPubMedGoogle Scholar
  19. Chivasa S, Carr JP (1998) Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10(9):1489–1498PubMedPubMedCentralGoogle Scholar
  20. Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64(7):1953–1966. doi: 10.1093/jxb/ert055 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cipollone R, Visca P (2007) Is there evidence that cyanide can act as a neuromodulator? IUBMB Life 59(3):187–189. doi: 10.1080/15216540600981768 CrossRefPubMedGoogle Scholar
  22. Cohn MA, Hughes JA (1986) Seed dormancy in red rice : v. Response to azide, hydroxylamine, and cyanide. Plant Physiol 80(2):531–533CrossRefPubMedPubMedCentralGoogle Scholar
  23. Conn EE (2008) Our work with cyanogenic plants. Annu Rev Plant Biol 59:1–19. doi: 10.1146/annurev.arplant.59.032607.092924 CrossRefPubMedGoogle Scholar
  24. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539. doi: 10.1007/s10863-008-9166-6 CrossRefPubMedGoogle Scholar
  25. Czyzewski BK, Wang DN (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483(7390):494–497. doi: 10.1038/nature10881 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation--the same or not the same? Mol Plant 3(2):314–325. doi: 10.1093/mp/ssq001 CrossRefPubMedGoogle Scholar
  27. Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18(6):337–347. doi: 10.1016/j.molmed.2012.04.003 CrossRefPubMedGoogle Scholar
  28. Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):Review S3004Google Scholar
  29. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants--structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255(1):235–245CrossRefPubMedGoogle Scholar
  30. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18. doi: 10.1104/pp.110.167569 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Francois JA, Kumaran S, Jez JM (2006) Structural basis for interaction of O-acetylserine sulfhydrylase and serine acetyltransferase in the Arabidopsis cysteine synthase complex. Plant Cell 18(12):3647–3655CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113(1):14–26. doi: 10.1111/j.1471-4159.2010.06580.x CrossRefPubMedPubMedCentralGoogle Scholar
  33. García I, Castellano JM, Vioque B, Solano R, Gotor C, Romero LC (2010) Mitochondrial {beta}-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana. Plant Cell 22(10):3268–3279. doi: 10.1105/tpc.110.076828 CrossRefPubMedPubMedCentralGoogle Scholar
  34. García I, Rosas T, Bejarano ER, Gotor C, Romero LC (2013) Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. Plant Physiol 162(4):2015–2027. doi: 10.1104/pp.113.219436 CrossRefPubMedPubMedCentralGoogle Scholar
  35. García I, Gotor C, Romero LC (2014) Beyond toxicity: a regulatory role for mitochondrial cyanide. Plant Signal Behav 9, e27612CrossRefPubMedPubMedCentralGoogle Scholar
  36. García I, Romero LC, Gotor C (2015) Cysteine homeostasis. In: D’Mello JPF (ed) Amino acids in higher plants. CAB International, Wallingford, pp 219–233Google Scholar
  37. García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188(4):977–984. doi: 10.1111/j.1469-8137.2010.03465.x CrossRefPubMedGoogle Scholar
  38. García-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci 201–202:66–73. doi: 10.1016/j.plantsci.2012.11.007 CrossRefPubMedGoogle Scholar
  39. Glawischnig E (2007) Camalexin. Phytochemistry 68(4):401–406. doi: 10.1016/j.phytochem.2006.12.005 CrossRefPubMedGoogle Scholar
  40. Gotor C, Romero LC (2013) S-sulfocysteine synthase function in sensing chloroplast redox status. Plant Signal Behav 8(3), e23313CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gotor C, Álvarez C, Bermúdez MA, Moreno I, García I, Romero LC (2010) Low abundance does not mean less importance in cysteine metabolism. Plant Signal Behav 5(8):1028–1030. doi: 10.1105/tpc.109.071985 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gotor C, García I, Crespo JL, Romero LC (2013) Sulfide as a signaling molecule in autophagy. Autophagy 9(4):609–611. doi: 10.4161/auto.23460 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gotor C, Laureano-Marín AM, Moreno I, Aroca Á, García I, Romero LC (2015) Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 47(10):2155–2164. doi: 10.1007/s00726-014-1786-z CrossRefPubMedGoogle Scholar
  44. Gutiérrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci U S A 93(23):13377–13382CrossRefPubMedPubMedCentralGoogle Scholar
  45. Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148(2):1055–1067CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123(3):1163–1171CrossRefPubMedPubMedCentralGoogle Scholar
  47. Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20(1):168–185CrossRefPubMedPubMedCentralGoogle Scholar
  48. Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Giovannetti M, Kopriva S, Krishnan HB, Jez JM (2014) Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem 289(15):10919–10929. doi: 10.1074/jbc.M113.540401 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104(15):6478–6483. doi: 10.1073/pnas.0611629104 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Howarth JR, Domínguez-Solís JR, Gutiérrez-Alcalá G, Wray JL, Romero LC, Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51(4):589–598CrossRefPubMedGoogle Scholar
  51. Jez JM, Dey S (2013) The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 23(2):302–310. doi: 10.1016/j.sbi.2013.02.011 CrossRefPubMedGoogle Scholar
  52. Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414(3):481–486. doi: 10.1016/j.bbrc.2011.09.090 CrossRefPubMedGoogle Scholar
  53. Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285(29):21903–21907. doi: 10.1074/jbc.R110.128363 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137(1):220–230CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57(2):313–321. doi: 10.1111/j.1365-313X.2008.03690.x CrossRefPubMedGoogle Scholar
  56. Khan MS, Haas FH, Samami AA, Gholami AM, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22(4):1216–1231. doi: 10.1105/tpc.110.074088 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55(404):1775–1783. doi: 10.1093/jxb/erh185 CrossRefPubMedGoogle Scholar
  58. Koprivova A, Kopriva S (2014) Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front Plant Sci 5:589. doi: 10.3389/fpls.2014.00589 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Krueger S, Niehl A, López-Martín MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32(4):349–367. doi: 10.1111/j.1365-3040.2008.01928.x CrossRefPubMedGoogle Scholar
  60. Laureano-Marín AM, García I, Romero LC, Gotor C (2014) Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. Front Plant Sci 5:683. doi: 10.3389/fpls.2014.00683 PubMedPubMedCentralGoogle Scholar
  61. Lee BR, Koprivova A, Kopriva S (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J 67(6):1042–1054. doi: 10.1111/j.1365-313X.2011.04656.x CrossRefPubMedGoogle Scholar
  62. Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I, Wood ME, Whiteman M, Hancock JT (2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48(12):931–935. doi: 10.1016/j.plaphy.2010.09.016 CrossRefPubMedGoogle Scholar
  63. López-Martín MC, Becana M, Romero LC, Gotor C (2008a) Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol 147(2):562–572CrossRefPubMedPubMedCentralGoogle Scholar
  64. López-Martín MC, Romero LC, Gotor C (2008b) Cytosolic cysteine in redox signaling. Plant Signal Behav 3(10):880–881CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach leaves. Plant Physiol 94(3):1345–1352CrossRefPubMedPubMedCentralGoogle Scholar
  66. Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86(3):309–323CrossRefPubMedGoogle Scholar
  67. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42(3):305–314. doi: 10.1111/j.1365-313X.2005.02363.x CrossRefPubMedGoogle Scholar
  68. Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18(11):3235–3251. doi: 10.1105/tpc.106.046458 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Miret JA, Munne-Bosch S (2014) Plant amino acid-derived vitamins: biosynthesis and function. Amino Acids 46(4):809–824. doi: 10.1007/s00726-013-1653-3 CrossRefPubMedGoogle Scholar
  70. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):72. doi: 10.1126/scisignal.2000464 CrossRefGoogle Scholar
  71. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109(11):1259–1268. doi: 10.1161/CIRCRESAHA.111.240242 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484. doi: 10.1111/j.1365-3040.2011.02400.x CrossRefPubMedGoogle Scholar
  73. Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 185(6):1942–1950CrossRefPubMedPubMedCentralGoogle Scholar
  74. Qi J, Wu J, Somkuti GA, Watson JT (2001) Determination of the disulfide structure of sillucin, a highly knotted, cysteine-rich peptide, by cyanylation/cleavage mass mapping. Biochemistry 40(15):4531–4538CrossRefPubMedGoogle Scholar
  75. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10(10):503–509CrossRefPubMedGoogle Scholar
  76. Ravilious GE, Jez JM (2012) Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat Prod Rep 29(10):1138–1152. doi: 10.1039/c2np20009k CrossRefPubMedGoogle Scholar
  77. Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145(1):154–164. doi: 10.1111/j.1399-3054.2012.01571.x CrossRefPubMedGoogle Scholar
  78. Rennenberg H, Herschbach C (2014) A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses. J Exp Bot 65(20):5711–5724. doi: 10.1093/jxb/eru315 CrossRefPubMedGoogle Scholar
  79. Richau KH, Kaschani F, Verdoes M, Pansuriya TC, Niessen S, Stuber K, Colby T, Overkleeft HS, Bogyo M, Van der Hoorn RA (2012) Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol 158(4):1583–1599. doi: 10.1104/pp.112.194001 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Romero LC, García I, Gotor C (2013) L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal Behav 8(5), e24007. doi: 10.4161/psb.24007 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7(2):264–276. doi: 10.1093/mp/sst168 CrossRefPubMedGoogle Scholar
  82. Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5′-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124(2):715–724CrossRefPubMedPubMedCentralGoogle Scholar
  83. Santo-Domingo J, Demaurex N (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. J Gen Physiol 139(6):415–423. doi: 10.1085/jgp.201110767 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C (2014) Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166(4):2065–2076. doi: 10.1104/pp.114.245373 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Seo S, Mitsuhara I, Feng J, Iwai T, Hasegawa M, Ohashi Y (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol 155(1):502–514. doi: 10.1104/pp.110.162412 CrossRefPubMedGoogle Scholar
  86. Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci U S A 93(23):13383–13388CrossRefPubMedPubMedCentralGoogle Scholar
  87. Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. In: Kwang WJ (ed) Int Rev Cell Mol Biol 281:129–159. Academic Press. doi: 10.1016/S1937-6448(10)81004-4
  88. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184. doi: 10.1146/annurev-arplant-042110-103921 CrossRefPubMedGoogle Scholar
  89. Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8(2):165–173. doi: 10.1016/j.pbi.2005.01.013 CrossRefPubMedGoogle Scholar
  90. Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides on protein stability. Curr Protein Pept Sci 10(6):614–625CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896. doi: 10.1152/physrev.00017.2011 CrossRefPubMedGoogle Scholar
  92. Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146(1):310–320CrossRefPubMedPubMedCentralGoogle Scholar
  93. Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20(9):2484–2496CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wawrzynska A, Lewandowska M, Sirko A (2010) Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot 61(3):889–900. doi: 10.1093/jxb/erp356 CrossRefPubMedGoogle Scholar
  95. Wirtz M, Hell R (2006) Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties. J Plant Physiol 163(3):273–286CrossRefPubMedGoogle Scholar
  96. Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19(2):625–639CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wu W, Berkowitz GA (1992) Stromal pH and photosynthesis are affected by electroneutral K and H exchange THROUGH chloroplast envelope ion channels. Plant Physiol 98(2):666–672CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and beta-cyanoalanine synthase. Plant Cell Physiol 41(4):465–476CrossRefPubMedGoogle Scholar
  99. Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3(2):269–279. doi: 10.1093/mp/ssp112 CrossRefPubMedGoogle Scholar
  100. Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145(2):378–388. doi: 10.1104/pp.107.105742 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50(12):1518–1529. doi: 10.1111/j.1744-7909.2008.00769.x CrossRefPubMedGoogle Scholar
  102. Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52(6):556–567. doi: 10.1111/j.1744-7909.2010.00946.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cecilia Gotor
    • 1
  • Ana M. Laureano-Marín
    • 1
  • Lucía Arenas-Alfonseca
    • 1
  • Inmaculada Moreno
    • 1
  • Ángeles Aroca
    • 1
  • Irene García
    • 1
  • Luis C. Romero
    • 1
  1. 1.Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicias, Universidad de SevillaSevillaSpain

Personalised recommendations