Glacier Forelands: Lessons of Plant Population and Community Development

  • Brigitta ErschbamerEmail author
  • Marco Stefano Caccianiga
Part of the Progress in Botany book series (BOTANY, volume 78)


After glacier retreat, the ice-free forelands arise as easily detectable landforms where primary succession starts from the beginning onwards. Here, basic ecological lessons of colonization and community development can be learned. In this review we summarize the results of several case studies from the Austrian and Italian Alps, draw conclusions and highlight research gaps. Glacier foreland species exhibit a considerable intra-population diversity. Actual gene flow was shown to be high enough to maintain the genetic diversity throughout all successional stages. Most seeds of the glacier foreland species are light-weighted and wind-dispersed. Heavier seeds with no specific dispersal traits such as those of certain late successional species will hardly be dispersed to the pioneer stages. In most glacier forelands, a seed bank has to be developed from zero onwards. The already established species are the ones which contribute most to the genesis of a seed bank; an input of seeds by long distance dispersal was hardly detected. A relatively high quantity of glacier foreland species has a deep physiological dormancy. Thus, they will be able to form persistent seed banks. Seedling recruitment is highly governed by drought and seed availability. Additionally, frost and heat might be essential abiotic factors for germination and seedling survival. Growth rates of the glacier foreland species vary considerably among the successional stages and seem to be phylogenetically constrained. Population growth rates are characterised by low seedling recruitment and/or high mortality rates of the seedlings; some species overcome this low reproductive success by clonal growth strategies. From seed sowing experiments we learned that facilitation and competition may occur side by side. However, this topic has to be further explored in the future. By means of plant functional types, the pioneer species were classified as fast-growing ruderal strategists. In contrast, late successional stages harbour mainly stress-tolerant species with dense leaves and low relative growth rates. Phytosociological community descriptions are a challenging topic in glacier forelands. Nevertheless, several communities were described mainly from the Italian Alps. One of the less investigated topics, although being essential in ecology, is the species interaction issue. Among the scarce studies in this context, pollination and flower-visiting insects were studied. Species interactions including different organismic levels as well as species adaptations to changing conditions are still topics to be studied along glacier forelands. Climate warming probably will enhance the speed and the pathway of colonization. If glacier forelands can act as refugia for alpine-nival species remains to be proved. Thus, glacier foreland offer ample ecological questions and further research is highly recommended.


Seed Bank Seed Mass Pioneer Species Seed Rain Primary Succession 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abermann J, Lambrecht A, Fischer A, Kuhn M (2009) Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006). Cryosphere 3(2):205–215CrossRefGoogle Scholar
  2. Abermann J, Kuhn M, Lambrecht A, Hartl L (2013) Gletscher in Tirol, ihre Verteilung und jüngsten Veränderungen. In: Koch EM, Erschbamer B (eds) Klima, Wetter, Gletscher im Wandel. Alpine Forschungsstelle Obergurgl 3. Innsbruck University Press, Innsbruck, pp 49–67Google Scholar
  3. Alexander JM, Diez JM, Levine HM (2015) Novel competitors shape species’ responses to climate change. Nature 525. doi: 10.1038/nature14952
  4. Becker T, Dierschke H (2005) Primärsukzession im Gletschervorfeld des Obersulzbachkees (Hohe Tauern, Österreich), eine Zeitreihe über fast 150 Jahre. Tuexenia 25:111–139Google Scholar
  5. Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193CrossRefPubMedGoogle Scholar
  6. Burga CA, Krüsi B, Egli M, Wernli M, Elsener S, Ziefle M, Fischer T, Mavris C (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora 205:561–576CrossRefGoogle Scholar
  7. Caccianiga M, Andreis C (2004) Pioneer herbaceous vegetation on glacier forelands from the Italian Alps. Phytocoenologia 34(1):55–89CrossRefGoogle Scholar
  8. Caccianiga M, Andreis C, Cerabolini B (2001) Vegetation and environmental factors during primary succession on glacier forelands: some outlines from the Italian Alps. Plant Biosyst 135:295–310CrossRefGoogle Scholar
  9. Caccianiga M, Luzzaro A, Pierce S, Cerabolini B, Ceriani RM (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20CrossRefGoogle Scholar
  10. Caccianiga M, Andreis C, Diolaiuti G, D’Agata C, Mihalcea C, Smiraglia C (2011) Debris-covered glaciers as a habitat for plant life. Holocene 21(6):1011–1023CrossRefGoogle Scholar
  11. Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965CrossRefGoogle Scholar
  12. Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18:637–648CrossRefPubMedGoogle Scholar
  13. Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405–416CrossRefPubMedGoogle Scholar
  14. Chapin FS III (1993) Physiological controls over plant establishment in primary succession. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell Science Publishing, Oxford, pp 161–178Google Scholar
  15. Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175CrossRefGoogle Scholar
  16. Cichini K, Schwienbacher E, Marcante S, Seeber GUH, Erschbamer B (2011) Colonization of experimentally created gaps along an alpine successional gradient. Plant Ecol 212:1613–1627CrossRefGoogle Scholar
  17. Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  18. Crouch HJ (1993) Plant distribution patterns and primary succession on a glacier foreland: a comparative study of cryptogams and higher plants. In: Miles J, Walton DWH (eds) Primary succession on land. Blackwell Science Publishing, Oxford, pp 133–145Google Scholar
  19. Diaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 11:646–655CrossRefGoogle Scholar
  20. Erschbamer B (2007) Winners and losers of climate change in a central alpine glacier foreland. Arct Antarct Alp Res 39:237–244CrossRefGoogle Scholar
  21. Erschbamer B, Mayer R (2011) Can successional species groups be discriminated based on their life history traits? A study from a glacier foreland in the Central Alps. Plant Ecol Div 4:341–351CrossRefGoogle Scholar
  22. Erschbamer B, Kneringer E, Niederfriniger Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps. Flora 196:304–312Google Scholar
  23. Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862CrossRefGoogle Scholar
  24. Erschbamer B, Bösch D, Fleisch M, Peintner U, Schwienbacher E (2012) Keimung und Etablierung im Gletschervorfeld in Abhängigkeit von abiotischen und biotischen Faktoren. Ber d Reinh-Tüxen-Ges 24:89–102Google Scholar
  25. Fastie CL (1995) Causes and ecosystem consequences of multiple pathways on primary succession on Glacier Bay, Alaska. Ecology 76:1899–1916CrossRefGoogle Scholar
  26. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge Universisty Press, Cambridge, p 250Google Scholar
  27. Finch KR (2008) Diasporenregen im Gletschervorfeld des Rotmoosferners, Obergurgl, Ötztal. Diplomarbeit Univ, Innsbuck, 82 ppGoogle Scholar
  28. Fischer A, Hartl L (2013) Langzeitmonitoring von Gletschermassenbilanzen und –längenänderungen in Tirol. In: Koch EM, Erschbamer B (eds) Klima, Wetter, Gletscher im Wandel. Alpine Forschungsstelle Obergurgl 3. Innsbruck University Press, Innsbruck, pp 31–48Google Scholar
  29. Fleisch M (2011) Mykorrhizastatus von Pionierpflanzen und viviparen Pflanzen aus Primärsukzessionsstandorten des Rotmoosferner Gletschervorfeldes. Diplomarbeit Univ, Innsbruck, 46 ppGoogle Scholar
  30. Flø D, Hågvar S (2013) Aerial dispersal of invertebrates and mosses close to a receding alpine glacier in southern Norway. Arct Antarct Alp Res 45:481–490CrossRefGoogle Scholar
  31. Foster BL, Tilman D (2000) Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecol 146:1–10CrossRefGoogle Scholar
  32. Funes G, Basconcelo S, Díaz S, Cabido M (1999) Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Sci Res 9:341–345CrossRefGoogle Scholar
  33. Gentili R, Baroni C, Caccianiga M, Armiraglio S, Ghiani A, Citterio S (2015) Warm-stage microrefugia for alpine plants: feedback between geomorphological and biological processes. Ecol Complexity 21:87–99CrossRefGoogle Scholar
  34. Giles BE, Goudet J (1997) Genetic differentiation in Silene dioica metapopulations: estimation of spatiotemporal effects in a successional plant species. Am Nat 149:507–526CrossRefGoogle Scholar
  35. Gobbi M, Caccianiga M, Cerabolini B, Luzzaro A, Pierce S, De Bernardi F (2010) Plant adaptive responses during primary succession are associated with functional adaptations in ground beetles on deglaciated terrain. Community Ecol 11(2):223–231CrossRefGoogle Scholar
  36. Gobbi M, Ballarin F, Compostella C, Lencioni V, Seppi R, Tampucci D, Caccianiga M (2014) Physical and biological features of an active rock glacier of the Italian Alps. Holocene 24(11):1624–1631CrossRefGoogle Scholar
  37. Gottfried M, Pauli H, Futschik A, Akhaltkatsi M, Barančok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajči J, Larsson P, Mallaun M, Michelsen O, Moissev D, Moissev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Climate Change 2:111–115CrossRefGoogle Scholar
  38. Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester, 222 ppGoogle Scholar
  39. Grime JP, Pierce S (2012) The evolutionary strategies that shape ecosystems., Wiley-Blackwell, 244 ppCrossRefGoogle Scholar
  40. Inauen N, Körner C, Hiltbrunner E (2012) No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob Change Biol 18:985–999CrossRefGoogle Scholar
  41. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri R, Meyer L (eds) Geneva, 151 ppGoogle Scholar
  42. Jochimsen M (1970) Die Vegetationsentwicklung auf Moränenboden in Abhängigkeit von einigen Umweltfaktoren. Alpin-Biol. Stud., Veröff. Univ. Innsbruck 46Google Scholar
  43. Jones CC, del Moral (2009) Dispersal and establishment both limit colonization during primary succession on a glacier foreland. Plant Ecol 204:217–230Google Scholar
  44. Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49CrossRefPubMedGoogle Scholar
  45. Kaufmann R (2001) Invertebrate succession on an alpine glacier foreland. Ecology 82:2261–2278CrossRefGoogle Scholar
  46. Kaufmann R (2002) Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change. Oecologia 130:470–475CrossRefGoogle Scholar
  47. Kaufmann R, Raffl C (2002) Diversity in primary succession: the chronosequence of a glacier foreland. In: Körner C, Spehn EM (eds) Mountain biodiversity. A global assessment. The Parthenon Publishing Group, London, pp 177–190Google Scholar
  48. Körner C (1999) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Scientific Publications, pp 297–311Google Scholar
  49. Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619Google Scholar
  50. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. SpringerGoogle Scholar
  51. Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411CrossRefPubMedGoogle Scholar
  52. Leck MA, Parker VT, Simpson RL (2008) Seedling ecology and evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Losapio G, Jordan F, Caccianiga M, Gobbi M (2015) Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland. Ecol Mod 314:73–79CrossRefGoogle Scholar
  54. Lüdi W (1921) Die Pflanzengesellschaften des Lauterbrunnentales und ihre Sukzession. Beitr. Geobot. Landesaufn. Schweiz, Zürich 9:1–364Google Scholar
  55. Marcante S, Schwienbacher E, Erschbamer B (2009a) Genesis of a soil seed bank on a primary succession in the Central Alps (Ötztal, Austria). Flora 204:434–444CrossRefGoogle Scholar
  56. Marcante S, Winkler E, Erschbamer B (2009b) Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Ann Bot 103:1129–1143CrossRefPubMedPubMedCentralGoogle Scholar
  57. Marcante S, Sierra-Almeida A, Spindelböck JP, Erschbamer B, Neuner G (2012) Frost as a limiting factor for recruitment and establishment of early development stages in an alpine glacier foreland. J Veg Sci 23:858–868CrossRefGoogle Scholar
  58. Marcante S, Kiebacher T, Erschbamer B (2013) Reproductive responses of glacier foreland species to simulated climate change. Coll Phytosociol XXIX:361–373Google Scholar
  59. Marcante S, Erschbamer B, Buchner O, Neuner G (2014) Heat tolerance of early developmental stages of glacier foreland species in the growth chamber and in the field. Plant Ecol 215:747–758CrossRefPubMedPubMedCentralGoogle Scholar
  60. Matthews JA (1992) The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge, 386 ppGoogle Scholar
  61. Matthews JA, Whittaker RJ (1987) Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arct Alp Res 19:385–395CrossRefGoogle Scholar
  62. Mühlmann O, Peintner U (2008a) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180CrossRefPubMedGoogle Scholar
  63. Mühlmann O, Peintner U (2008b) Ectomycorrhiza of Kobresia myosuroides at a primary successional Glacier forefront. Mycorrhiza 18:355–362CrossRefPubMedGoogle Scholar
  64. Mühlmann O, Bacher M, Peintner U (2008) Polygonum viviparum mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95CrossRefPubMedGoogle Scholar
  65. Nagl F, Erschbamer B (2010) Vegetation und Besiedlungsstrategien. In: Koch EM, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Alpine Forschungsstelle Obergurgl 1. Innsbruck University Press, Innsbruck, pp 121–143Google Scholar
  66. Neuner G, Buchner O (2012) Dynamics of tissue heat tolerance and thermotolerance of PS II in alpine plants. In: Lütz C (ed) Plants in alpine regions. Cell physiology of adaption and survival strategies. Springer, New York, pp 61–74CrossRefGoogle Scholar
  67. Nicolussi K (2009) Alpine Dendrochronologie – Untersuchungen zur Kenntnis der holozänen Umwelt- und Klimaentwicklung. In: Schmidt R, Matulla C, Psenner R (eds) Klimawandel in Österreich. Alpine space – man & environment. Innsbruck University Press, Innsbruck, pp 41–54Google Scholar
  68. Niederfriniger Schlag R (2001) Primärsukzession im Gletschervorfeld. Keimung, Etablierung, Wachstum und Interaktionen im Gletschervorfeld des Rotmoosferners (Ötztal, Tirol). Dissertation, University Innsbruck, 111 ppGoogle Scholar
  69. Niederfriniger Schlag R, Erschbamer B (2000) Germination and establishment of seedlings on a glacier foreland in the Central Alps, Austria. Arct Antarct Alp Res 32:270–277CrossRefGoogle Scholar
  70. Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741CrossRefPubMedGoogle Scholar
  71. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhaltkatsi M, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Ghosn D, Holten J, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev D, Moiseev P, Molau U, Molero Mesa J, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355CrossRefPubMedGoogle Scholar
  72. Pirola A (1959) Flora e vegetazione periglaciale sul versante meridionale del Bernina. Flora et Vegetatio Italica, mem. 1, Gianasso ed., Sondrio, 114 ppGoogle Scholar
  73. Pluess AR (2011) Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol Ecol 20:473–485CrossRefPubMedGoogle Scholar
  74. Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013–2021CrossRefPubMedGoogle Scholar
  75. Raffl C, Erschbamer B (2004) Comparative vegetation analyses of two transects crossing a characteristic glacier valley in the Central Alps. Phytocoenologia 34:225–240CrossRefGoogle Scholar
  76. Raffl C, Mallaun M, Mayer R, Erschbamer B (2006a) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alpi Res 38:421–428CrossRefGoogle Scholar
  77. Raffl C, Schönswetter P, Erschbamer B (2006b) ‘Sax-sess’ – genetics of primary succession in a pioneer species on two parallel glacier forelands. Mol Ecol 15:2433–2440CrossRefPubMedGoogle Scholar
  78. Raffl C, Marcante S, Erschbamer B (2007) The role of spontaneous selfing in the pioneer species Saxifraga aizoides. Flora 202:128–132CrossRefGoogle Scholar
  79. Raffl C, Holderegger R, Parson W, Erschbamer B (2008) Patterns in genetic diversity of Trifolium pallescens populations do not reflect chronosequence on alpine glacier forelands. Heredity 100:526–532CrossRefPubMedGoogle Scholar
  80. Raso L, Sint D, Mayer R, Plangg S, Recheis T, Brunner S, Kaufmann R, Traugott M (2014) Intraguild predation in pioneer predator communities of alpine glacier forelands. Mol Ecol 23:3744–3754CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ricotta C, Bacaro G, Caccianiga M, Cerabolini B, Moretti M (2015) A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic Appl Ecol 16:10–18CrossRefGoogle Scholar
  82. Rydin H, Borgegård S-O (1991) Plant characteristics over a century of primary succession on islands: Lake Hjälmaren. Ecology 72:1089–1101CrossRefGoogle Scholar
  83. Schwienbacher E, Marcante S, Erschbamer B (2010) Alpine species seed longevity in the soil in relation to seed size and shape – a 5-year burial experiment in the Central Alps. Flora 205:19–25CrossRefGoogle Scholar
  84. Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B (2011) Seed dormancy in alpine species. Flora 206:845–856CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B (2012) Correspondence of seed traits with niche position in glacier foreland succession. Plant Ecol 213:371–382CrossRefGoogle Scholar
  86. Stöcklin J (1990) Populationsstruktur des Rohbodenpioniers Epilobium fleischeri Hochst. (Onagraceae) auf dem Morteratsch-Gletschervorfeld. Verh Ges Ökol XIX/II:30–43Google Scholar
  87. Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56CrossRefGoogle Scholar
  88. Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133CrossRefGoogle Scholar
  89. Tampucci D, Boffa G, Mangili F, Gobbi M, Caccianiga M (2015) Vegetation outlines of two active rock glaciers with contrasting lithology. Plant Sociol 52(1):9–18Google Scholar
  90. Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241CrossRefGoogle Scholar
  91. Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696CrossRefGoogle Scholar
  92. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457CrossRefPubMedPubMedCentralGoogle Scholar
  93. Vetaas OR (1997) Relationship between floristic gradients in a primary succession. J Veg Sci 8:665–676CrossRefGoogle Scholar
  94. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge, 442 ppCrossRefGoogle Scholar
  95. Weppler T, Stöcklin J (2006) Does pre-dispersal seed predation limit reproduction and population growth in the alpine clonal plant Geum reptans? Plant Ecol 187:277–287CrossRefGoogle Scholar
  96. Weppler T, Stoll P, Stöcklin J (2006) The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. J Ecol 94:869–879CrossRefGoogle Scholar
  97. Winkler E, Marcante S, Erschbamer B (2015) Demography of the alpine pioneer species Saxifraga aizoides in different successional stages at the glacier foreland of the Rotmoosferner (Obergurgl, Ötztal, Austria). Tuexenia 35:267–283Google Scholar
  98. Winkler E, Marcante S, Erschbamer B (2010) Demographic consequences of the two reproductive modes in Poa alpina L. along a primary succession gradient in the Central Alps. Arct Antarct Alp Res 42:227–235CrossRefGoogle Scholar
  99. Zheng L-J, Maier S, Grube M, Türk R, Gruber JP, Peer T (2014) Alpine biological soil crusts on the Hochtor (Grossglockner high alpine route, Hohe Tauern, Austria): soils function and biodiversity. Acta ZooBot Austria 150(151):175–196Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Brigitta Erschbamer
    • 1
    Email author
  • Marco Stefano Caccianiga
    • 2
  1. 1.Institute of Botany, University of InnsbruckInnsbruckAustria
  2. 2.Dipartimento di BioscienzeUniversity of MilanoMilanoItaly

Personalised recommendations