Plants and Atmospheric Aerosols

Part of the Progress in Botany book series (BOTANY, volume 78)


Atmospheric aerosols are liquid, solid, or mixed suspensions of heterogeneous chemical composition, ranging from a few nanometers to almost 100 μm in diameter. Plants are sources and sinks of these diverse aerosols. Vegetation is influenced by aerosols through the water cycle, radiation balance, and nutrient transport, on global and regional scales, but direct interactions of aerosols with plant ecophysiology have not been considered in sufficient detail. Plant surface characteristics and aerodynamic factors control deposition. These factors may be manipulated in efforts to mitigate aerosol concentrations using urban vegetation as efficient aerosol collectors. Hygroscopic aerosols deposited on leaves generate concentrated solutions that reduce surface tension and generate thin liquid films. These films are shown to enter the stomatal pores, facilitating foliar nutrient uptake and enhancing liquid water loss that is poorly controlled by stomata. Aerosol pollution can reduce plant drought tolerance and alter nutrient balance. Anthropogenic aerosols now exceed natural aerosols, particularly in urban areas. The effects of these aerosols on plants require a focused research effort.


Leaf Surface Vapor Pressure Deficit Atmospheric Aerosol Aerosol Deposition Saturation Isothermal Remanent Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdullah CM, Iqbal MZ (1991) Response of automobiles, stone and cement particulate matters on stomatal clogging of plants. Geobios 18:196–201Google Scholar
  2. Aber JD, Ollinger SV, Federer CA, Reich PB, Goulden ML, Kicklighter DW, Melillo JM, Lathrop RG (1995) Predicting the effects of climate change on water yield and forest production in the northeastern United States. Climate Res 5(3):207–222CrossRefGoogle Scholar
  3. Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017PubMedCrossRefGoogle Scholar
  4. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8)Google Scholar
  5. Almas AR, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Biochem 36:805–813CrossRefGoogle Scholar
  6. Anderegg WRL, Flint A, Huang CY, Flint L, Berry JA, Davis FW, Sperry JS, Field CB (2015) Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8(5):367–371CrossRefGoogle Scholar
  7. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175PubMedCrossRefGoogle Scholar
  8. Andreae MO (2007) Aerosols before pollution. Science 315(5808):50–51PubMedCrossRefGoogle Scholar
  9. Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276(5315):1052–1058CrossRefGoogle Scholar
  10. Anfodillo T, Di Bisceglie DP, Urso T (2002) Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Tree Physiol 22(7):479–487PubMedCrossRefGoogle Scholar
  11. Armbrust DV, Retta A (2002) Wind and sandblast damage to growing vegetation. Ann Arid Zone 39:273–284Google Scholar
  12. Asmi A, Coen MC, Ogren JA, Andrews E, Sheridan P, Jefferson A, Weingartner E, Baltensperger U, Bukowiecki N, Lihavainen H, Kivekas N, Asmi E, Aalto PP, Kulmala M, Wiedensohler A, Birmili W, Hamed A, O’Dowd C, Jennings SG, Weller R, Flentje H, Fjaeraa AM, Fiebig M, Myhre CL, Hallar AG, Swietlicki E, Kristensson A, Laj P (2013) Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmos Chem Phys 13(2):895–916CrossRefGoogle Scholar
  13. Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237PubMedCrossRefGoogle Scholar
  14. Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17(13):8297–8305PubMedCrossRefGoogle Scholar
  15. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8CrossRefGoogle Scholar
  16. Beckett KP, Freer-Smith PH, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99(3):347–360PubMedCrossRefGoogle Scholar
  17. Beckett KP, Freer-Smith PH, Taylor G (2000) Particulate pollution capture by urban trees: effect of species and windspeed. Glob Chang Biol 6(8):995–1003CrossRefGoogle Scholar
  18. Belot Y, Baille A, Delmas JL (1976) Numerical-model of atmospheric pollutant dispersion in presence of plant canopy – application to forest canopies. Atmos Environ 10(2):89–98CrossRefGoogle Scholar
  19. Berthelsen BO, Olsen RA, Steinnes E (1995) Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils. Sci Total Environ 170:141–149CrossRefGoogle Scholar
  20. Bertolotti G, Rada EC, Ragazzi M, Chiste A, Gialanella S (2014) A multi-analytical approach to the use of conifer needles as passive samplers of particulate matter and organic pollutants. Aerosol Air Qual Res 14(3):677–685Google Scholar
  21. Blum A, Mayer J, Golan G (1983) Chemical desiccation of wheat plants as a simulator of post-anthesis stress. 2. Relations to drought stress. Field Crop Res 6(2):149–155CrossRefGoogle Scholar
  22. Bond JA, Bollich PK (2007) Effects of pre-harvest desiccants on rice yield and quality. Crop Prot 26(4):490–494CrossRefGoogle Scholar
  23. Botto L, Narayanan C, Fulgosi M, Lakehal D (2005) Effect of near-wall turbulence enhancement on the mechanisms of particle deposition. Int J Multiphase Flow 31(8):940–956CrossRefGoogle Scholar
  24. Boucher O (2015) Atmospheric aerosols – properties and climate impacts. Springer, Dordrecht, p 311Google Scholar
  25. Boucher U, Balabane M, Lamy I, Cambier P (2005) Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation. Environ Pollut 135:187–194PubMedCrossRefGoogle Scholar
  26. Brandt CJ, Rhoades RW (1972) Effects of limestone dust accumulation on composition of a forest community. Environ Pollut 3:217–225CrossRefGoogle Scholar
  27. Brandt CJ, Rhoades RW (1973) Effects of limestone dust accumulation on lateral growth of forest trees. Environ Pollut 4:207–213CrossRefGoogle Scholar
  28. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci U S A 102(42):15144–15148PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong YL, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378PubMedCrossRefGoogle Scholar
  30. Bruck RI, Robarge WP, McDaniel A (1989) Forest decline in the boreal montane ecosystems of the southern Appalachian mountains. Water Air Soil Pollut 48(1-2):161–180CrossRefGoogle Scholar
  31. Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80(3):369–399CrossRefGoogle Scholar
  32. Burkhardt J, Eiden R (1994) Thin water films on coniferous needles. Atmos Environ 28(12):2001–2011CrossRefGoogle Scholar
  33. Burkhardt J, Hunsche M (2013) “Breath figures” on leaf surfaces-formation and effects of microscopic leaf wetness. Front Plant Sci 4:422. doi: 10.3389/fpls.2013.00422 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burkhardt J, Pariyar S (2014) Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.). Environ Pollut 184:659–667PubMedCrossRefGoogle Scholar
  35. Burkhardt J, Pariyar S (2016) How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles? Plant Biol 18:91–100PubMedCrossRefGoogle Scholar
  36. Burkhardt J, Peters K, Crossley A (1995) The presence of structural surface waxes on coniferous needles affects the pattern of dry deposition of fine particles. J Exp Bot 46(288):823–831CrossRefGoogle Scholar
  37. Burkhardt J, Kaiser H, Goldbach H, Kappen L (1999) Measurements of electrical leaf surface conductance reveal recondensation of transpired water vapour on leaf surfaces. Plant Cell Environ 22(2):189–196CrossRefGoogle Scholar
  38. Burkhardt J, Koch K, Kaiser H (2001) Deliquescence of deposited atmospheric particles on leaf surfaces. Water Air Soil Pollut Focus 1:313–321CrossRefGoogle Scholar
  39. Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions – an update involving leaf surface particles. New Phytol 196(3):774–787PubMedCrossRefGoogle Scholar
  40. Camargo MCR, Toledo MCF (2003) Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14(1):49–53CrossRefGoogle Scholar
  41. Cape JN, Fowler D (1981) Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fenn 15:457–458CrossRefGoogle Scholar
  42. Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10(4):1701–1737CrossRefGoogle Scholar
  43. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397(6719):491–497CrossRefGoogle Scholar
  44. Chamberlain AC (1967) Transport of Lycopodium spores and other small particles to rough surfaces. Proc R Soc Lond A Math Phys Sci 296(1444):45–70CrossRefGoogle Scholar
  45. Chamberlain AC (1975) The movement of particles in plant communities. In: Monteith JL (ed) Vegetation and the atmosphere. Academic, London, pp 155–203Google Scholar
  46. Chameides WL, Yu H, Liu SC, Bergin M, Zhou X, Mearns L, Wang G, Kiang CS, Saylor RD, Luo C, Huang Y, Steiner A, Giorgi F (1999) Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? Proc Natl Acad Sci U S A 96(24):13626–13633PubMedPubMedCentralCrossRefGoogle Scholar
  47. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326(6114):655–661CrossRefGoogle Scholar
  48. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303(5661):1173–1176PubMedCrossRefGoogle Scholar
  49. Cleugh HA, Miller JM, Bohm M (1998) Direct mechanical effects of wind on crops. Agroforestry Syst 41(1):85–112CrossRefGoogle Scholar
  50. Cray JA, Russell JT, Timson DJ, Singhal RS, Hallsworth JE (2013) A universal measure of chaotropicity and kosmotropicity. Environ Microbiol 15(1):287–296PubMedCrossRefGoogle Scholar
  51. Crépineau C, Rychen G, Feidt C, Le Roux Y, Lichtfouse E, Laurent F (2003) Contamination of pastures by polycyclic aromatic hydrocarbons (PAHs) in the vicinity of a highway. J Agric Food Chem 51:4841–4845PubMedCrossRefGoogle Scholar
  52. Croteau MN, Luoma SN, Stewart AR (2005) Trophic transfer of metals along freshwater food webs: evidence of cadmium biomagnification in nature. Limnol Oceanogr 50:1511–1519CrossRefGoogle Scholar
  53. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256CrossRefGoogle Scholar
  54. Daresta BE, Italiano F, de Gennaro G, Trotta M, Tutino M, Veronico P (2015) Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants. Chemosphere 119:37–42PubMedCrossRefGoogle Scholar
  55. Dässler H-G, Ranft H, Rehn K-H (1972) Zur Widerstandsfähigkeit von Gehölzen gegenüber Fluorverbindungen und Schwefeldioxid [The susceptibility of woody plants exposed to fluorine compounds and SO2]. Flora (Jena) 161:289–302Google Scholar
  56. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O‘Dowd C, Schulz M, Schwartz SE (2011) Production flux of sea spray aerosol. Rev Geophys 49Google Scholar
  57. Derome J, Lindroos A-J (1998) Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland. Environ Pollut 99:225–232PubMedCrossRefGoogle Scholar
  58. Despres VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Frohlich-Nowoisky J, Elbert W, Andreae MO, Poschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol 64Google Scholar
  59. Dette HP, Koop T (2015) Glass formation processes in mixed inorganic/organic aerosol particles. J Phys Chem A 119(19):4552–4561PubMedCrossRefGoogle Scholar
  60. Deventer MJ, Griessbaum F, Klemm O (2013) Size-resolved flux measurement of sub-micrometer particles over an urban area. Meteorol Z 22(6):729–737CrossRefGoogle Scholar
  61. dos Santos AP, Diehl A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26(13):10778–10783PubMedCrossRefGoogle Scholar
  62. Durga M, Bharathi S, Balakrishna Murty P, Devasena T (2015) Characterization and phytotoxicity studies of suspended particulate matter (SPM) in Chennai urban area. J Environ Biol 36:583–589Google Scholar
  63. Dusek U, Frank GP, Hildebrandt L, Curtius J, Schneider J, Walter S, Chand D, Drewnick F, Hings S, Jung D, Borrmann S, Andreae MO (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312(5778):1375–1378PubMedCrossRefGoogle Scholar
  64. Dutcher CS, Wexler AS, Clegg SL (2010) Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts. J Phys Chem A 114(46):12216–12230PubMedCrossRefGoogle Scholar
  65. Dzierzanowski K, Popek R, Gawronska H, Saebo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. Int J Phytoremediation 13(10):1037–1046PubMedCrossRefGoogle Scholar
  66. Eamus D, Boulain N, Cleverly J, Breshears DD (2013) Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. Ecol Evol 3(8):2711–2729PubMedPubMedCentralCrossRefGoogle Scholar
  67. Eamus D, Fowler D (1990) Photosynthetic and stomatal conductance responses to acid mist of Red Spruce seedlings. Plant Cell Environ 13(4):349–357CrossRefGoogle Scholar
  68. Eeva T, Lehikoinen E (2004) Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher. Funct Ecol 18:548–553CrossRefGoogle Scholar
  69. Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir IH, Rissanen M, Jokinen T, Schobesberger S, Kangasluoma J, Kontkanen J, Nieminen T, Kurten T, Nielsen LB, Jorgensen S, Kjaergaard HG, Canagaratna M, Dal Maso M, Berndt T, Petaja T, Wahner A, Kerminen VM, Kulmala M, Worsnop DR, Wildt J, Mentel TF (2014) A large source of low-volatility secondary organic aerosol. Nature 506(7489):476–9PubMedCrossRefGoogle Scholar
  70. Eller BM (1977) Road dust induced increase of leaf temperature. Environ Pollut 13:99–107CrossRefGoogle Scholar
  71. Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199(1):151–162PubMedCrossRefGoogle Scholar
  72. Erickson BE (2003) Clear-cutting increases mercury in runoff. Environ Sci Technol 37(11):200A–201APubMedCrossRefGoogle Scholar
  73. Erisman JW, Draaijers G (2003) Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation. Environ Pollut 124(3):379–388PubMedCrossRefGoogle Scholar
  74. Escobedo FJ, Nowak DJ (2009) Spatial heterogeneity and air pollution removal by an urban forest. Landsc Urban Plan 90(3-4):102–110CrossRefGoogle Scholar
  75. Eveling DW (1969) Effects of spraying plants with suspensions of inert dusts. Ann Appl Biol 64(1):139–151CrossRefGoogle Scholar
  76. Eveling DW (1972) Similar effects of suspensions of copper oxychloride and kaolin on sprayed leaves. Ann Appl Biol 70(3):245Google Scholar
  77. Farmer AM (1993) The effects of dust on vegetation – a review. Environ Pollut 79(1):63–75PubMedCrossRefGoogle Scholar
  78. Feng J (2008) A size-resolved model and a four-mode parameterization of dry deposition of atmospheric aerosols. J Geophys Res Atmos 113(D12)Google Scholar
  79. Feng MH, Shan XQ, Zhang SZ, Wen B (2005) Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949PubMedCrossRefGoogle Scholar
  80. Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733CrossRefGoogle Scholar
  81. Fernandez V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28(1-2):36–68CrossRefGoogle Scholar
  82. Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Ravi S, Reheis MC, Reynolds RL (2010) The ecology of dust. Front Ecol Environ 8(8):423–430CrossRefGoogle Scholar
  83. Flückiger W, Flückiger-Keller H, Oertli JJ, Guggenheim R (1977) Pollution of leaf and needle surfaces near a highway and its effect on stomatal diffusive resistance. Eur J For Pathol 7(6):358–364CrossRefGoogle Scholar
  84. Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116(1-2):5–32CrossRefGoogle Scholar
  85. Freer-Smith PH, Holloway S, Goodman A (1997) The uptake of particulates by an urban woodland: site description and particulate composition. Environ Pollut 95(1):27–35PubMedCrossRefGoogle Scholar
  86. Freer-Smith PH, El-Khatib AA, Taylor G (2004) Capture of particulate pollution by trees: a comparison of species typical of semi-arid areas (Ficus nitida and Eucalyptus globulus) with European and North American species. Water Air Soil Pollut 155(1-4):173–187CrossRefGoogle Scholar
  87. Freer-Smith PH, Beckett KP, Taylor G (2005) Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa ‘Beaupre’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ Pollut 133(1):157–167PubMedCrossRefGoogle Scholar
  88. Frescholtz TF, Gustin MS, Schorran DE et al (2003) Assessing the source of mercury in foliar tissue of quaking aspen. Environ Toxicol Chem 22:2114–2119PubMedCrossRefGoogle Scholar
  89. Fritze H, Niini S, Mikkola K, Makinen A (1989) Soil microbial effects of a Cu-Ni smelter in southwestern Finland. Biol Fertil Soils 8(1):87–94CrossRefGoogle Scholar
  90. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, van Der Gon HD, Facchini MC, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik JG, Spracklen DV, Vignati E, Wild M, Williams M, Gilardoni S (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15(14):8217–8299CrossRefGoogle Scholar
  91. Gallagher MW, Beswick KM, Duyzer J, Westrate H, Choularton TW, Hummelshoj P (1997) Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique. Atmos Environ 31(3):359–373CrossRefGoogle Scholar
  92. Gao YZ, Zhu LZ (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178PubMedCrossRefGoogle Scholar
  93. Gawel JE, Ahner BA, Friedland AJ, Morel FMM (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature 381:64–65CrossRefGoogle Scholar
  94. Gillette DA, Lawson RE, Thompson RS (2004) A “test of concept” comparison of aerodynamic and mechanical resuspension mechanisms for particles deposited on field rye grass (Secale cercele). Part 1. Relative particle flux rates. Atmos Environ 38(28):4789–4797CrossRefGoogle Scholar
  95. Gleason SM, Faucette DT, Toyofuku MM, Torres CA, Bagley CF (2007) Assessing and mitigating the effects of windblown soil on rare and common vegetation. Environ Manag 40(6):1016–1024CrossRefGoogle Scholar
  96. Gmur NF, Evans LS, Cunningham EA (1983) Effects of ammonium sulfate aerosols on vegetation. 2. Mode of entry and responses of vegetation. Atmos Environ 17(4):715–721CrossRefGoogle Scholar
  97. Grace J, Wilson J (1976) Boundary layer over a Populus leaf. J Exp Bot 27(97):231–241CrossRefGoogle Scholar
  98. Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29(2-3):213–239PubMedCrossRefGoogle Scholar
  99. Greenspan L (1977) Humidity fixed-points of binary saturated aqueous-solutions. J Res Nat Bur Stand 81(1):89–96CrossRefGoogle Scholar
  100. Guderian R (1986) Terrestrial ecosystems: particulate deposition. In: Legge AH, Krupa SV (eds) Air pollutants and their effects on the terrestrial ecosystem, vol 18: Advances in environmental science and technology. Wiley, New York, pp 339–363Google Scholar
  101. Guha A (1997) A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. J Aerosol Sci 28(8):1517–1537CrossRefGoogle Scholar
  102. Guha A (2008) Transport and deposition of particles in turbulent and laminar flow. Annu Rev Fluid Mech 40:311–341CrossRefGoogle Scholar
  103. Hageman KJ, Simonich SL, Campbell DH, Wilson GR, Landers DH (2006) Atmospheric deposition of current-use and historic-use pesticides in snow at national parks in the western United States. Environ Sci Technol 40:3174–3180PubMedCrossRefGoogle Scholar
  104. Hamilton DS (2015) Natural aerosols and climate: understanding the unpolluted atmosphere to better understand the impacts of pollution. Weather 70(9):264–268CrossRefGoogle Scholar
  105. Hamilton DS, Lee LA, Pringle KJ, Reddington CL, Spracklen DV, Carslaw KS (2014) Occurrence of pristine aerosol environments on a polluted planet. Proc Natl Acad Sci U S A 111(52):18466–18471PubMedPubMedCentralCrossRefGoogle Scholar
  106. Heinsoo K, Koppel A (1998) Minimum epidermal conductance of Norway spruce (Picea abies) needles: influence of age and shoot position in the crown. Ann Bot Fenn 35(4):257–262Google Scholar
  107. Helmisaari H-S, Makkonen K, Olsson M, Viksna A, Mälkönen E (1999) Fine-root growth, mortality and heavy metal concentrations in limed and fertilized Pinus silvestris (L.) stands in the vicinity of a Cu-Ni smelter in SW Finland. Plant Soil 209:193–200CrossRefGoogle Scholar
  108. Herrett RA, Vlitos AJ, Crosby DG, Hatfield HH (1962) Leaf abscission induced by iodide ion. Plant Physiol 37(3):358–363PubMedPubMedCentralCrossRefGoogle Scholar
  109. Hirano T, Kiyota M, Aiga I (1995) Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut 89(3):255–261PubMedCrossRefGoogle Scholar
  110. Hoad SP, Jeffree CE, Grace J (1992) Effects of wind and abrasion on cuticular integrity in Fagus sylvatica L and consequences for transfer of pollutants through leaf surfaces. Agr Ecosyst Environ 42(3-4):275–289CrossRefGoogle Scholar
  111. Hofman J, Wuyts K, Van Wittenberghe S, Brackx M, Samson R (2014) On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: relationships and spatial variability of different particle size fractions. Environ Pollut 189:63–72PubMedCrossRefGoogle Scholar
  112. Hofmeister F (1887) Zur Lehre von der Wirkung der Salze. 2. Mittheilung. Ueber Regelmässigkeiten in der eiweissfällenden Wirkung der Salze und ihre Beziehung zum physiologischen Verhalten derselben. Archiv fuer experimentelle Pathologie und Pharmakologie XXIV:247–260Google Scholar
  113. Hope AS, Fleming JB, Stow DA, Aguado E (1991) Tussock tundra albedos in the north slope of Alaska – effects of illumination, vegetation composition, and dust deposition. J Appl Meteorol 30(8):1200–1206CrossRefGoogle Scholar
  114. Howe TS, Billings S, Stolzberg RJ (2004) Sources of polycyclic aromatic hydrocarbons and hexachlorobenzene in spruce needles of eastern Alaska. Environ Sci Technol 38:3294–3298PubMedCrossRefGoogle Scholar
  115. Howsam M, Jones KC, Ineson P (2000) PAHs associated with the leaves of three deciduous tree species. I – Concentrations and profiles. Environ Pollut 108(3):413–424PubMedCrossRefGoogle Scholar
  116. Hoyt DV (1978) A model for the calculation of solar global insolation. Solar Energy 21:27–35CrossRefGoogle Scholar
  117. Huang C-W, Launiainen S, Gronholm T, Katul GG (2014) Particle deposition to forests: an alternative to K-theory. Atmos Environ 94:593–605CrossRefGoogle Scholar
  118. Huang CW, Lin MY, Khlystov A, Katul GG (2015) The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles. J Geophys Res Atmos 120(8):3370–3385CrossRefGoogle Scholar
  119. Huttunen S, Havas P, Laine K (1981) Effects of air pollutants on the wintertime water economy of the Scots pine Pinus silvestris. Holarctic Ecol 4(2):94–101Google Scholar
  120. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308(5718):73PubMedCrossRefGoogle Scholar
  121. Jiao XC, Xu FL, Dawson R, Chen SH, Tao S (2007) Adsorption and absorption of polycyclic aromatic hydrocarbons to rice roots. Environ Pollut 148:230–235PubMedCrossRefGoogle Scholar
  122. Johnson D, Hale B (2008) Fine root decomposition and cycling of Cu, Ni, Pb, and Zn at forest sites near smelters in Sudbury, ON, and Rouyn-Noranda, QU, Canada. Hum Ecol Risk Assess 14:41–53CrossRefGoogle Scholar
  123. Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51:209–219PubMedCrossRefGoogle Scholar
  124. Kalinovic TS, Serbula SM, Radojevic AA, Kalinovic JV, Steharnik MM, Petrovic JV (2016) Elder, linden and pine biomonitoring ability of pollution emitted from the copper smelter and the tailings ponds. Geoderma 262:266–275CrossRefGoogle Scholar
  125. Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306CrossRefGoogle Scholar
  126. Kardel F, Wuyts K, Maher BA, Hansard R, Samson R (2011) Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: inter-species differences and in-season variation. Atmos Environ 45(29):5164–5171CrossRefGoogle Scholar
  127. Katul GG, Gronholm T, Launiainen S, Vesala T (2010) Predicting the dry deposition of aerosol-sized particles using layer-resolved canopy and pipe flow analogy models: role of turbophoresis. J Geophys Res Atmos 115Google Scholar
  128. Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419(6903):215–223PubMedCrossRefGoogle Scholar
  129. Kaupp H, McLachlan MS (1999) Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere 38:3411–3421CrossRefGoogle Scholar
  130. Kiikkilä O (2003) Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland. Silva Fenn 37:399–415CrossRefGoogle Scholar
  131. Kim CG, Bell JNB, Power SA (2003) Effects of soil cadmium on Pinus sylvestris L. seedlings. Plant Soil 257:443–449CrossRefGoogle Scholar
  132. Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8(3):480–492CrossRefGoogle Scholar
  133. Kozlov MV, Haukioja E, Bakhtiarov AV, Stroganov DN, Zimina SN (2000) Root versus canopy uptake of heavy metals by birch in an industrially polluted area: contrasting behaviour of nickel and copper. Environ Pollut 107(3):413–420PubMedCrossRefGoogle Scholar
  134. Krajíková A, MejstÍík V (1984) The effect of fly-ash particles on the plugging of stomata. Environ Pollut 36:83–93CrossRefGoogle Scholar
  135. Krupa S, Booker F, Bowersox V, Lehmann CT, Grantz D (2008) Uncertainties in the current knowledge of some atmospheric trace gases associated with US agriculture: a review. J Air Waste Manage Assoc 58(8):986–993CrossRefGoogle Scholar
  136. Kuki KN, Oliva MA, Pereira EG, Costa AC, Cambraia J (2008) Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. Sci Total Environ 403(1-3):207–214PubMedCrossRefGoogle Scholar
  137. Kuki KN, Oliva MA, Costa AC (2009) The simulated effects of iron dust and acidity during the early stages of establishment of two coastal plant species. Water Air Soil Pollut 196:287–295CrossRefGoogle Scholar
  138. Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9(1-2):19–37CrossRefGoogle Scholar
  139. Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529CrossRefGoogle Scholar
  140. Lee TE, Miller SD, Turk FJ, Schueler C, Julian R, Deyo S, Dills P, Wang S (2006) The NPOESS VIIRS day/night visible sensor. Bull Am Meteorol Soc 87:191–199CrossRefGoogle Scholar
  141. Lei YD, Wania F (2004) Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ 38:3557–3571CrossRefGoogle Scholar
  142. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367–371PubMedCrossRefGoogle Scholar
  143. Lequy E, Conil S, Turpault MP (2012) Impacts of Aeolian dust deposition on European forest sustainability: a review. For Ecol Manage 267:240–252CrossRefGoogle Scholar
  144. Lerman SL, Darley EF (1975) Particulates. In: Mudd JB, Kozlowski TT (eds) Responses of plants to air pollution. Academic, New York, pp 141–158CrossRefGoogle Scholar
  145. Lin ZQ, Schuepp PH (1996) Concentration and distribution of metal elements at the surface of balsam fir foliage by micro-proton induced X-ray emission. Environ Sci Technol 30(1):246–251CrossRefGoogle Scholar
  146. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147PubMedCrossRefGoogle Scholar
  147. Little P, Wiffen RD (1977) Emission and deposition of petrol engine exhaust Pb. 1. Deposition of exhaust Pb to plant and soil surfaces. Atmos Environ 11(5):437–447PubMedCrossRefGoogle Scholar
  148. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112(4):2286–2322PubMedCrossRefGoogle Scholar
  149. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  150. Lovett GM (1994) Atmospheric deposition of nutrients and pollutants in North-America – an ecological perspective. Ecol Appl 4(4):629–650CrossRefGoogle Scholar
  151. Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res 23:1603–1616CrossRefGoogle Scholar
  152. Maher BA, Ahmed IAM, Davison B, Karloukovski V, Clarke R (2013) Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environ Sci Technol 47(23):13737–13744PubMedCrossRefGoogle Scholar
  153. Mahowald N, Ward DS, Kloster S, Flanner MG, Heald CL, Heavens NG, Hess PG, Lamarque JF, Chuang PY (2011) Aerosol impacts on climate and biogeochemistry. In: Gadgil A, Liverman DM (eds) Annual review of environment and resources, vol 36. Annual Reviews, Palo Alto, pp 45–74Google Scholar
  154. Manktelow PT, Mann GW, Carslaw KS, Spracklen DV, Chipperfield MP (2007) Regional and global trends in sulfate aerosol since the 1980s. Geophys Res Lett 34(14)Google Scholar
  155. Manso M, Castro-Gomes J (2015) Green wall systems: a review of their characteristics. Renew Sustain Energy Rev 41:863–871CrossRefGoogle Scholar
  156. Marchioli C, Picciotto M, Soldati A (2006) Particle dispersion and wall-dependent turbulent flow scales: implications for local equilibrium models. J Turbulence 7(60):1–12Google Scholar
  157. Kummerova M, Krulova J, Zezulka S et al (2006) Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. Chemosphere 65:489–496PubMedCrossRefGoogle Scholar
  158. Kummerova M, Zezulka S, Babula P et al (2013) Chemosphere 90:665–673PubMedCrossRefGoogle Scholar
  159. Martell EA (1974) Radioactivity of tobacco trichomes and insoluble cigarette-smoke particles. Nature 249(5454):215–217PubMedCrossRefGoogle Scholar
  160. Martin CE, Gravatt DA, Loeschen VS (1992) Photosynthetic responses of 3 species to acute exposures of nitrate-containing and sulfate-containing aerosols. Atmos Environ A General Top 26:381–391CrossRefGoogle Scholar
  161. Matzka J, Maher BA (1999) Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos Environ 33(28):4565–4569CrossRefGoogle Scholar
  162. McDonald AG, Bealey WJ, Fowler D, Dragosits U, Skiba U, Smith RI, Donovan RG, Brett HE, Hewitt CN, Nemitz E (2007) Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos Environ 41(38):8455–8467CrossRefGoogle Scholar
  163. McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5(7):669–672CrossRefGoogle Scholar
  164. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739PubMedCrossRefGoogle Scholar
  165. McLachlan MS (1999) Framework for the interpretation of measurements of SOCs in plants. Environ Sci Technol 33(11):1799–1804CrossRefGoogle Scholar
  166. Mengel K, Breininger MT, Lütz HJ (1990) Effect of simulated acidic fog on carbohydrate leaching, CO2 assimilation and development of damage symptoms in young spruce trees (Picea abies L Karst). Environ Exp Bot 30(2):165–173CrossRefGoogle Scholar
  167. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458(7241):1014–1087PubMedCrossRefGoogle Scholar
  168. Meyers TP, Luke WT, Meisinger JJ (2006) Fluxes of ammonia and sulfate over maize using relaxed eddy accumulation. Agric For Meteorol 136(3-4):203–213CrossRefGoogle Scholar
  169. Michailides TJ, Morgan DP (1992) Effects of temperature and wetness duration on infection of pistachio by Botryosphaeria dothidea and management of disease by reducing duration of irrigation. Phytopathology 82:1399–1406CrossRefGoogle Scholar
  170. Mikhailov E, Vlasenko S, Martin ST, Koop T, Poschl U (2009) Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos Chem Phys 9(24):9491–9522CrossRefGoogle Scholar
  171. Millhollen AG, Gustin MS, Obrist D (2006) Foliar mercury accumulation and exchange for three tree species. Environ Sci Technol 40:6001–6006PubMedCrossRefGoogle Scholar
  172. Mo L, Ma ZY, Xu YS, Sun FB, Lun XX, Liu XH, Chen JG, Yu XX (2015) Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS One 10(10)Google Scholar
  173. Mori J, Hanslin HM, Burchi G, Saebo A (2015a) Particulate matter and element accumulation on coniferous trees at different distances from a highway. Urban Forestry Urban Greening 14(1):170–177CrossRefGoogle Scholar
  174. Mori J, Saebo A, Hanslin HM, Teani A, Ferrini F, Fini A, Burchi G (2015b) Deposition of traffic-related air pollutants on leaves of six evergreen shrub species during a Mediterranean summer season. Urban Forestry Urban Greening 14(2):264–273CrossRefGoogle Scholar
  175. Mulitza S, Heslop D, Pittauerova D, Fischer HW, Meyer I, Stuut JB, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466(7303):226–228PubMedCrossRefGoogle Scholar
  176. Murphy HJ (1968) Potato vine killing. Am Potato J 45(12):472–477CrossRefGoogle Scholar
  177. Muxworthy AR, Matzka M, Davila AF, Petersen N (2003) Magnetic signature of daily sampled urban atmospheric particles. Atmos Environ 37(29):4163–4169CrossRefGoogle Scholar
  178. Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366PubMedCrossRefGoogle Scholar
  179. Nanos GD, Ilias IF (2007) Effects of inert dust on olive (Olea europaea L.) leaf physiological parameters. Environ Sci Pollut Res 14(3):212–214CrossRefGoogle Scholar
  180. Nash TH III (1975) Influence of effluents from a zinc factory on lichens. Ecol Monogr 45:183–198Google Scholar
  181. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677CrossRefGoogle Scholar
  182. Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol 138(1):91–98CrossRefGoogle Scholar
  183. Nemitz E, Dorsey JR, Flynn MJ, Gallagher MW, Hensen A, Erisman JW, Owen SM, Dammgen U, Sutton MA (2009) Aerosol fluxes and particle growth above managed grassland. Biogeosciences 6(8):1627–1645CrossRefGoogle Scholar
  184. Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83(4):713–726CrossRefGoogle Scholar
  185. Nicholson KW (1993) Wind tunnel experiments on the resuspension of particulate material. Atmos Environ A General Top 27(2):181–188CrossRefGoogle Scholar
  186. Nicolas ME, Turner NC (1993) Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during postanthesis drought. Field Crop Res 31(1-2):155–171CrossRefGoogle Scholar
  187. Nobel PS (1991) Physicochemical and environmental plant physiology. Academic, San Diego, p 635Google Scholar
  188. Norton RA, Childers NF (1954) Experiments with urea sprays on the peach. Proc Am Soc Hortic Sci 63:23–31Google Scholar
  189. Nowak DJ, Hirabayashi S, Bodine A, Hoehn R (2013) Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ Pollut 178:395–402PubMedCrossRefGoogle Scholar
  190. OECD (2012) OECD Environmental Outlook to 2050. OECD, ParisCrossRefGoogle Scholar
  191. Oikawa PY, Grantz DA, Chatterjee A et al (2014) Unifying soil respiration pulses, inhibition, and temperature hysteresis through dynamics of labile soil carbon and O-2. J Geophys Res Biogeosci 119:521–536CrossRefGoogle Scholar
  192. Oliva SR, Raitio H (2003) Review of cleaning techniques and their effects on the chemical composition of foliar samples. Boreal Environ Res 8(3):263–272Google Scholar
  193. Oliva SR, Valdes B (2004) Influence of washing on metal concentrations in leaf tissue. Commun Soil Sci Plant Anal 35(11-12):1543–1552CrossRefGoogle Scholar
  194. Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161PubMedCrossRefGoogle Scholar
  195. Olszyk DM, Bytnerowicz A, Takemoto BK (1989) Photochemical oxidant pollution and vegetation: effects of gases, fog, and particles. Environ Pollut 61:11–29PubMedCrossRefGoogle Scholar
  196. Otnyukova T (2007) Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline. Environ Pollut 146:359–365PubMedCrossRefGoogle Scholar
  197. Ottele M, van Bohemen HD, Fraaij ALA (2010) Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol Eng 36(2):154–162CrossRefGoogle Scholar
  198. Ould-Dada Z, Baghini NM (2001) Resuspension of small particles from tree surfaces. Atmos Environ 35(22):3799–3809CrossRefGoogle Scholar
  199. Pajunoja A, Lambe AT, Hakala J, Rastak N, Cummings MJ, Brogan JF, Hao LQ, Paramonov M, Hong J, Prisle NL, Malila J, Romakkaniemi S, Lehtinen KEJ, Laaksonen A, Kulmala M, Massoli P, Onasch TB, Donahue NM, Riipinen I, Davidovits P, Worsnop DR, Petaja T, Virtanen A (2015) Adsorptive uptake of water by semisolid secondary organic aerosols. Geophys Res Lett 42(8):3063–3068CrossRefGoogle Scholar
  200. Parker S, Foat T, Preston S (2008) Towards quantitative prediction of aerosol deposition from turbulent flows. J Aerosol Sci 39(2):99–112CrossRefGoogle Scholar
  201. Patankar NA (2004) Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20(19):8209–8213PubMedCrossRefGoogle Scholar
  202. Paulot F, Jacob DJ (2014) Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Environ Sci Technol 48(2):903–908PubMedCrossRefGoogle Scholar
  203. Pavlik M, Pavlıkova D, Zemanova V, Hnilicka F, Urbanova V, Szakova J (2012) Trace elements present in airborne particulate matter—stressors of plant metabolism. Ecotoxicol Environ Saf 79:101–107PubMedCrossRefGoogle Scholar
  204. Pegram LM, Record MT (2007) Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J Phys Chem B 111(19):5411–5417PubMedCrossRefGoogle Scholar
  205. Pennanen T, Frostegård Å, Fritze H, Bååth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428PubMedPubMedCentralGoogle Scholar
  206. Peters K, Eiden R (1992) Modeling the dry deposition velocity of aerosol particles to a spruce forest. Atmos Environ A General Top 26(14):2555–2564CrossRefGoogle Scholar
  207. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications. Atmos Environ 42(16):3654–3683CrossRefGoogle Scholar
  208. Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7(8):1961–1971CrossRefGoogle Scholar
  209. Pilinis C, Seinfeld JH, Grosjean D (1989) Water content of atmospheric aerosols. Atmos Environ 23(7):1601–1606CrossRefGoogle Scholar
  210. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56(6):709–742CrossRefGoogle Scholar
  211. Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes – a 3-year study. Int J Phytoremediation 15(3):245–256PubMedCrossRefGoogle Scholar
  212. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44(46):7520–7540CrossRefGoogle Scholar
  213. Pöschl U, Shiraiwa M (2015) Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem Rev 115(10):4440–4475PubMedCrossRefGoogle Scholar
  214. Pringle KJ, Tost H, Pozzer A, Poschl U, Lelieveld J (2010) Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos Chem Phys 10(12):5241–5255CrossRefGoogle Scholar
  215. Prusty BAK, Mishra PC, Azeez PA (2005) Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol Environ Saf 60(2):228–235PubMedCrossRefGoogle Scholar
  216. Pryor SC, Gallagher M, Sievering H, Larsen SE, Barthelmie RJ, Birsan F, Nemitz E, Rinne J, Kulmala M, Groenholm T, Taipale R, Vesala T (2008) A review of measurement and modelling results of particle atmosphere-surface exchange. Tellus B Chem Phys Meteorol 60(1):42–75CrossRefGoogle Scholar
  217. Przybysz A, Saebo A, Hanslin HM, Gawronski SW (2014) Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ 481:360–369PubMedCrossRefGoogle Scholar
  218. Pueyo M, Sastre J, Hernandez E, Vidal M, Lopez-Sanchez JF, Rauret G (2003) Prediction of trace element mobility in contaminated soils by sequential extraction. J Environ Qual 32(6):2054–2066PubMedCrossRefGoogle Scholar
  219. Pugh TAM, MacKenzie AR, Whyatt JD, Hewitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol 46(14):7692–7699PubMedCrossRefGoogle Scholar
  220. Quayle BM, Mather TA, Witt MLI, Maher BA, Mitchell R, Martin RS, Calabrese S (2010) Application and evaluation of biomagnetic and biochemical monitoring of the dispersion and deposition of volcanically-derived particles at Mt. Etna, Italy. J Volcanol Geotherm Res 191(1-2):107–116CrossRefGoogle Scholar
  221. Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112PubMedCrossRefGoogle Scholar
  222. Rai PK (2013) Environmental magnetic studies of particulates with special reference to biomagnetic monitoring using roadside plant leaves. Atmos Environ 72:113–129CrossRefGoogle Scholar
  223. Rapport DJ, Whitford WG (1999) How ecosystems respond to stress: common properties of arid and aquatic systems. BioScience 49:193–203CrossRefGoogle Scholar
  224. Räsänen JV, Holopainen T, Joutsensaari J, Ndam C, Pasanen P, Rinnan A, Kivimaenpaa M (2013) Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees. Environ Pollut 183:64–70PubMedCrossRefGoogle Scholar
  225. Rauret G, Llaurado M, Tent J, Rigol A, Alegre LH, Utrillas MJ (1994) Deposition on holm oak leaf surfaces of accidentally released radionuclides. Sci Total Environ 157(1-3):7–16CrossRefGoogle Scholar
  226. Reinap A, Wiman BLB, Svenningsson B, Gunnarsson S (2009) Oak leaves as aerosol collectors: relationships with wind velocity and particle size distribution. Experimental results and their implications. Trees Struct Funct 23(6):1263–1274CrossRefGoogle Scholar
  227. Reisinger LM (1990) Analysis of airborne particles in the southern Appalachian mountains. Water Air Soil Pollut 50(1-2):149–162CrossRefGoogle Scholar
  228. Renner KA (1991) Chemical vine desiccation of 2 potato cultivars. Am Potato J 68(7):479–491CrossRefGoogle Scholar
  229. Reynolds AM (2000) Prediction of particle deposition on to rough surfaces. Agric For Meteorol 104(2):107–118CrossRefGoogle Scholar
  230. Reznik G, Schmidt E (2008) Separation of fine dust on plants by low current-speed. Chem Ing Tech 80(12):1849–1853CrossRefGoogle Scholar
  231. Ricks GR, Williams RJ (1974) Effects of atmospheric pollution on deciduous woodland. 2. Effects of particulate matter upon stomatal diffusion resistance in leaves of Quercus petraea (Mattuschka) Leibl. Environ Pollut 6(2):87–109CrossRefGoogle Scholar
  232. Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31(3):399–415CrossRefGoogle Scholar
  233. Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427:347–354PubMedCrossRefGoogle Scholar
  234. Salemaa M, Derome J, Helmisaari HS et al (2004) Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Sci Total Environ 324:141–160PubMedCrossRefGoogle Scholar
  235. Sanderson EG, Farant JP (2004) Indoor and outdoor polycyclic aromatic hydrocarbons in residences surrounding a Soderberg aluminum smelter in Canada. Environ Sci Technol 38:5350–5356PubMedCrossRefGoogle Scholar
  236. Sant’Ovaia H, Lacerda MJ, Gomes C (2012) Particle pollution – an environmental magnetism study using biocollectors located in northern Portugal. Atmos Environ 61:340–349CrossRefGoogle Scholar
  237. Santos APM, Segura-Munoz SI, Nadal M, Schuhmacher M, Domingo JL, Martinez CA, Takayanagui AMM (2015) Traffic-related air pollution biomonitoring with Tradescantia pallida (Rose) Hunt. cv. purpurea Boom in Brazil. Environ Monit Assess 187(2):39Google Scholar
  238. Sase H, Takamatsu T, Yoshida T, Inubushi K (1998) Changes in properties of epicuticular wax and the related water loss in Japanese cedar (Cryptomeria japonica) affected by anthropogenic environmental factors. Can J For Res 28(4):546–556CrossRefGoogle Scholar
  239. Sauter JJ, Voss JU (1986) SEM observations on the structural degradation of epistomatal waxes in Picea abies (L) Karst and its possible role in the Fichtensterben. Eur J For Pathol 16(7):408–423CrossRefGoogle Scholar
  240. Schleppi P, Tobler L, Bucher JB, Wyttenbach A (2000) Multivariate interpretation of the foliar chemical composition of Norway spruce (Picea abies). Plant and Soil 219(1-2):251–262CrossRefGoogle Scholar
  241. Schönherr J, Bukovac MJ (1972) Penetration of stomata by liquids – dependence on surface tension, wettability, and stomatal morphology. Plant Physiol 49(5):813–819PubMedPubMedCentralCrossRefGoogle Scholar
  242. Schuepp PH (1993) Leaf boundary layers. New Phytol 125(3):477–507CrossRefGoogle Scholar
  243. Sgrigna G, Saebo A, Gawronski S, Popek R, Calfapietra C (2015) Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ Pollut 197:187–194PubMedCrossRefGoogle Scholar
  244. Sharifi MR, Gibson AC, Rundel PW (1997) Surface dust impacts on gas exchange in Mojave Desert shrubs. J Appl Ecol 34(4):837–846CrossRefGoogle Scholar
  245. Sharifi MR, Gibson AC, Rundel PW (1999) Phenological and physiological responses of heavily dusted creosote bush (Larrea tridentata) to summer irrigation in the Mojave Desert. Flora 14:369–378Google Scholar
  246. Sievering H, Rusch D, Marquez L (1996) Nitric acid, particulate nitrate and ammonium in the continental free troposphere: nitrogen deposition to an alpine tundra ecosystem. Atmos Environ 30:2527–2537CrossRefGoogle Scholar
  247. Simmleit N, Toth A, Szekely T, Schulten HR (1989) Characterization of particles adsorbed on plant surfaces. Int J Environ Anal Chem 36(1):7–11CrossRefGoogle Scholar
  248. Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ 16(7):1785–1794CrossRefGoogle Scholar
  249. Smith WH (1990) Forest nutrient cycling: toxic ions. In: Air pollution and forests: interactions between air contaminants and forest ecosystems. Springer, New York, pp 225–268CrossRefGoogle Scholar
  250. Snyder RL (2015) Drought tip: fog contribution to crop water use. University of California, Agriculture and Natural Resources, p 4Google Scholar
  251. Soares DR, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44:833–841CrossRefGoogle Scholar
  252. Song YS, Maher BA, Li F, Wang XK, Sun X, Zhang HX (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ 105:53–60CrossRefGoogle Scholar
  253. Spinka J (1971) Vliv zne‡i × têného ovzdu × í na ovocné stromy a zeleninu [Effects of polluted air on fruit trees and legumes]. Ziva 19:13–15Google Scholar
  254. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195Google Scholar
  255. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sorlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855PubMedCrossRefGoogle Scholar
  256. Sternberg T, Viles H, Cathersides A, Edwards M (2010) Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sci Total Environ 409(1):162–168PubMedCrossRefGoogle Scholar
  257. Swap R, Garstang M, Greco S, Talbot R, Kallberg P (1992) Saharan dust in the Amazon basin. Tellus B Chem Phys Meteorol 44(2):133–149CrossRefGoogle Scholar
  258. Swietlik D, Faust M (1984) Foliar nutrition of fruit crops. Hortic Rev 6:287–355Google Scholar
  259. Takamatsu T, Sase H, Takada J (2001) Some physiological properties of Cryptomeria japonica leaves from Kanto, Japan: potential factors causing tree decline. Can J For Res 31(4):663–672CrossRefGoogle Scholar
  260. Tao S, Jiao XC, Chen SH, Xu FL, Li YJ, Liu FZ (2006) Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage. Environ Pollut 140(1):13–15PubMedCrossRefGoogle Scholar
  261. Taulavuori K, Prasad MNV, Taulavuori E, Laine K (2005) Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis. Environ Pollut 135:209–220PubMedCrossRefGoogle Scholar
  262. Tremper AH, Agneta M, Burton S, Higgs DEB (2004) Field and laboratory exposures of two moss species to low level metal pollution. J Atmos Chem 49:111–120CrossRefGoogle Scholar
  263. Trimbacher C, Eckmüllner O (1997) A method for quantifying changes in the epicuticular wax structure of Norway spruce needles. Eur J For Pathol 27(2):83–93CrossRefGoogle Scholar
  264. Tunved P, Hansson HC, Kerminen VM, Strom J, Dal Maso M, Lihavainen H, Viisanen Y, Aalto PP, Komppula M, Kulmala M (2006) High natural aerosol loading over boreal forests. Science 312(5771):261–263PubMedCrossRefGoogle Scholar
  265. Turunen M, Huttunen S (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19(1):35–45CrossRefGoogle Scholar
  266. Unsworth MH, Wilshaw JC (1989) Wet, occult and dry deposition of pollutants on forests. Agric For Meteorol 47(2-4):221–238CrossRefGoogle Scholar
  267. Urbat M, Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler – Part I: magnetic properties. Atmos Environ 38(23):3781–3792CrossRefGoogle Scholar
  268. USEPA (2004) Air Quality Criteria for Particulate Matter Final Report No. EPA 600/P-99/002aF-bF. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  269. USEPA (2009) Final Report: Integrated Science Assessment for Particulate Matter EPA/600/R-08/139F, 2009. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  270. Vaisvalavicius R, Motuzas A, Prosycevas I, Levinskaite L, Zakarauskaite D, Grigaliuniene K, Butkus V (2006) Effect of heavy metals on microbial communities and enzymatic activity in soil column experiment. Arch Agron Soil Sci 52:161–169CrossRefGoogle Scholar
  271. van Gardingen PR, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong) Carr and Pinus sylvestris L. Plant Cell Environ 14(2):185–193CrossRefGoogle Scholar
  272. van Heerden PDR, Krüger GHJ, Kilbourn Louw M (2007) Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust. Environ Pollut 146:34–45PubMedCrossRefGoogle Scholar
  273. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the western United States. Science 323(5913):521–524PubMedCrossRefGoogle Scholar
  274. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750Google Scholar
  275. Wagner EC (1939) Effects of certain insecticides and inert materials upon the transpiration rate of bean plants. Plant Physiol 14(4):717–735PubMedPubMedCentralCrossRefGoogle Scholar
  276. Wang J, Cubison MJ, Aiken AC, Jimenez JL, Collins DR (2010) The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmos Chem Phys 10(15):7267–7283CrossRefGoogle Scholar
  277. Wang L, Gong HL, Liao WB, Wang Z (2015) Accumulation of particles on the surface of leaves during leaf expansion. Sci Total Environ 532:420–434PubMedCrossRefGoogle Scholar
  278. Watmough SA, Hutchinson TC, Dillon PJ (2004) Lead dynamics in the forest floor and mineral soil in south-central Ontario. Biogeochemistry 71:43–68CrossRefGoogle Scholar
  279. Weinbaum SA, Neumann PM (1977) Uptake and metabolism of 15N-labeled potassium nitrate by French prune (Prunus domestica L.) leaves and the effects of two surfactants. J Am Soc Hortic Sci 102:601–604Google Scholar
  280. Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34(12-14):2261–2282CrossRefGoogle Scholar
  281. WHO (2013) Health effects of particulate matter, policy implications for countries in Eastern Europe, Caucasus and Central Asia. World Health Organization, WHO Regional Office for Europe, Copenhagen, p 20Google Scholar
  282. Wild E, Dent J, Thomas GO, Jones KC (2006) Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ Sci Technol 40(3):907–916PubMedCrossRefGoogle Scholar
  283. Wilson AR, Boyd AEW, Mitchell JG, Greaves WS (1947) Potato haulm destruction with special reference to the use of tar acid compounds. Ann Appl Biol 34(1):1–33PubMedCrossRefGoogle Scholar
  284. Wiman BLB (1986) Diurnal-variations of aerosol concentrations inside and above a young spruce stand – modeling and measurements. Water Air Soil Pollut 31(1-2):343–348CrossRefGoogle Scholar
  285. Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120(1):11–21PubMedCrossRefGoogle Scholar
  286. Wyers GP, Duyzer JH (1997) Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmos Environ 31(3):333–343CrossRefGoogle Scholar
  287. Wyszkowska J, Boros E, Kucharski J (2007) Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ 53:544–552Google Scholar
  288. Wyttenbach A, Tobler L (1998) Effect of surface contamination on results of plant analysis. Commun Soil Sci Plant Anal 29(7-8):809–823CrossRefGoogle Scholar
  289. Yang J, Chang YM, Yan PB (2015) Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmos Pollut Res 6(2):267–277CrossRefGoogle Scholar
  290. Yogui G, Sericano J (2008) Polybrominated diphenyl ether flame retardants in lichens and mosses from King George Island, maritime Antarctica. Chemosphere 73:1589–1593PubMedCrossRefGoogle Scholar
  291. Yu HB, Remer LA, Chin M, Bian HS, Tan Q, Yuan TL, Zhang Y (2012) Aerosols from overseas rival domestic emissions over North America. Science 337(6094):566–569PubMedCrossRefGoogle Scholar
  292. Yuangen Y, Campbell CD, Clark L, Camerson CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 63:1942–1952CrossRefGoogle Scholar
  293. Zalud P, Szakova J, Sysalova J, Tlustos P (2012) Factors influencing uptake of contaminated particulate matter in leafy vegetables. Cent Eur J Biol 7(3):519–530Google Scholar
  294. Zhang YJ, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. In: Leone SR, Cremer PS, Groves JT, Johnson MA, Richmond G (eds) Annual review of physical chemistry, vol 61. Annual Reviews, Palo Alto, pp 63–83Google Scholar
  295. Zhang LM, Gong SL, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35(3):549–560CrossRefGoogle Scholar
  296. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34(13)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Crop Science and Resource Conservation, University of BonnBonnGermany
  2. 2.University of California at Riverside, Kearney Agricultural CenterParlierUSA

Personalised recommendations