Advertisement

Physiology and Spatio-temporal Relations of Nutrient Acquisition by Roots and Root Symbionts

  • Alex J. Valentine
  • Aleysia Kleinert
  • Rochelle Thuynsma
  • Samson Chimphango
  • Joanna Dames
  • Vagner A. Benedito
Chapter
Part of the Progress in Botany book series (BOTANY, volume 78)

Abstract

Among the various functions of roots, nutrient acquisition (via soil uptake or through symbiotic relationships) is one of the most essential for land plants. Soil from natural and agricultural ecosystems may impede plant nutrient acquisition, by many factors such as mineral availabilities either in excess or deficient supply, depletion of organic matter, extreme variations in water supply, and many other physical and chemical features. In order to survive, plants need to undergo developmental and physiological mechanisms to cope with these extreme soil situations. Here we review how plants control nutrient acquisition by dynamically changing root architecture for improved soil space exploration, as well as altering cellular-level function for enhanced nutrient uptake, via apoplastic acidification, exudation of enzymes and metabolites (organic acids, secondary metabolites) and constantly changing the composition of transporters at the plasma membrane. These changes start with environmental cues which induce cell signaling and involve hormones and coordinated regulatory genes networks that drive the root’s developmental plasticity as well as the cell’s biochemical dynamics. Mutualistic root symbioses, such as mycorrhizae and rhizobial-induced nodulation, are also important to provide essential nutrients to the plant, which are tightly regulated in order to only occur at plant’s benefit. We also explore molecular mechanisms which roots have evolved to cope with nutritional, as well as other soil stresses, such as aluminium toxicity and heavy metals. Overall, understanding root dynamics under several environmental variables at different perspectives, from root architecture to biochemistry to genetic levels will allow us to better explore the spatial and temporal relations of roots with their mineral nutrient environment.

Keywords

Arbuscular Mycorrhizal Lateral Root Root Hair Nutrient Acquisition Root Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RC, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80(1):136–148. doi: 10.1111/tpj.12616 PubMedCrossRefGoogle Scholar
  2. Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  3. Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhizal formation in melon roots. Mol Plant Microbe Interact 15:334–340PubMedCrossRefGoogle Scholar
  4. Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Luscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297PubMedCrossRefGoogle Scholar
  5. Al-Niemi TS, Kahn ML, McDermott TR (1997) P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol 113:1233–1242PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aloni R, Alon E, Langhans M, Ullrich C (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andersen MM, Landes X, Xiang W, Anyshchenko A, Falhof J, Østerberg JT, Olsen LI, Edenbrandt AK, Vedel SE, Thorsen BJ, Sandøe P, Gamborg C, Kappel K, Palmgren MG (2015) Feasibility of new breeding techniques for organic farming. Trends Plant Sci 20(7):426–434. doi: 10.1016/j.tplants.2015.04.011 PubMedCrossRefGoogle Scholar
  8. Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN, Sawa S, Fukuda H, von Wirén N, Takahashi H (2014a) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci U S A 111(5):2029–2034. doi: 10.1073/pnas.1319953111 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Araya T, von Wirén N, Takahashi H (2014b) CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants. Plant Signal Behav 9(7), e29302. doi: 10.4161/psb.29302 PubMedCentralCrossRefGoogle Scholar
  10. Ashford AE, Allaway WG (2002) The role of the motile tubular vacuole system in mycorrhizal fungi. Plant Soil 244:177–187CrossRefGoogle Scholar
  11. Azevedo GC, Cheavegatti-Gianotto A, Negri BF, Hufnagel B, da Costa e Silva L, Magalhaes JV, Garcia AA, Lana UG, de Sousa SM, Guimaraes CT (2015) Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biol 15:172. doi: 10.1186/s12870-015-0561-y
  12. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463PubMedCrossRefGoogle Scholar
  13. Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Krast.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206PubMedCrossRefGoogle Scholar
  14. Bartelheimer M, Steinlein T, Beyschlag W (2006) Aggregative root placement: a feature during interspecific competition in inland sand-dune habitats. Plant Soil 280:101–114CrossRefGoogle Scholar
  15. Bauhus J, Messier C (1999) Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29:260–273Google Scholar
  16. Beier C (2004) Climate change and ecosystem function – full scale manipulations of CO2 and temperature. New Phytol 162:243–245CrossRefGoogle Scholar
  17. Benedito VA (2007) Time to crop: jumping from biological models to crop biotechnology. Crop Breed Appl Biotechnol 7:1–10, http://www.sbmp.org.br/cbab/siscbab/uploads/bd6b9d90-4937-41b0.pdf CrossRefGoogle Scholar
  18. Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931CrossRefGoogle Scholar
  19. Bhuvaneswari TV, Turgeon BG, Bauer WD (1980) Early events in the infection of soybean (Glycine max L. Merr.) by Rhizbium japonicum. I. Localization of infectible root cells. Plant Physiol 64:1027–1031CrossRefGoogle Scholar
  20. Bilbrough CJ, Caldwell MM (1997) Exploitation of springtime ephemeral N pulses by six great basin plant species. Ecology 78:231–243Google Scholar
  21. Blouin M, Barot S, Roumet C (2007) A quick method to determine root biomass distribution in diameter classes. Plant Soil 290:371–381CrossRefGoogle Scholar
  22. Bolland MDA, Sweetingham MW, Jarvir RJ (2000) Effects of applied phosphorus on the growth of Lupinus luteus, L. angustifolius and L. albus in acidic soils in the south-west of Western Australia. Aust J Exp Agric 40:79–92CrossRefGoogle Scholar
  23. Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P (2011) Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 108(42):e864–e870. doi: 10.1073/pnas.1104032108 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA, Udvardi MK, Harrison MJ (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the Ammonium Transporter 2 family protein AMT2;3. Plant Cell 27(4):1352–1366. doi: 10.1105/tpc.114.131144 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Brown G, Mitchell DT (1986) Influence of fire on the soil phosphorus status in sandplain lowland fynbos, south western Cape. S Afr J Bot 52:67–72CrossRefGoogle Scholar
  26. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  27. Buczko U, Kuchenbuch RO (2013) Spatial distribution assessment of maize roots by 3D monolith sampling. Commun Soil Sci Plant Anal 44:2127–2151CrossRefGoogle Scholar
  28. Burias N, Planchon C, Paul MH (1990) Phenotypic and genotypic distribution of nodules on soybean root system inoculated with Bradyrhizobium japonicum strain G49. Agronomie 10:57–62CrossRefGoogle Scholar
  29. Buzynski A, Pislewska M, Wojtaszek P (2000) Active chitinases in the apoplastic fluids of healthy white lupin (Lupinus albus L.) plants. Acta Physiol Plant 22:31–38CrossRefGoogle Scholar
  30. Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475PubMedCrossRefGoogle Scholar
  31. Camacho-Cristóbal JJ, Rexach J, Conéjéro G, Al-Ghazi Y, Nacry P, Doumas P (2008) PRD, an Arabidopsis AINTEGUMENTA-like gene, is involved in root architectural changes in response to phosphate starvation. Planta 228(3):511–522. doi: 10.1007/s00425-008-0754-9 PubMedCrossRefGoogle Scholar
  32. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosys Environ 116:72–84CrossRefGoogle Scholar
  33. Cardoso JD, Gomes DF, Goes KCGP, Fonseca NS Jr, Dorigo OF, Hungria M, Andrade DS (2009) Relationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plants. Soil Biol Biochem 41:1760–1763CrossRefGoogle Scholar
  34. Carroll BJ, Gresshoff PM (1983) Nitrate inhibition of nodulation and nitrogen-fixation in white clover. Z Pflanzenphysiol 110:77–88CrossRefGoogle Scholar
  35. Carroll BJ, Gresshoff PM (1986) Isolation and initial characterization of constitutive nitrate reductase-deficient mutants nr328 and nr345 of soybean (Glycine max). Plant Physiol 81:572–576PubMedPubMedCentralCrossRefGoogle Scholar
  36. Carroll BJ, Matthews A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, FL, pp 159–180Google Scholar
  37. Celenza JL, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142PubMedCrossRefGoogle Scholar
  38. Chen H, Li Z, Xiong L (2012a) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586(12):1742–1747. doi: 10.1016/j.febslet.2012.05.013 PubMedCrossRefGoogle Scholar
  39. Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z (2012b) Assessing variability in root traits of wild Lupinus angustifolius germplasm: basis for modelling root system structure. Plant Soil 354:141–155CrossRefGoogle Scholar
  40. Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2015) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56(1):73–83. doi: 10.1093/pcp/pcu149 PubMedCrossRefGoogle Scholar
  41. Chmelikova L, Wolfrum S, Schmid H, Hejcman M, Hulsbergen K-J (2015) Seasonal development of above- and below-ground organs of Trifolium pratense in grass-legume mixture on different soils. J Plant Nutr Soil Sci 178:13–24CrossRefGoogle Scholar
  42. Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156(2):455–465. doi: 10.1104/pp.110.169102 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV (2013) High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36(2):454–466. doi: 10.1111/j.1365-3040.2012.02587.x PubMedCrossRefGoogle Scholar
  44. Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, pp 483–510Google Scholar
  45. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Findlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forests. Science 339:1615–1618PubMedCrossRefGoogle Scholar
  46. Crocker LJ, Schwintzer CR (1993) Factors affecting formation of cluster roots in Myrica gale seedlings in water culture. Plant Soil 152:287–289CrossRefGoogle Scholar
  47. Cupina B, Krstic D, Mikic A, Eric P, Vuckovic S, Pejic B (2010) The effect of field pea (Pisum sativum L.) companion crop management on red clover (Trifolium pratense L.) establishment and productivity. Turk J Agric For 34:275–283Google Scholar
  48. Curt T, Prevosto B (2003) Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 255:265–279CrossRefGoogle Scholar
  49. Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Path 49:1–20CrossRefGoogle Scholar
  50. Dakora FD, Joseph CM, Phillips DA (1993) Alfalfa (Medicago sativa L.) root exudates contain isoflavanoids in the presence of Rhizobium meliloti. Plant Phys 101:819–824CrossRefGoogle Scholar
  51. Dames JF, Scholes MC, Straker CJ (2002) Nutrient cycling in a Pinus patula plantation in the Mpumalanga Province, South Africa. Appl Soil Ecol 20:211–226CrossRefGoogle Scholar
  52. Dash M, Yordanov YS, Georgieva T, Kumari S, Wei H, Busov V (2015) A systems biology approach identifies new regulators of poplar root development under low nitrogen. Plant J 84(2):335–346. doi: 10.1111/tpj.13002 PubMedCrossRefGoogle Scholar
  53. Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garcia-Mendez G, Maass JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical conditions. Plant Soil 344:347–360Google Scholar
  54. Day DA, Lambers H, Bateman J, Carroll BJ, Gresshoff PM (1986) Growth comparisons of a supernodulating soybean (Glycine max) mutant and its wild-type parent. Physiol Plant 68:375–382CrossRefGoogle Scholar
  55. Day DA, Carroll BJ, Delves AC, Gresshoff PM (1989) Relationship between autoregulation and nitrate inhibition of nodulation in soybeans. Physiol Plant 75:37–42CrossRefGoogle Scholar
  56. de Dorlodot S, Forster B, Pagè L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:360–1385CrossRefGoogle Scholar
  57. Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Sederoff HW, Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong GK, Oldroyd GE, Ané JM (2015) Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci U S A 112(43):13390–13395. doi: 10.1073/pnas.1515426112 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Deng MD, Moreaux T, Cabosche M (1989) Tungstate, a molybdenum analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol 91:304–309PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ding H, Gao J, Qin C, Ma H, Huang H, Song P, Luo X, Lin H, Shen Y, Pan G, Zhang Z (2014) The dynamics of DNA methylation in maize roots under Pb stress. Int J Mol Sci 15(12):23537–23554. doi: 10.3390/ijms151223537 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200CrossRefGoogle Scholar
  61. Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res 156:161–171CrossRefGoogle Scholar
  62. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedPubMedCentralCrossRefGoogle Scholar
  63. Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small-peptide signals that control root nodule number, development, and symbiosis. J Exp Bot 66:5171–5181PubMedCrossRefGoogle Scholar
  64. Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nutr Soil Sci 164:141–145CrossRefGoogle Scholar
  65. Drevon JJ, Hartwig UA (1997) Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201:463–469CrossRefGoogle Scholar
  66. Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490CrossRefGoogle Scholar
  67. Duke SH, Collins M, Soberalske RM (1980) Effects of potassium fertilization on nitrogen fixation and nodules enzymes of nitrogen metabolism in alfalfa. Crop Sci 20:213–219CrossRefGoogle Scholar
  68. Eissenstadt DM, Yanai RD (1997) The ecology of root lifespan. In: Fitter AM (ed) Advances in ecological research, vol 27. Academic, San Diego, pp 1–60Google Scholar
  69. Eissenstat DM, Caldwell JP (1988) Seasonal timing of root growth in favourable microsites. Ecology 69:870–873CrossRefGoogle Scholar
  70. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183CrossRefGoogle Scholar
  71. Ferguson BJ, Indrasummer A, Hayashi S, Lin M, Lin Y, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76PubMedCrossRefGoogle Scholar
  72. Fess TL, Kotcon JB, Benedito VA (2011) Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability 3(10):1742–1772. doi: 10.3390/su3101742 CrossRefGoogle Scholar
  73. Finlay RD, Frostegård Å, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in pure culture and in symbiosis with Pinus contorta Dougl. Ex Loud. New Phytol 120:105–115CrossRefGoogle Scholar
  74. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68CrossRefGoogle Scholar
  75. Franksi R, Bednarek P, Wojtaszek P, Stobiecki M (1999) Identification of flavonoid diglycosides in yellow lupin (Lupinus luteus L.). J Mass Spectrom 34:486–495CrossRefGoogle Scholar
  76. Fransen B, Blijjenberg J, de Kroon H (1999) Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant Soil 211:179–189CrossRefGoogle Scholar
  77. Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449PubMedCrossRefGoogle Scholar
  78. Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J For Sci 5:33–44Google Scholar
  79. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gahoonia TS, Nielsen NE (2004) Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil 262:55–62CrossRefGoogle Scholar
  81. Gahoonia TS, Alib O, Sarkerc A, Nielsena NE, Rahmand MM (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29:643–655CrossRefGoogle Scholar
  82. Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, Harer J, Benfey PN, Weitz JS (2012) GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:116. doi: 10.1186/1471-2229-12-116 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase PSTOL1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–539. doi: 10.1038/nature11346 PubMedCrossRefGoogle Scholar
  84. Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 15:179. doi: 10.1186/1471-2164-15-179 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Genoud T, Metraux JP (1999) Crosstalk in plant cell signalling: structure and function of the genetic network. Trends Plant Sci 4:503–507PubMedCrossRefGoogle Scholar
  86. George TS, Gregory PJ, Robinson JS, Buresh RJ (2002) Changes in phosphorus concentrations and pH in the rhizosphere of some agroforestry and crop species. Plant Soil 246:65–73CrossRefGoogle Scholar
  87. George TS, Fransson A, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann EK (ed) Phosphorus in action, vol 26: Soil biology. Springer, Berlin, pp 245–271Google Scholar
  88. Gibson SI (2005) Control of plant development and gene expression by sugar signalling. Curr Opin Plant Biol 8:93–102PubMedCrossRefGoogle Scholar
  89. Giehl RFH, Nicolaus von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517PubMedPubMedCentralCrossRefGoogle Scholar
  90. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus deficient white lupin roots. Ann Bot 85:921–928CrossRefGoogle Scholar
  91. Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient white lupin is mimicked by auxin and phosphonate. Ann Bot 85:921–928CrossRefGoogle Scholar
  92. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181CrossRefGoogle Scholar
  93. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research an extension needs. Field Crop Res 65:93–106CrossRefGoogle Scholar
  94. Grift T, Novais J, Bohn M (2011) High-throughput phenotyping technology for maize roots. Biosyst Eng 110:40–48CrossRefGoogle Scholar
  95. Gross KL, Pregitzer KS, Burton AJ (1995) Spatial variation in nitrogen availability in three successional plant communities. J Ecol 83:357–367CrossRefGoogle Scholar
  96. Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163(1):161–179. doi: 10.1104/pp.113.218453 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168(4):1762–1776. doi: 10.1104/pp.15.00736 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617. doi: 10.1146/annurev-cellbio-101512-122413 PubMedCrossRefGoogle Scholar
  99. Hammer DC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMA Microbiol Ecol 76:236–244CrossRefGoogle Scholar
  100. Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorous starvation. J Exp Bot 59:93–109PubMedCrossRefGoogle Scholar
  101. Hatch DJ, Goddlass G, Joynes A, Shepherd MA (2007) The effect of cutting, mulching and applications of farmyard manure on nitrogen fixation in a red clover/grass sward. Bioresour Technol 98:3243–3248PubMedCrossRefGoogle Scholar
  102. Hauck AL, Novais J, Grift TE, Bohn MO (2015) Characterization of mature maize (Zea mays L.) root system architecture and complexity in a diverse set of Ex-PVP inbreds and hybrids. SpringerPlus 4:424. doi: 10.1186/s40064-015-1187-0
  103. Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767PubMedPubMedCentralCrossRefGoogle Scholar
  104. Hinsinger P, Bengough A, Vetterlein D, Young I (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  105. Hinson K (1975) Nodulation responses from nitrogen applied to soybean half-root systems. Agron J 67:799–804CrossRefGoogle Scholar
  106. Hirsch AM (1992) Tansley Review 40. Developmental biology of legume nodulation. New Phytol 122:211–237CrossRefGoogle Scholar
  107. Hocking P, Jeffrey S (2004) Cluster root production and organic anion exudation in a group of old world lupin and a new world lupin. Plant Soil 258:135–150CrossRefGoogle Scholar
  108. Hodge A (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314CrossRefGoogle Scholar
  109. Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24CrossRefGoogle Scholar
  110. Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411PubMedCrossRefGoogle Scholar
  111. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol 139:479–494CrossRefGoogle Scholar
  112. Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31:1517–1530CrossRefGoogle Scholar
  113. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187CrossRefGoogle Scholar
  114. Hogh-Jensen H (2003) The effect of potassium deficiency on growth and N2-fixation in Trifolium repens. Physiol Plant 119:440–449CrossRefGoogle Scholar
  115. Høgh-Jensen H, Schjoerring JK, Soussana J (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hou J, Bai L, Xie Y, Liu X, Cui B (2015a) Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead. J Hazard Mater 299:495–503. doi: 10.1016/j.jhazmat.2015.07.054 PubMedCrossRefGoogle Scholar
  117. Hou J, Liu X, Wang J, Zhao S, Cui B (2015b) Microarray-based analysis of gene expression in Lycopersicon esculentum seedling roots in response to cadmium, chromium, mercury, and lead. Environ Sci Technol 49(3):1834–1841. doi: 10.1021/es504154y PubMedCrossRefGoogle Scholar
  118. Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root system architecture models to meet future, agricultural challenges. Adv Agron 85:181–219Google Scholar
  119. Hutchings MJ, John EA, Wijesinghe DK (2003) Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology 84:2322–2334CrossRefGoogle Scholar
  120. Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83(1):103–119Google Scholar
  121. Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongué CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9(9), e107678. doi: 10.1371/journal.pone.0107678 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840PubMedPubMedCentralCrossRefGoogle Scholar
  123. Jacobsen E (1984) Modification of symbiotic interaction of pea (Pisum sativum L.) and Rhizobium leguminosarum by induced mutations. Plant Soil 82:427–438CrossRefGoogle Scholar
  124. Jaillard B, Schneider A, Mollier A, Pellerin S (2000) Modelling the mineral uptake by plants based on the bio-physical-chemical functioning of the rhizosphere. In: Maillard P, Bonhomme R (eds) Fonctionnement des peuplements végétaux sous contraintes environnementales. INRA, Paris, pp 253–287Google Scholar
  125. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247PubMedPubMedCentralCrossRefGoogle Scholar
  126. Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ (2011) Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68(6):954–965. doi: 10.1111/j.1365-313X.2011.04746.x PubMedCrossRefGoogle Scholar
  127. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77CrossRefGoogle Scholar
  128. Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665PubMedPubMedCentralCrossRefGoogle Scholar
  129. Johnson JF, Allan DL, Vance CP (1996) Phosphorus deficiency in Lupinus albus: altered root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 12:31–41CrossRefGoogle Scholar
  130. Jones DL (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455CrossRefGoogle Scholar
  131. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 32:5–33CrossRefGoogle Scholar
  132. Jordan-Meille L, Pellerin S (2008) Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant Soil 304:157–168CrossRefGoogle Scholar
  133. Jumpponen A, Högberg P, Huss-Danell K, Mulder CPH (2002) Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct Ecol 16:454–461CrossRefGoogle Scholar
  134. Jung JKH, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 186:1–32Google Scholar
  135. Juszczuk IM, Wiktorowska A, Malusa E, Rychter AM (2004) Changes in the concentrations of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49CrossRefGoogle Scholar
  136. Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M (2002) Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Sci 163:837–846CrossRefGoogle Scholar
  137. Kania A, Neumann G, Cesco S, Pinton R, Römheld V (2001) Use of plasma membrane vesicles for examination of phosphorus deficiency-induced root excretion of citrate in cluster roots of white lupin (Lupinus albus L.). In: Horst WJ, Schenk MK, Bürket (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applies research, vol 14. Kluwer Academic, Dordrecht, pp 546–547Google Scholar
  138. Kania A, Langlade N, Martinoia E, Neumann G (2003) Phosphorus deficiency-induced modifications in citrate catabolism and in cytosolic pH as related to citrate exudation in cluster roots of white lupin. Plant Soil 248:117–127CrossRefGoogle Scholar
  139. Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signalling in Arabidopsis. Planta 225:907–918PubMedCrossRefGoogle Scholar
  140. Keertisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorous supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21:467–478CrossRefGoogle Scholar
  141. Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65(3):871–884. doi: 10.1093/jxb/ert444 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  143. Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44:901–908PubMedCrossRefGoogle Scholar
  144. Kim MJ, Ruzicka D, Shin R, Schachtman DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5(5):1042–1057. doi: 10.1093/mp/sss003 PubMedCrossRefGoogle Scholar
  145. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24(9):3590–3602. doi: 10.1105/tpc.112.097006 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kochian LV, Hoekenga OA, Pineros MA (2004) How to crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus deficiency. Annu Rev Plant Biol 55:459–493PubMedCrossRefGoogle Scholar
  147. Koenig D, Weigel D (2015) Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat Rev Genet 16(5):285–298. doi: 10.1038/nrg3883 PubMedCrossRefGoogle Scholar
  148. Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y (2007) RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant J 51(1):92–104. doi: 10.1111/j.1365-313X.2007.03120.x PubMedCrossRefGoogle Scholar
  149. Kong X, Zhang M, De Smet I, Ding Z (2014) Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol 32:597–598PubMedCrossRefGoogle Scholar
  150. Köpke U (1981) A comparison of methods for measuring root growth of field crops. Z Acker- Pflanzenbau 150:39–49Google Scholar
  151. Kosslak RM, Bohlool BB (1984) Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol 75:125–130PubMedPubMedCentralCrossRefGoogle Scholar
  152. Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122. doi: 10.1016/j.pbi.2015.05.010 PubMedCrossRefGoogle Scholar
  153. Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157(3):1255–1282. doi: 10.1104/pp.111.179838 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrogen uptake of three catch crops in deep soil layers. Soil Sci Soc Am J 68:529–537CrossRefGoogle Scholar
  155. Kuchenbuch RO, Ingram KT (2004) Effects of soil bulk density on seminal and lateral roots of young maize plants (Zea mays L.). J Plant Nutr Soil Sci 167:229–235CrossRefGoogle Scholar
  156. Kuchenbuch RO, Ingram KT, Buczko U (2006) Effects of decreasing soil water content on seminal and lateral roots of young maize plants. J Plant Nutr Soil Sci 169:841–848CrossRefGoogle Scholar
  157. Kuchenbuch R, Gerke H, Buczko U (2009) Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant Soil 315:297–314CrossRefGoogle Scholar
  158. Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ (2015) Root phenotyping: from component trait in the lab to breeding. J Exp Bot 66(18):5389–5401. doi: 10.1093/jxb/erv239 PubMedCrossRefGoogle Scholar
  159. Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martinez-Ferri E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122CrossRefGoogle Scholar
  160. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713PubMedPubMedCentralCrossRefGoogle Scholar
  161. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  162. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to the Mediterranean, South Africa and Australia. Bot Rev 48:597–689CrossRefGoogle Scholar
  163. Lamont BB (2003) Structure, ecology and physiology of cluster roots – a review. Plant Soil 48:1–19CrossRefGoogle Scholar
  164. Langlade NB, Messerli G, Weisskopf L, Plaza S, Tomasi N, Smutny J, Neumann G, Martinoia E, Massonneau A (2002) ATP citrate lyase: cloning, heterologous expression and possible implication in root organic acid metabolism and excretion. Plant Cell Environ 25:1561–1569CrossRefGoogle Scholar
  165. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D et al (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900PubMedPubMedCentralCrossRefGoogle Scholar
  166. Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458PubMedCrossRefGoogle Scholar
  167. Layzell DB, Hunt S, Palmer GR (1990) Mechanisms of nitrogenase inhibition in soybean nodules. Pulse-modulated spectroscopy indicates that nitrogenase activity is limited by O2. Plant Physiol 92:1101–1107PubMedPubMedCentralCrossRefGoogle Scholar
  168. Le Roux MR, Ward CL, Botha FC, Valentine AJ (2006) The route of pyruvate synthesis under Pi starvation in legume root systems. New Phytol 169:399–408PubMedCrossRefGoogle Scholar
  169. Le Roux MR, Kahn S, Valentine AJ (2008) Organic acid accumulation inhibits N2-fixation in P-stressed lupin nodules. New Phytol 177:956–964PubMedCrossRefGoogle Scholar
  170. Le Roux MR, Kahn S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48:102–109CrossRefGoogle Scholar
  171. Lea PJ, Miflin BJ (2010) Nitrogen assimilation and its relevance to crop improvement. Ann Plant Rev 42:1–40CrossRefGoogle Scholar
  172. Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26CrossRefGoogle Scholar
  173. Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130PubMedPubMedCentralCrossRefGoogle Scholar
  174. LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the middle Eocene. Am J Bot 84:410–412PubMedCrossRefGoogle Scholar
  175. Li L, Tang C, Rengel Z, Zhang FS (2003) Chickpea facilitates phosphorus uptake by intercropping wheat from an organic phosphorus source. Plant Soil 248:305–312CrossRefGoogle Scholar
  176. Li Z, Gao Q, Liu Y, He C, Zhang X, Zhang J (2011) Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth. Planta 233(6):1129–1143. doi: 10.1007/s00425-011-1368-1 PubMedCrossRefGoogle Scholar
  177. Li W, Lin WD, Ray P, Lan P, Schmidt W (2013) Genome-wide detection of condition-sensitive alternative splicing in Arabidopsis roots. Plant Physiol 162(3):1750–1763. doi: 10.1104/pp.113.217778 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Li X, Zeng R, Liao H (2015a) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202. doi: 10.1111/jipb.12434 PubMedCrossRefGoogle Scholar
  179. Li X, Zhao J, Tan Z, Zeng R, Liao H (2015b) GmEXPB2, a cell wall β-expansin gene, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169:2640–2653. doi: 10.1104/pp.15.01029 PubMedPubMedCentralGoogle Scholar
  180. Ligaba A, Yamaguchi M, Shen H, Sasaki T, Yamamoto Y, Matsumoto H (2004) Phosphorus deficiency enhances plasma membrane H+-ATPase activity and citrate exudation in greater purple lupin (Lupinus pilosus). Funct Plant Biol 31:1075–1083CrossRefGoogle Scholar
  181. Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81(4-5):507–522. doi: 10.1007/s11103-013-0020-9 PubMedCrossRefGoogle Scholar
  182. Lindahl BD, Taylor AFS (2004) Occurrence of N-acetylhexosaminidase-genes in ectomycorrhizal basidiomycetes. New Phytol 164:193–199CrossRefGoogle Scholar
  183. Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447PubMedCrossRefGoogle Scholar
  184. Lindahl BD, Taylor AFS, Findlay RD (2002) Defining nutritional constraints on carbon cycling in boreal forests-towards a less ‘phytocentric’ perspective. Plant Soil 242:123–135CrossRefGoogle Scholar
  185. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  186. Liu A, Hamel C, Hamilton RI, Ma BL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrients levels. Mycorrhiza 9:331–336CrossRefGoogle Scholar
  187. Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2001) Signalling of phosphate deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268CrossRefGoogle Scholar
  188. Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signalling of phosphate deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268PubMedCrossRefGoogle Scholar
  189. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287PubMedCrossRefGoogle Scholar
  190. Lopez-Hernandez D, Brossard M, Frossard E (1998) P-isotopic exchange values in relation to P mineralization in soils with very low P-sorbing capacities. Soil Biol Biochem 30:1663–1670CrossRefGoogle Scholar
  191. Lozovaya VV, Lygin AV, Zernova OV, Li SX, Hartman GL, Windholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679PubMedCrossRefGoogle Scholar
  192. Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739CrossRefGoogle Scholar
  193. Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13PubMedPubMedCentralCrossRefGoogle Scholar
  194. Lynch JP, Brown KM (2001) Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237CrossRefGoogle Scholar
  195. Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc Lond B Biol Sci 367(1595):1598–1604. doi: 10.1098/rstb.2011.0243 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ma Y, Jakowitsch J, Maier TL, Bayer MG, Muller NE, Schenk HEA, Loffelhardt W (2001) ATP citrate lyase in the glaucocystophyte alga Cyanophora paradoxa is a cytosolic enzyme: characterisation of the gene for the large subunit at the cDNA and genomic levels. Mol Genet Genomics 266:231–238PubMedCrossRefGoogle Scholar
  197. Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant J 78(1):70–79. doi: 10.1111/tpj.12448 PubMedCrossRefGoogle Scholar
  198. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS One 7:e36695Google Scholar
  199. Malik NSA, Calvert HE, Bauer WD (1987) Nitrate-induced regulation of nodule formation in soybean. Plant Physiol 84:266–271PubMedPubMedCentralCrossRefGoogle Scholar
  200. Marschner H (1998) Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res 56:203–207CrossRefGoogle Scholar
  201. Massonneau A, Langlade N, Leon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.). Planta 213:523–542CrossRefGoogle Scholar
  202. Matsuda Y, Takano Y, Shimada H, Yamanaka T, Ito S (2013) Distribution of ectomycorrhizal fungi in a Chamaecyparis obtusa stand at different distances from a mature Quercus serrata tree. Mycosciecne 54:260–264CrossRefGoogle Scholar
  203. Meisinger JJ, Hargrove WL, Mikkelsen RL, Williams JR, Benson VW (1991) Effects of cover crops on ground water quality. In Cover crops for clean water: The proceedings of an international conferences. West Tennessee Exp Stn, 9–11 April, 1991. Jackson, TennesseeGoogle Scholar
  204. Meister R, Rajani MS, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trends Plant Sci 19(12):779–788. doi: 10.1016/j.tplants.2014.08.005 PubMedCrossRefGoogle Scholar
  205. Meng ZB, You XD, Suo D, Chen YL, Tang C, Yang JL (2013) Root-derived auxin contributes to the phosphorous-deficiency-induced cluster-root formation in white lupin (Lupinus albus). Physiol Plant 148:481–489PubMedCrossRefGoogle Scholar
  206. Mia MW, Yamauchi A, Kono Y (1996) Root system structure of six food legume species. Jpn J Crop Sci 65:131–140CrossRefGoogle Scholar
  207. Miller SS, Liu J, Allan DL, Menzhuber CJ, Feorova M, Vance CP (2001) Molecular control of acid phosphatase secreted into the rhizosphere of proteoid roots from phosphorous stressed white lupin. Plant Physiol 127:594–606PubMedPubMedCentralCrossRefGoogle Scholar
  208. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102(21):7760–7765PubMedPubMedCentralCrossRefGoogle Scholar
  209. Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011) SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol 155(2):1000–1012. doi: 10.1104/pp.110.165191 PubMedCrossRefGoogle Scholar
  210. Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y (2014) Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. J Exp Bot 65(9):2307–2318. doi: 10.1093/jxb/eru110 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Mommer L, Visser E, van Ruijven J, de Caluwe H, Pierik R, de Kroon H (2011) Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous forest. Ecology 74:130–139Google Scholar
  212. Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Bläsing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30:85–112PubMedCrossRefGoogle Scholar
  213. Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) Photosynthetic and respiratory C costs of N and P nutrition in the dual symbiosis of a mycorrhizal legume. Soil Biol Biochem 40:1091–1027CrossRefGoogle Scholar
  214. Mounier E, Pervent M, Ljung K, Gojon A, Nacry P (2014) Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ 37(1):162–174. doi: 10.1111/pce.12143 PubMedCrossRefGoogle Scholar
  215. Müller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134:409–419PubMedPubMedCentralCrossRefGoogle Scholar
  216. Müller R, Nilsson L, Nielsen LK, Nielsen TH (2005) Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol Plant 124:81–90CrossRefGoogle Scholar
  217. Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Phys 143:156–171CrossRefGoogle Scholar
  218. Murali NS, Teramura AH (1985) Effects of ultraviolet-B irradiance on soybean. IV. Influence of phosphorus nutrition on growth and flavonoid concentrations. Physiol Plant 63:413–416CrossRefGoogle Scholar
  219. Nasholm T, Persson J (2001) Plant acquisition of organic nitrogen in boreal forests. Physiol Plant 111:419–426PubMedCrossRefGoogle Scholar
  220. Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs H-W (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309CrossRefGoogle Scholar
  221. Neumann G, Martinoia E (2002) Cluster root-an underground for survival in extreme environments. Trends Plant Sci 7:162–167PubMedCrossRefGoogle Scholar
  222. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130CrossRefGoogle Scholar
  223. Neumann G, Massonneau A, Martonoia E, Römheld V (1999) Physiological adaptations to phosphorous deficiency during proteoid root development in white lupin. Planta 208:373–382CrossRefGoogle Scholar
  224. Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorous-deficient white lupin (Lupinus albus L.). Ann Bot 85:909–919CrossRefGoogle Scholar
  225. Nielsen KL, Miller CR, Beck D, Lynch JP (1999) Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil 206:181–190CrossRefGoogle Scholar
  226. Nishizawa Y, Mochizuki S, Koiwai H, Kondo K, Kishimoto K, Katoh E, Minami E (2015) Rice ubiquitin ligase EL5 prevents root meristematic cell death under high nitrogen conditions and interacts with a cytosolic GAPDH. Plant Signal Behav 10(3), e990801. doi: 10.4161/15592324.2014.990801 PubMedPubMedCentralCrossRefGoogle Scholar
  227. Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408PubMedCrossRefGoogle Scholar
  228. Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S (2015) microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84(1):140–153. doi: 10.1111/tpj.12965 PubMedCrossRefGoogle Scholar
  229. Nordström A, Tarkowski P, Tarskowska D, Norbaek R, Astot C, Dolezal K (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin regulated development. Proc Natl Acad Sci U S A 101:8039–8044PubMedPubMedCentralCrossRefGoogle Scholar
  230. Nygren CMR, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248PubMedCrossRefGoogle Scholar
  231. O’Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenol carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15–34PubMedCrossRefGoogle Scholar
  232. Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787CrossRefGoogle Scholar
  233. Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed ecosystems. New Phytol 165:273–283PubMedCrossRefGoogle Scholar
  234. Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedPubMedCentralCrossRefGoogle Scholar
  235. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davidson J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveal global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241PubMedCrossRefGoogle Scholar
  236. Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113PubMedCrossRefGoogle Scholar
  237. Ozawa K, Osaki M, Matsui H, Homma M, Tadano T (1995) Purification and properties of acid phosphatase secreted from lupin roots under phosphorus deficiency conditions. Soil Sci Plant Nutr 41:461–469CrossRefGoogle Scholar
  238. Paey KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240CrossRefGoogle Scholar
  239. Paiva NL (2000) An introduction to the biosynthesis of chemicals used in plant-microbe interactions. J Plant Growth Regul 19:131–143PubMedGoogle Scholar
  240. Pate J, Watt M (2001) Roots of Banksia spp. (Proteaceae) with special reference to functioning of their specialized root clusters. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 989–1006Google Scholar
  241. Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as nitrogen source without assistance from other organisms. Proc Natl Acad Sci 11:4524–4529CrossRefGoogle Scholar
  242. Penaloza E, Munoz G, Salvo-Garrido H, Silva H, Corcuera LJ (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153PubMedGoogle Scholar
  243. Pereira PAA, Bliss FA (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant Soil 115:75–82CrossRefGoogle Scholar
  244. Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives and old acquaintances. Plant Soil 244:41–53CrossRefGoogle Scholar
  245. Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root functional architecture: a framework for modelling the interplay between roots and soil. Vadoze Zone J 6:269–281CrossRefGoogle Scholar
  246. Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164PubMedCrossRefGoogle Scholar
  247. Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganisation. Dekker, New York, pp 349–372Google Scholar
  248. Postma JG, Jacobsen E, Feenstra WJ (1988) Three pea mutants with an altered nodulation studied by genetic analysis and grafting. J Plant Phys 132:424–430CrossRefGoogle Scholar
  249. Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602PubMedPubMedCentralCrossRefGoogle Scholar
  250. Pouteau S, Cherel I, Vaucheret H, Caboche M (1989) Nitrate reductase mRNA regulation in Nicotiana plumbaginifolia nitrate deficient mutants. Plant Cell 1:1111–1120PubMedPubMedCentralCrossRefGoogle Scholar
  251. Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: Bassirirad H (ed) Nutrient acquisition by plants – an ecological perspective. Springer, Berlin, pp 277–310CrossRefGoogle Scholar
  252. Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168PubMedCrossRefGoogle Scholar
  253. Priha O, Hallantie T, Smolander A (1999) Comparing microbial biomass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol Fertil Soils 30:14–19CrossRefGoogle Scholar
  254. Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer HC (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural ageing process. New Phytol 165:683–701PubMedCrossRefGoogle Scholar
  255. Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50CrossRefGoogle Scholar
  256. Qi Y, Wang S, Shen C, Zhang S, Chen Y, Xu Y, Liu Y, Wu Y, Jiang D (2012) OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytol 193(1):109–120. doi: 10.1111/j.1469-8137.2011.03910.x PubMedCrossRefGoogle Scholar
  257. Qiao Y, Tang C, Han X, Miao S (2007) Phosphorus deficiency delays the onset of nodule function in soybean. J Plant Nutr 30:1341–1353CrossRefGoogle Scholar
  258. Qu B, He X, Wang J, Zhao Y, Teng W, Shao A, Zhao X, Ma W, Wang J, Li B, Li Z, Tong Y (2015) A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol 167(2):411–423. doi: 10.1104/pp.114.246959 PubMedCrossRefGoogle Scholar
  259. Raghothama KG (1999) Phosphate acquisition. Plant Boil 50:665–693Google Scholar
  260. Read D, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance. New Phytol 157:475–492CrossRefGoogle Scholar
  261. Reader RJ, Jalili A, Grime JP, Matthews N (1992) A comparative study in seedling rooting depth in dryings oil. J Ecol 81:543–550CrossRefGoogle Scholar
  262. Racette S, Louis I, Torrey JG (1990) Cluster root formation by Gymnostoma papuanum (Casuarinaceae) in relation to aeration and mineral nutrient availability in water culture. Can J Bot 68:2564–2570CrossRefGoogle Scholar
  263. Remmler L, Clairmont L, Rolland-Lagan A-G, Guinel FC (2014) Standardized mapping of nodulation patterns in legume roots. New Phytol 202:1083–1094PubMedCrossRefGoogle Scholar
  264. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843PubMedPubMedCentralCrossRefGoogle Scholar
  265. Ribet J, Drevon JJ (1995) Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol Plant 94:298–304CrossRefGoogle Scholar
  266. Richardson AE, George TS, Jakobsen I, Simpson RJ (2007) Plant utilization of inositol phosphates. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CABI, Wallingford, pp 242–260CrossRefGoogle Scholar
  267. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009a) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  268. Richardson AE, Hocking PJ, Simpson RJ, George TS (2009b) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143CrossRefGoogle Scholar
  269. Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674CrossRefGoogle Scholar
  270. Robinson D (1996) Variation, co-ordination and compensation in root systems in relation to soil variability. Plant Soil 187:57–66CrossRefGoogle Scholar
  271. Robinson D (2001) Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil 232:41–50CrossRefGoogle Scholar
  272. Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PMC (2011) Macromolecular composition of phloem exudate for white lupin (Lupinus albus L.). BMC Plant Biol 11:1–19CrossRefGoogle Scholar
  273. Roumet C, Urcelay C, Díaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368PubMedCrossRefGoogle Scholar
  274. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A metaanalysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  275. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560PubMedCrossRefGoogle Scholar
  276. Ryel RJ, Caldwell MM, Manwarring JH (1996) Temporal dynamics of soil spatial heterogeneity in sagebrush-wheatgrass steppe during a growing season. Plant Soil 184:299–309CrossRefGoogle Scholar
  277. Sagan M, Gresshoff PM (1996) Developmental mapping of nodulation events in pea (Pisum sativum L.) using supernodulating plant genotypes and bacterial variability reveals both plant and Rhizobium control of nodulation regulation. Plant Sci 117:167–179CrossRefGoogle Scholar
  278. Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M, Hannah MA, Kraemer U, Kopka J, Udvardi MK (2011) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 6(2), e17094. doi: 10.1371/journal.pone.0017094 PubMedPubMedCentralCrossRefGoogle Scholar
  279. Sas L, Rengel Z, Tang C (2001) Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160:1191–1198PubMedCrossRefGoogle Scholar
  280. Sas L, Rengel Z, Tang C (2002) The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Ann Bot 89:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  281. Schere HW, Pacyna S, Manthey N, Schulz M (2006) Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ 52:72–77Google Scholar
  282. Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106CrossRefGoogle Scholar
  283. Schulze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57CrossRefGoogle Scholar
  284. Schulze J, Temple G, Temple SJ, Beschow H, Vance CP (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740PubMedPubMedCentralCrossRefGoogle Scholar
  285. Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23(3):167–183. doi: 10.1007/s00572-013-0479-x PubMedCrossRefGoogle Scholar
  286. Selivanov IA, Utemova LD (1969) Root anatomy of sedges in relation to their mycotrophy. Trans Perm State Ped Inst 68:45–55Google Scholar
  287. Shane MW, De Vos M, De Roock S, Lambers H (2003) Shoot P regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ 26:265–273CrossRefGoogle Scholar
  288. Shane MW, Cramer MD, Funayama-Noguchi S, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and alternative oxidase. Plant Physiol 135:549–560PubMedPubMedCentralCrossRefGoogle Scholar
  289. Shane MW, Dixon KW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125CrossRefGoogle Scholar
  290. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialised ‘dauciform’ roots of Cyperaceae are structurally distinct, but functionally analogous to ‘cluster roots’. Plant Cell Environ 10:1989–1999CrossRefGoogle Scholar
  291. Shane MW, Fedosejevs ET, Plaxton WC (2013) Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient harsh hakea. Plant Physiol 161:1–11CrossRefGoogle Scholar
  292. Sharratt BS, McWilliams DA (2005) Microclimatic and rooting characteristics of narrow-row versus conventional-row corn. Agron J 97:1129–1135CrossRefGoogle Scholar
  293. Shaw NH, Gates CT, Wilson JR (1966) Growth and chemical composition of Townsville Lucerne (Stylosanthes humilis). 1. Dry matter yield and nitrogen content in response to superphosphate. Aust J Exp Agric 6:150–156CrossRefGoogle Scholar
  294. Shemesh H, Arbiv A, Gersani M, Ovadia O, Novoplansky A (2010) The effects of nutrient dynamics on root patch choice. PLoS One 5, e10824PubMedPubMedCentralCrossRefGoogle Scholar
  295. Shen J, Li H, Neumann G, Zhang F (2005) Nutrient uptake, cluster-root formation and exudation of proton and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci 168:837–845CrossRefGoogle Scholar
  296. Shibuya Y, Tahara S, Kimura Y, Mizutani J (1991) New isoflavone glucosides from white lupin (Lupinus albus L.). Z Naturforsch 46:513–518Google Scholar
  297. Shield IF, Scott T, Stevenson HJ, Leach JE, Todd AD (2000) The causes of over-winter plant losses of autumn-sown white lupin (Lupinus albus) in different regions of the UK over three seasons. J Agric Sci 135:173–183CrossRefGoogle Scholar
  298. Shin R (2014) Strategies for improving potassium use efficiency in plants. Mol Cells 37(8):575–584. doi:10.14348/molcells.2014.0141Google Scholar
  299. Silberbush M, Barber SA (1983) Sensitivity of simulated phosphorus uptake to parameters used by a mechanistic mathematical model. Plant Soil 74:93–100CrossRefGoogle Scholar
  300. Silva AMS, Weidenborner M, Cavaleiro JAS (1998) Growth control of different Fusarium species by selected flavones and flavonoid mixtures. Fungal Biol 102:638–640Google Scholar
  301. Skene KR (1998) Cluster-roots: some ecological considerations. J Ecol 86:10601064CrossRefGoogle Scholar
  302. Skene KR (2000) Pattern formation in cluster-roots: some developmental and evolutionary considerations. Ann Bot 85:901–908CrossRefGoogle Scholar
  303. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  304. Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366CrossRefGoogle Scholar
  305. Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aus J Plant Physiol 28:683–694Google Scholar
  306. Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248:71–83CrossRefGoogle Scholar
  307. Sorin C, Declerck M, Christ A, Blein T, Ma L, Lelandais-Brière C, Njo MF, Beeckman T, Crespi M, Hartmann C (2014) A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol 202(4):1197–1211. doi: 10.1111/nph.12735 PubMedCrossRefGoogle Scholar
  308. Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 8(5), e65688. doi: 10.1371/journal.pone.0065688 PubMedPubMedCentralCrossRefGoogle Scholar
  309. Stauffer E, Maizel A (2014) Post-transcriptional regulation in root development. Wiley Interdiscip Rev RNA 5(5):679–696. doi: 10.1002/wrna.1239 PubMedGoogle Scholar
  310. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  311. Stock WD, Lewis OAM (1986) Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. J Ecol 74:317–328CrossRefGoogle Scholar
  312. Subbaiah CC, Palaniappan A, Duncan K, Rhoads DM, Huber SC, Sachs MM (2006) Mitochondrial localization and putative signalling function of maize sucrose synthase. J Biol Chem 281:15625–15635PubMedCrossRefGoogle Scholar
  313. Sulieman S, Ha CV, Schulze J, Tran LSP (2013) Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J Exp Bot 64:2701–2712PubMedPubMedCentralCrossRefGoogle Scholar
  314. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N (2014) Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507(7490):73–77. doi: 10.1038/nature13074 PubMedPubMedCentralCrossRefGoogle Scholar
  315. Tang C, Hinsinger P, Drevon JJ, Jaillard B (2001) Phosphorous deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot 88:131–138CrossRefGoogle Scholar
  316. Tang H, Li X, Zu C, Zhang F, Shen J (2013) Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. Plant J 170:1243–1250Google Scholar
  317. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  318. Tesfaye M, Liu JQ, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603PubMedPubMedCentralCrossRefGoogle Scholar
  319. Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302CrossRefGoogle Scholar
  320. Tomasi N, Kretzschmar T, Expen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475PubMedCrossRefGoogle Scholar
  321. Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110(18):E1695–E1704. doi: 10.1073/pnas.1304354110 PubMedPubMedCentralCrossRefGoogle Scholar
  322. Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87CrossRefGoogle Scholar
  323. Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162(4):2042–2055. doi: 10.1104/pp.113.220699 PubMedPubMedCentralCrossRefGoogle Scholar
  324. Tyler G (1994) Spatial sporophore pattern of ectomycorrhizal fungi in a hornbeam (Carpinus-betulus l) forest. For Ecol Manage 65(2–3):165–170CrossRefGoogle Scholar
  325. Uhde-Stone C, Gilbert G, Johnson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116CrossRefGoogle Scholar
  326. Valentine AJ, Benedito VA, Kang Y (2011) Nitrogen metabolism in plants in the post genomic era. Ann Plant Rev 42:208–236Google Scholar
  327. Van der Linde S, Holden E, Parkin P, Alexander IJ, Anderson IC (2012) Now you see it, now you don’t: the challenge of detecting, monitoring and conserving ectomycorrhizal fungi. Fungal Ecol 5:633–640CrossRefGoogle Scholar
  328. Van Wilgen BW, Le Maitre DC (1981) Preliminary estimates of nutrient levels in fynbos vegetation and the role of fire in nutrient cycling. S Afr J For 119:24–28Google Scholar
  329. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  330. Vance CP (2008) Plants without arbuscular mycorrhizae. Plants without arbuscular mycorrhizae. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorous interactions, vol 7. Springer, Berlin, pp 117–142CrossRefGoogle Scholar
  331. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorous acquisition and use: critical adaptation by plants for securing non-renewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  332. Varin S, Cliquet JB, Personeni E, Avice JC, Lemauviel-Lavenant S (2010) How does sulphur availability modify N acquisition of white clover (Trifolium repens L). J Exp Bot 61:225–234PubMedCrossRefGoogle Scholar
  333. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A 107(9):4477–4482. doi: 10.1073/pnas.0909571107 PubMedPubMedCentralCrossRefGoogle Scholar
  334. Voisin AS, Salon C, Munier-Jolain NG, Ney B (2002) Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant Soil 242:251–262CrossRefGoogle Scholar
  335. Wadisirisuk P, Danso SKA, Hardarson G, Bowen GD (1989) Influence of Bradyrhizobium japonicum location and movement on nodulation and nitrogen fixation in soybeans. Appl Environ Microb 55:1711–1716Google Scholar
  336. Wahlström EM, Hansen EM, Mandel A, Garbout A, Kristensen HL, Munkholm LJ (2015) Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen. Eur J Agron 71:1–9CrossRefGoogle Scholar
  337. Walch-Liu P, Forde BG (2008) Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l-glutamate-induced changes in root architecture. Plant J 54(5):820–828. doi: 10.1111/j.1365-313X.2008.03443.x PubMedCrossRefGoogle Scholar
  338. Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  339. Wang EL, Smith CJ (2004) Modelling the growth and water uptake function of plant root systems: a review. Aust J Agric Res 55:501–523CrossRefGoogle Scholar
  340. Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang DA, Qi Y (2014a) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol 201(1):91–103. doi: 10.1111/nph.12499 PubMedCrossRefGoogle Scholar
  341. Wang Z, Straub D, Yang H, Kania A, Shen J, Ludewig U (2014b) The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus L.) identified by transcriptome sequencing. Physiol Plant 151:323–338PubMedCrossRefGoogle Scholar
  342. Wang Y, Li K, Chen L, Zou Y, Liu H, Tian Y, Li D, Wang R, Zhao F, Ferguson BJ, Gresshoff PM, Li X (2015a) MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol 168(3):984–999. doi: 10.1104/pp.15.00265 PubMedPubMedCentralCrossRefGoogle Scholar
  343. Wang Z, Rahman ABMM, Wang G, Ludewig U, Shen J, Neumann G (2015b) Hormonal interactions during cluster-root development in phosphate-deficient white lupin (Lupinus albus L.). Plant J 177:74–82Google Scholar
  344. Wasaki J, Omura M, Osaki M, Ito H, Matsui H, Shinano T et al (1999) Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Sci Plant Nutr 45:439–449CrossRefGoogle Scholar
  345. Wasaki J, Yamamura T, Shinano T, Osaki M (2003) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136CrossRefGoogle Scholar
  346. Wasaki J, Kojima S, Maruyama H, Haase S, Osaki M, Kandeler E (2008) Localization of acid phosphatase activities in the roots of white lupin plants grown under phosphorus-deficient conditions. Soil Sci Plant Nutr 54:95–102CrossRefGoogle Scholar
  347. Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121:317–323PubMedPubMedCentralCrossRefGoogle Scholar
  348. Wei H, Yordanov Y, Kumari S, Georgieva T, Busov V (2013) Genetic networks involved in poplar root response to low nitrogen. Plant Signal Behav 8(11), e27211. doi: 10.4161/psb.27211 PubMedPubMedCentralCrossRefGoogle Scholar
  349. Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006a) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668PubMedGoogle Scholar
  350. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006b) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29:919–927PubMedCrossRefGoogle Scholar
  351. Williamson LC, Ribrioux SP, Fitter AH, Leyser HM (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875PubMedPubMedCentralCrossRefGoogle Scholar
  352. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162–1164. doi: 10.1038/nbt.3389 PubMedCrossRefGoogle Scholar
  353. Wu QS (2011) Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ 10:459–464Google Scholar
  354. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. doi: 10.1146/annurev-arplant-042811-105532 PubMedCrossRefGoogle Scholar
  355. Yamagashi M, Zhou K, Osaki M, Miller SS, Vance CP (2011) Real-time RT-PCR profiling of transcription factors including 34 MYBs and signalling components in white lupin reveals their P status dependent and organ specific expression. Plant Soil 342:481–493CrossRefGoogle Scholar
  356. Yan F, Zhu Y, Muller C, Zorb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63PubMedPubMedCentralCrossRefGoogle Scholar
  357. Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM (2011) Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize. Plant Physiol 157(4):1841–1852. doi: 10.1104/pp.111.187898 PubMedPubMedCentralCrossRefGoogle Scholar
  358. Yao ZF, Liang CY, Zhang Q, Chen ZJ, Xiao BX, Tian J, Liao H (2014a) SPX1 is an important component in the phosphorus signalling network of common bean regulating root growth and phosphorus homeostasis. J Exp Bot 65(12):3299–3310. doi: 10.1093/jxb/eru183 PubMedPubMedCentralCrossRefGoogle Scholar
  359. Yao Z, Tian J, Liao H (2014b) Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann Bot 114(3):477–488. doi: 10.1093/aob/mcu147 PubMedPubMedCentralCrossRefGoogle Scholar
  360. Yendrek CR, Lee YC, Morris V, Liang Y, Pislariu CI, Burkart G, Meckfessel MH, Salehin M, Kessler H, Wessler H, Lloyd M, Lutton H, Teillet A, Sherrier DJ, Journet EP, Harris JM, Dickstein R (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62(1):100–112. doi: 10.1111/j.1365-313X.2010.04134.x PubMedCrossRefGoogle Scholar
  361. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  362. You J, Zhang H, Liu N, Gao L, Kong L, Yang Z (2011) Transcriptomic responses to aluminum stress in soybean roots. Genome 54(11):923–933. doi: 10.1139/g11-060 PubMedCrossRefGoogle Scholar
  363. Yu P, White PJ, Hochholdinger F, Li C (2014) Phenotypic plasticity of the maize root system in response to heretogeneous nitrogen availability. Planta 240:667–678PubMedCrossRefGoogle Scholar
  364. Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S (2012) Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13:101. doi: 10.1186/1471-2164-13-101 PubMedPubMedCentralCrossRefGoogle Scholar
  365. Zhang Y-L, Lynch JP, Brown KM (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J Exp Bot 54:2351–2361PubMedCrossRefGoogle Scholar
  366. Zhang WH, Ryan PR, Tyerman SD (2004) Citrate-permeable channels in the plasma membrane of cluster roots from white lupin. Plant Physiol 136:3771–3783PubMedPubMedCentralCrossRefGoogle Scholar
  367. Zhang S, Zhou J, Wang G, Wang X, Liao H (2015) The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean. Appl Microbiol Biotechnol 99(23):10225–10235. doi: 10.1007/s00253-015-6913-6 PubMedCrossRefGoogle Scholar
  368. Zhou L, Yamagishi M, Osaki M, Masuda K (2008) Sugar signalling mediates cluster root formation and phosphorous starvation-induced gene expression in white lupin. J Exp Bot 59:2749–2756PubMedPubMedCentralCrossRefGoogle Scholar
  369. Zhou J, Xie J, Liao H, Wang X (2014) Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant 150(2):194–204. doi: 10.1111/ppl.12077 PubMedCrossRefGoogle Scholar
  370. Zhu JM, Kaeppler SM, Lynch JP (2005a) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310CrossRefGoogle Scholar
  371. Zhu Y, Yan F, Zör C, Schubert S (2005b) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.). Plant Cell Physiol 46:892–901PubMedCrossRefGoogle Scholar
  372. Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Biol 14(3):310–317. doi: 10.1016/j.pbi.2011.03.020 PubMedCrossRefGoogle Scholar
  373. Zinn KE, Liu J, Allan DL (2009) White lupin (Lupinus albus) response to phosphorus stress: evidence for complex regulation LaSAP1. Plant Soil 322(1):1–15CrossRefGoogle Scholar
  374. Zuchi S, Watanabe M, Hubberten HM, Bromke M, Osorio S, Fernie AR, Celletti S, Paolacci AR, Catarcione G, Ciaffi M, Hoefgen R, Astolfi S (2015) The interplay between sulfur and iron nutrition in tomato. Plant Physiol 169:2624–2639. doi: 10.1104/pp.15.00995 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alex J. Valentine
    • 1
  • Aleysia Kleinert
    • 1
  • Rochelle Thuynsma
    • 1
  • Samson Chimphango
    • 2
  • Joanna Dames
    • 3
  • Vagner A. Benedito
    • 4
  1. 1.Department of Botany and Zoology, Faculty of ScienceStellenbosch UniversityMatielandSouth Africa
  2. 2.Department of Biology, Faculty of ScienceUniversity of Cape TownRondeboschSouth Africa
  3. 3.Department of Microbiology and Biochemistry, Faculty of ScienceRhodes UniversityGrahamstownSouth Africa
  4. 4.Division of Plant and Soil SciencesWest Virginia UniversityMorgantownUSA

Personalised recommendations