Theoretical Evidence for the Superiority of LRU-2 over LRU for the Paging Problem

  • Joan Boyar
  • Martin R. Ehmsen
  • Kim S. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)


The paging algorithm LRU-2 was proposed for use in data-base disk buffering and shown experimentally to perform better than LRU [O’Neil, O’Neil, and Weikum, 1993]. We compare LRU-2 and LRU theoretically, using both the standard competitive analysis and the newer relative worst order analysis. The competitive ratio for LRU-2 is shown to be 2k for cache size k, which is worse than LRU’s competitive ratio of k. However, using relative worst order analysis, we show that LRU-2 and LRU are asymptotically comparable in LRU-2’s favor, giving a theoretical justification for the experimental results.


Competitive Ratio Online Algorithm Theoretical Evidence Subsidiary Policy Page Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Online algorithms: A survey. In: Proceedings of the 18th International Symposium on Mathematical Programming, pp. 3–26 (2003)Google Scholar
  2. 2.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  3. 3.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive Paging with Locality of Reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 58–69. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The Relative Worst Order Ratio Applied to Paging. In: Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 718–727. ACM Press, New York (2005)Google Scholar
  6. 6.
    Boyar, J., Medvedev, P.: The Relative Worst Order Ratio Applied to Seat Reservation. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 90–101. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Separating Scheduling Algorithms with the Relative Worst Order Ratio. Journal of Combinatorial Optimization (to appear)Google Scholar
  8. 8.
    Fiat, A., Rosen, Z.: Experimental Studies of Access Graph Based Heuristics: Beating the LRU Standard? In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 63–72 (1997)Google Scholar
  9. 9.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive Snoopy Caching. Algorithmica 3, 79–119 (1988)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kohrt, J.S.: Online Algorithms under New Assumptions. PhD thesis, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark (2004)Google Scholar
  11. 11.
    Krumke, S.O., de Paepe, W., Rambau, J., Stougie, L.: Online Bin Coloring. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 74–85. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    O’Neil, E.J., O’Neil, P.E., Weikum, G.: The LRU-K Page Replacement Algorithm for Database Disk Buffering. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 297–306 (1993)Google Scholar
  13. 13.
    Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of List Update and Paging Rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Young, N.: The k-Server Dual and Loose Competitiveness for Paging. Algorithmica 11(6), 525–541 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joan Boyar
    • 1
  • Martin R. Ehmsen
    • 1
  • Kim S. Larsen
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations