Covering Many or Few Points with Unit Disks

  • Mark de Berg
  • Sergio Cabello
  • Sariel Har-Peled
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)


Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems.

In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present a deterministic algorithm that can compute, for any ε>0, a (1−ε)-approximation to the optimal solution in O(n logn + ε \(^{{\rm -4}{\it m}}\)log\(^{\rm 2{\it m}}\) (1/ε)) time.

In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that can compute, for any ε>0, with high probability a (1+ε)-approximation to the optimal solution in O(n (log3 n + ε − 4 log2 n )) expected time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Hagerup, T., Ray, R., Sharir, M., Smid, M., Welzl, E.: Translating a planar object to maximize point containment. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 42. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Aronov, B., Har-Peled, S.: On approximating the depth and related problems. In: SODA 2005, pp. 886–894 (2005)Google Scholar
  3. 3.
    Bose, P., van Kreveld, M., Maheshwari, A., Morin, P., Morrison, J.: Translating a regular grid over a point set. Comput. Geom. Theory Appl. 25, 21–34 (2003)zbMATHGoogle Scholar
  4. 4.
    Cabello, S., Díaz Báñez, J.M., Seara, C., Sellarès, J.A., Urrutia, J., Ventura, I.: Covering point sets with two disjoint disks or squares. Manuscript available at; Preliminary version appeared at EWCG 2005
  5. 5.
    Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2001)Google Scholar
  6. 6.
    Chazelle, B.: The discrepancy method in computational geometry. In: Handbook of Discrete and Computational Geometry, pp. 983–996. CRC Press, Boca Raton (2004)Google Scholar
  7. 7.
    Chazelle, B., Lee, D.T.: On a circle placement problem. Computing 36, 1–16 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)zbMATHGoogle Scholar
  10. 10.
    Drezner, Z.: On a modified one-center model. Management Science 27, 848–851 (1991)CrossRefGoogle Scholar
  11. 11.
    Drezner, Z., Wesolowsky, G.O.: Finding the circle or rectangle containing the minimum weight of points. Location Science 2, 83–90 (1994)zbMATHGoogle Scholar
  12. 12.
    Gajentaan, A., Overmars, M.H.: On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl. 5, 165–185 (1995)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Katz, M.J., Kedem, K., Segal, M.: Improved algorithms for placing undesirable facilities. Computers and Operations Research 29, 1859–1872 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Katz, M.J., Sharir, M.: An expander-based approach to geometric optimization. SIAM J. Computing 26, 1384–1408 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Matoušek, J.: Approximations and optimal geometric divide-an-conquer. J. Comput. Syst. Sci. 50, 203–208 (1995)CrossRefGoogle Scholar
  16. 16.
    Plastria, F.: Continuous covering location problems. In: Hamacher, H., Drezner, Z. (eds.) Location Analysis: Theory and Applications, ch. 2, pp. 39–83. Springer, Heidelberg (2001)Google Scholar
  17. 17.
    Sharir, M.: On k-sets in arrangements of curves and surfaces. Discrete Comput. Geom. 6, 593–613 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mark de Berg
    • 1
  • Sergio Cabello
    • 2
  • Sariel Har-Peled
    • 3
  1. 1.Department of Computer ScienceTU EindhovenThe Netherlands
  2. 2.Department of Mathematics, FMFUniversity of Ljubljana, and Department of Mathematics, IMFMSlovenia
  3. 3.Department of Computer ScienceUniversity of IllinoisUSA

Personalised recommendations