Worst Case Analysis of Max-Regret, Greedy and Other Heuristics for Multidimensional Assignment and Traveling Salesman Problems

  • Gregory Gutin
  • Boris Goldengorin
  • Jing Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4368)


Optimization heuristics are often compared with each other to determine which one performs best by means of worst-case performance ratio reflecting the quality of returned solution in the worst case. The domination number is a complement parameter indicating the quality of the heuristic in hand by determining how many feasible solutions are dominated by the heuristic solution. We prove that the Max-Regret heuristic introduced by Balas and Saltzman finds the unique worst possible solution for some instances of the s-dimensional (s≥3) assignment and asymmetric traveling salesman problems of each possible size. We show that the Triple Interchange heuristic (for s=3) also introduced by Balas and Saltzman and two new heuristics (Part and Recursive Opt Matching) have factorial domination numbers for the s-dimensional (s≥3) assignment problem.


Greedy Algorithm Assignment Problem Travel Salesman Problem Domination Number Partial Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Berlin (1999)MATHGoogle Scholar
  3. 3.
    Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem. Operations Research 39, 150–161 (1991)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bang-Jensen, J., Gutin, G., Yeo, A.: When the greedy algorithm fails. Discrete Optimization 1, 121–127 (2004)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bekker, H., Braad, E.P., Goldengorin, B.: Using bipartite and multidimentional matchings to select roots of a system of polynomial equations. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 397–406. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ben-Arieh, D., Gutin, G., Penn, M., Yeo, A., Zverovitch, A.: Transformations of generalized ATSP into ATSP. Operations Research Letters 31, 357–365 (2003)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bendall, G., Margot, F.: Greedy Type Resistance of Combinatorial Problems. To appear in Discrete OptimizationGoogle Scholar
  8. 8.
    Burkard, R., Cela, E.: Linear assignment problems and extensions. In: Du, Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, pp. 75–149. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  9. 9.
    Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Tolerance based greedy algorithms for the traveling salesman problem. To appear in Communic. in DQMGoogle Scholar
  10. 10.
    Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. European Journal of Operational Research 129, 555–568 (2001)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Glover, F., Punnen, A.: The traveling salesman problem: New solvable cases and linkages with the development of approximation algorithms. J. Oper. Res. Soc. 48, 502–510 (1997)MATHGoogle Scholar
  12. 12.
    Goldengorin, B., Jäger, G., Molitor, P.: Some Basics on Tolerances. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gutin, G., Punnen, A. (eds.): The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)MATHGoogle Scholar
  14. 14.
    Gutin, G., Jakubowicz, H., Ronnen, S., Zverovitch, A.: Seismic vessel problem. Communic. in DQM 8, 13–20 (2005)Google Scholar
  15. 15.
    Gutin, G., Yeo, A.: Domination Analysis of Combinatorial Optimization Algorithms and Problems. In: Golumbic, M., Hartman, I. (eds.) Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Gutin, G., Yeo, A.: Polynomial approximation algorithms for the TSP and QAP with a factorial domination number. Discrete Appl. Math. 119, 107–116 (2002)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gutin, G., Yeo, A.: Anti-matroids. Operations Research Letters 30, 97–99 (2002)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gutin, G., Yeo, A., Zverovitch, A.: Exponential Neighborhoods and Domination Analysis for the TSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)Google Scholar
  19. 19.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Europ. J. Oper. Res. 126, 106–130 (2000)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Johnson, D.S., Gutin, G., McGeoch, L., Yeo, A., Zhang, X., Zverovitch, A.: Experimental Analysis of Heuristics for ATSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)Google Scholar
  21. 21.
    Koller, A.E., Noble, S.D.: Domination analysis of greedy heuristics for the frequency assignment problem. Discrete Math. 275, 331–338 (2004)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Punnen, A.P., Margot, F., Kabadi, S.N.: TSP heuristics: domination analysis and complexity. Algorithmica 35, 111–127 (2003)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Punnen, A.P., Kabadi, S.: Domination analysis of some heuristics for the traveling salesman problem. Discrete Appl. Math. 119, 117–128 (2002)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Robertson, A.J.: A set of greedy randomized adaptive local search procedure implementations for the multidimentional assignment problem. Computational Optimization and Applications 19, 145–164 (2001)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gregory Gutin
    • 1
    • 2
  • Boris Goldengorin
    • 3
    • 4
  • Jing Huang
    • 5
    • 6
  1. 1.Department of Computer ScienceRoyal Holloway University of LondonEgham, SurreyUK
  2. 2.Department of Computer ScienceUniversity of HaifaIsrael
  3. 3.Department of Econometrics and Operations ResearchUniversity of GroningenGroningenThe Netherlands
  4. 4.Department of Applied MathematicsKhmelnitsky National UniversityUkraine
  5. 5.Department of Mathematics and StatisticsUniversity of VictoriaCanada
  6. 6.School of Mathematics and Computer ScienceNanjing Normal UniversityNanjingChina

Personalised recommendations