Advertisement

A Simple Related-Key Attack on the Full SHACAL-1

  • Eli Biham
  • Orr Dunkelman
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4377)

Abstract

SHACAL-1 is a 160-bit block cipher with variable key length of up to 512-bit key based on the hash function SHA-1. It was submitted to the NESSIE project and was accepted as a finalist for the 2nd phase of evaluation. Since its introduction, SHACAL-1 withstood extensive cryptanalytic efforts. The best known key recovery attack on the full cipher up to this paper has a time complexity of about 2420 encryptions.

In this paper we use an observation due to Saarinen to present an elegant related-key attack on SHACAL-1. The attack can be mounted using two to eight unknown related keys, where each additional key reduces the time complexity of retrieving the actual values of the keys by a factor of 262. When all eight related-keys are used, the attack requires 2101.3 related-key chosen plaintexts and has a running time of 2101.3 encryptions. This is the first successful related-key key recovery attack on a cipher with varying round constants.

Keywords

Time Complexity Hash Function Success Probability Block Cipher Compression Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology 7(4), 229–246 (1994)MATHCrossRefGoogle Scholar
  2. 2.
    Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 36–57. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: Rectangle Attacks on 49-Round SHACAL-1. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 22–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Biham, E., Dunkelman, O., Keller, N.: Improved Slide Attacks. Private communicationGoogle Scholar
  9. 9.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)MATHGoogle Scholar
  10. 10.
    Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 586–606. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Dunkelman, O., Keller, N., Kim, J.: Related-Key Rectangle Attack on the Full SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Handschuh, H., Knudsen, L.R., Robshaw, M.J.: Analysis of SHA-1 in Encryption Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Handschuh, H., Naccache, D.: SHACAL. In: Preproceedings of NESSIE first workshop, Leuven (2000)Google Scholar
  17. 17.
    Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack — Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified Boomerang Attack against Reduced-Round SHACAL. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 243–253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)Google Scholar
  23. 23.
    Saarinen, M.-J.O.: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 36–44. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    NESSIE – New European Schemes for Signatures, Integrity and Encryption, http://www.nessie.eu.org/nessie
  25. 25.
    NESSIE, Portfolio of recommended cryptographic primitivesGoogle Scholar
  26. 26.
    NESSIE, Performance of Optimized Implementations of the NESSIE Primitives, NES/DOC/TEC/WP6/D21/2Google Scholar
  27. 27.
    US National Bureau of Standards, Secure Hash Standard, Federal Information Processing Standards Publications No. 180-2 (2002)Google Scholar
  28. 28.
    Van Den Bogeart, E., Rijmen, V.: Differential Analysis of SHACAL, NESSIE internal report NES/DOC/KUL/WP3/009/a (2001)Google Scholar
  29. 29.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. In: Cryptographic Hash Workshop, NIST, Gaithersburg (2005)Google Scholar
  31. 31.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eli Biham
    • 1
  • Orr Dunkelman
    • 1
    • 2
  • Nathan Keller
    • 3
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Katholieke Universiteit Leuven, ESAT/SCD-COSICLeuven-HeverleeBelgium
  3. 3.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations