Database Query Processing Using Finite Cursor Machines

  • Martin Grohe
  • Yuri Gurevich
  • Dirk Leinders
  • Nicole Schweikardt
  • Jerzy Tyszkiewicz
  • Jan Van den Bussche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4353)


We introduce a new abstract model of database query processing, finite cursor machines, that incorporates certain data streaming aspects. The model describes quite faithfully what happens in so-called “one-pass” and “two-pass query processing”. Technically, the model is described in the framework of abstract state machines. Our main results are upper and lower bounds for processing relational algebra queries in this model, specifically, queries of the semijoin fragment of the relational algebra.


Binary Relation Query Processing Data Element Atomic Formula Relational Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with a sorting primitive. In: FOCS 2004, pp. 540–549 (2004)Google Scholar
  2. 2.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. JCSS 58, 137–147 (1999)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Altinel, M., Franklin, M.: Efficient filtering of XML documents for selective dissemination of information. In: VLDB 2000, pp. 53–64 (2000)Google Scholar
  4. 4.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: PODS 2002, pp. 1–16 (2002)Google Scholar
  5. 5.
    Bar-Yossef, Z., Fontoura, M., Josifovski, V.: On the memory requirements of XPath evaluation over XML streams. In: PODS 2004, pp. 177–188 (2004)Google Scholar
  6. 6.
    Bar-Yossef, Z., Fontoura, M., Josifovski, V.: Buffering in query evaluation over XML streams. In: PODS 2005, pp. 216–227 (2005)Google Scholar
  7. 7.
    Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient filtering of XML documents with XPath expressions. The VLDB Journal 11, 354–379 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30, 514–550 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  12. 12.
    Green, T.J., Miklau, G., Onizuka, M., Suciu, D.: Processing XML streams with deterministic automata. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 173–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Grohe, M., Koch, C., Schweikardt, N.: Tight lower bounds for query processing on streaming and external memory data. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1076–1088. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Grohe, M., Schweikardt, N.: Lower bounds for sorting with few random accesses to external memory. In: PODS 2005, pp. 238–249 (2005)Google Scholar
  15. 15.
    Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In: SIGMOD 2003, pp. 419–430 (2003)Google Scholar
  16. 16.
    Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)Google Scholar
  17. 17.
    Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. JACM 48(4), 880–907 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. External Memory Algorithms. DIMACS Series In Discrete Mathematics And Theoretical Computer Science 50, 107–118 (1999)MathSciNetGoogle Scholar
  19. 19.
    Hromkovič, J.: One-way multihead deterministic finite automata. Acta Informatica 19, 377–384 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Law, Y.-N., Wang, H., Zaniolo, C.: Query languages and data models for database sequences and data streams. In: VLDB 2004, pp. 492–503 (2004)Google Scholar
  21. 21.
    Leinders, D., Van den Bussche, J.: On the complexity of division and set joins in the relational algebra. In: PODS 2005, pp. 76–83 (2005)Google Scholar
  22. 22.
    Leinders, D., Marx, M., Tyszkiewicz, J., Van den Bussche, J.: The semijoin algebra and the guarded fragment. JoLLI 14(3), 331–343 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Leinders, D., Tyszkiewicz, J., Van den Bussche, J.: On the expressive power of semijoin queries. IPL 91(2), 93–98 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  25. 25.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers Inc. (2005)Google Scholar
  26. 26.
    Peng, F., Chawathe, S.S.: XPath queries on streaming data. In: SIGMOD 2003, pp. 431–442 (2003)Google Scholar
  27. 27.
    Rosenberg, A.L.: On multi-head finite automata. In: Proceedings of the 6th IEEE Symposium on Switching Circuit Theory and Logical Design, pp. 221–228 (1965)Google Scholar
  28. 28.
    Simmen, D., Shekita, E., Malkemus, T.: Fundamental techniques for order optimization. In: SIGMOD 1996, pp. 57–67 (1996)Google Scholar
  29. 29.
    Van den Bussche, J.: Finite cursor machines in database query processing. In: Proceedings of the 11th International Workshop on ASMs, pp. 61–61 (2004)Google Scholar
  30. 30.
    Yannakakis, M.: Algorithms for acyclic database schemes. In: VLDB 1981, pp. 82–94 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Grohe
    • 1
  • Yuri Gurevich
    • 2
  • Dirk Leinders
    • 3
  • Nicole Schweikardt
    • 1
  • Jerzy Tyszkiewicz
    • 4
  • Jan Van den Bussche
    • 3
  1. 1.Humboldt-University Berlin 
  2. 2.Microsoft Research 
  3. 3.Hasselt University and Transnational University of Limburg 
  4. 4.University of Warsaw 

Personalised recommendations