Trajectory Databases: Data Models, Uncertainty and Complete Query Languages

  • Bart Kuijpers
  • Walied Othman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4353)


Moving objects produce trajectories. We describe a data model for trajectories and trajectory samples and an efficient way of modeling uncertainty via beads for trajectory samples. We study transformations for which important physical properties of trajectories, such as speed, are invariant. We also determine which transformations preserve beads. We give conceptually easy first-order complete query languages and computationally complete query languages for trajectory databases, which allow to talk directly about speed and beads. The queries expressible in these languages are invariant under speed- and bead-preserving transformations.


Query Language Point Variable Atomic Formula Straight Line Segment Trajectory Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egenhofer, M.: Approximation of geospatial lifelines. In: SpadaGIS, Workshop on Spatial Data and Geographic Information Systsems, Electr. proceedings, p. 4 (2003)Google Scholar
  2. 2.
    Geerts, F., Haesevoets, S., Kuijpers, B.: A theory of spatio-temporal database queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 198–212. Springer, Heidelberg (2002); (a full version will appear in ACM Transactions on Computational Logic)CrossRefGoogle Scholar
  3. 3.
    Geerts, F.: Moving objects and their equations of motion. In: Kuijpers, B., Revesz, P.Z. (eds.) CDB 2004. LNCS, vol. 3074, pp. 41–52. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Güting, R., Schneider, M.: Moving Object Databases. Morgan Kaufmann, San Francisco (2005)Google Scholar
  5. 5.
    Gyssens, M., Van den Bussche, J., Van Gucht, D.: Complete geometric query languages. J. Comput. System Sci. 58(3), 483–511 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hägerstrand, T.: What about People in Regional Science? Papers of the Regional Science Association 24, 7–21 (1970)Google Scholar
  7. 7.
    Hornsby, K., Egenhofer, M.: Modeling moving objects over multiple granularities. Annals of Mathematics and Artificial Intelligence 36(1–2), 177–194 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Paredaens, J., Kuper, G., Libkin, L. (eds.): Constraint databases. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  9. 9.
    Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 111–132. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Polyanin, A.D., Zaitsev, V.F., Moussiaux, A.: Handbook of First Order Partial Differential Equations. Taylor & Francis, Abington (2002)zbMATHGoogle Scholar
  11. 11.
    Su, J., Xu, H., Ibarra, O.: Moving objects: Logical relationships and queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 3–19. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Wolfson, O.: Moving objects information management: The database challenge. In: Proceedings of the 5th Intl. Workshop NGITS, pp. 75–89. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bart Kuijpers
    • 1
  • Walied Othman
    • 1
  1. 1.Theoretical Computer Science GroupHasselt University & Transnational University of LimburgBelgium

Personalised recommendations